We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
http://mc.manuscriptcentral.com/ahrr.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This editorial summarizes the key observations from a special issue of Animal Health Research Reviews comprising 14 articles related to the efficacy of antimicrobial and non-antimicrobial approaches to reduce disease in beef, dairy cattle, swine, and broiler chickens. The articles used evidence-based methods, including scoping reviews, systematic reviews, meta-analyses, and network meta-analyses. Despite finding evidence of efficacy for some of the interventions examined, across the body of research, there was a lack of replication and inconsistency in outcomes among the included trials, and concerns related to completeness of reporting and trial design and execution. There is an urgent need for more and better data to inform antimicrobial stewardship practices in animal agriculture.
In this manuscript we use realistic data to conduct a network meta-analysis using a Bayesian approach to analysis. The purpose of this manuscript is to explain, in lay terms, how to interpret the output of such an analysis. Many readers are familiar with the forest plot as an approach to presenting the results of a pairwise meta-analysis. However when presented with the results of network meta-analysis, which often does not include the forest plot, the output and results can be difficult to understand. Further, one of the advantages of Bayesian network meta-analyses is in the novel outputs such as treatment rankings and the probability distributions are more commonly presented for network meta-analysis. Our goal here is to provide a tutorial for how to read the outcome of network meta-analysis rather than how to conduct or assess the risk of bias in a network meta-analysis.
Systematic reviews and meta-analyses are used to summarize and interpret evidence for clinical decision-making in human health. The extent of the application of these methods in veterinary medicine and animal agriculture is unknown. The goal of this scoping study was to ascertain trends in the publication of systematic reviews and meta-analyses examining animal health, animal performance, and on-farm food safety. Online databases were searched for reviews published between 1993 and 2018 that focused on relevant outcomes in domestic livestock, companion animals, or wildlife species. In total 1787 titles and abstracts underwent data characterization. Dairy cattle, fish, and pigs were the most common target commodity groups. Few articles investigated both health and performance outcomes (only health: n = 418; only performance: n = 701; both health and performance: n = 103). Most of the reviews (67.6%, n = 1208/1787) described a meta-analysis but did not state in the title or abstract that a systematic review was also conducted, which is potentially problematic. Adherence to reporting guidelines is recommended for all systematic reviews and meta-analyses. For research areas with many reviews, an evidence repository is recommended. For less well-reviewed areas, additional investigation may be necessary to identify the reasons for the lack of synthesis research.
Livestock producers are encouraged to reduce the use of antibiotics belonging to classes of medical importance to humans. We conducted a scoping review on non-antibiotic interventions in the form of products or management practices that could potentially reduce the need for antibiotics in beef and veal animals living under intensive production conditions. Our objectives were to systematically describe the research on this broad topic, identify specific topics that could feasibly support systematic reviews, and identify knowledge gaps. Multiple databases were searched. Two reviewers independently screened and charted the data. From the 13,598 articles screened, 722 relevant articles were charted. The number of relevant articles increased steadily from 1990. The Western European research was dominated by veal production studies whereas the North American research was dominated by beef production studies. The interventions and outcomes measured were diverse. The four most frequent interventions included non-antibiotic feed additives, vaccinations, breed type, and feed type. The four most frequent outcomes were indices of immunity, non-specific morbidity, respiratory disease, and mortality. There were seven topic areas evaluated in clinical trials that may share enough commonality to support systemic reviews. There was a dearth of studies in which interventions were compared to antibiotic comparison groups.
Vaccination against putative causal organisms is a frequently used and preferred approach to controlling bovine respiratory disease complex (BRD) because it reduces the need for antibiotic use. Because approximately 90% of feedlots use and 90% of beef cattle receive vaccines in the USA, information about their comparative efficacy would be useful for selecting a vaccine. We conducted a systematic review and network meta-analysis of studies assessing the comparative efficacy of vaccines to control BRD when administered to beef cattle at or near their arrival at the feedlot. We searched MEDLINE, MEDLINE In-Process, MEDLINE Daily Epub Ahead of Print, AGRICOLA, Cambridge Agricultural and Biological Index, Science Citation Index, and Conference Proceedings Citation Index – Science and hand-searched the conference proceedings of the American Association of Bovine Practitioners and World Buiatrics Congress. We found 53 studies that reported BRD morbidity within 45 days of feedlot arrival. The largest connected network of studies, which involved 17 vaccine protocols from 14 studies, was included in the meta-analysis. Consistent with previous reviews, we found little compelling evidence that vaccines used at or near arrival at the feedlot reduce the incidence of BRD diagnosis.
We conducted a systematic review and network meta-analysis to determine the comparative efficacy of antibiotics used to control bovine respiratory disease (BRD) in beef cattle on feedlots. The information sources for the review were: MEDLINE®, MEDLINE In-Process and MEDLINE® Daily, AGRICOLA, Epub Ahead of Print, Cambridge Agricultural and Biological Index, Science Citation Index, Conference Proceedings Citation Index – Science, the Proceedings of the American Association of Bovine Practitioners, World Buiatrics Conference, and the United States Food and Drug Administration Freedom of Information New Animal Drug Applications summaries. The eligible population was weaned beef cattle raised in intensive systems. The interventions of interest were injectable antibiotics used at the time the cattle arrived at the feedlot. The outcome of interest was the diagnosis of BRD within 45 days of arrival at the feedlot. The network meta-analysis included data from 46 studies and 167 study arms identified in the review. The results suggest that macrolides are the most effective antibiotics for the reduction of BRD incidence. Injectable oxytetracycline effectively controlled BRD compared with no antibiotics; however, it was less effective than macrolide treatment. Because oxytetracycline is already commonly used to prevent, control, and treat BRD in groups of feedlot cattle, the use of injectable oxytetracycline for BRD control might have advantages from an antibiotic stewardship perspective.
A systematic review and network meta-analysis were conducted to assess the relative efficacy of internal or external teat sealants given at dry-off in dairy cattle. Controlled trials were eligible if they assessed the use of internal or external teat sealants, with or without concurrent antimicrobial therapy, compared to no treatment or an alternative treatment, and measured one or more of the following outcomes: incidence of intramammary infection (IMI) at calving, IMI during the first 30 days in milk (DIM), or clinical mastitis during the first 30 DIM. Risk of bias was based on the Cochrane Risk of Bias 2.0 tool with modified signaling questions. From 2280 initially identified records, 32 trials had data extracted for one or more outcomes. Network meta-analysis was conducted for IMI at calving. Use of an internal teat sealant (bismuth subnitrate) significantly reduced the risk of new IMI at calving compared to non-treated controls (RR = 0.36, 95% CI 0.25–0.72). For comparisons between antimicrobial and teat sealant groups, concerns regarding precision were seen. Synthesis of the primary research identified important challenges related to the comparability of outcomes, replication and connection of interventions, and quality of reporting of study conduct.
A systematic review and network meta-analysis were conducted to assess the relative efficacy of antimicrobial therapy given to dairy cows at dry-off. Eligible studies were controlled trials assessing the use of antimicrobials compared to no treatment or an alternative treatment, and assessed one or more of the following outcomes: incidence of intramammary infection (IMI) at calving, incidence of IMI during the first 30 days in milk (DIM), or incidence of clinical mastitis during the first 30 DIM. Databases and conference proceedings were searched for relevant articles. The potential for bias was assessed using the Cochrane Risk of Bias 2.0 algorithm. From 3480 initially identified records, 45 trials had data extracted for one or more outcomes. Network meta-analysis was conducted for IMI at calving. The use of cephalosporins, cloxacillin, or penicillin with aminoglycoside significantly reduced the risk of new IMI at calving compared to non-treated controls (cephalosporins, RR = 0.37, 95% CI 0.23–0.65; cloxacillin, RR = 0.55, 95% CI 0.38–0.79; penicillin with aminoglycoside, RR = 0.42, 95% CI 0.26–0.72). Synthesis revealed challenges with a comparability of outcomes, replication of interventions, definitions of outcomes, and quality of reporting. The use of reporting guidelines, replication among interventions, and standardization of outcome definitions would increase the utility of primary research in this area.
A systematic review and meta-analysis were conducted to determine the efficacy of selective dry-cow antimicrobial therapy compared to blanket therapy (all quarters/all cows). Controlled trials were eligible if any of the following were assessed: incidence of clinical mastitis during the first 30 DIM, frequency of intramammary infection (IMI) at calving, or frequency of IMI during the first 30 DIM. From 3480 identified records, nine trials were data extracted for IMI at calving. There was an insufficient number of trials to conduct meta-analysis for the other outcomes. Risk of IMI at calving in selectively treated cows was higher than blanket therapy (RR = 1.34, 95% CI = 1.13, 1.16), but substantial heterogeneity was present (I2 = 58%). Subgroup analysis showed that, for trials using internal teat sealants, there was no difference in IMI risk at calving between groups, and no heterogeneity was present. For trials not using internal teat sealants, there was an increased risk in cows assigned to a selective dry-cow therapy protocol, compared to blanket treatment, with substantial heterogeneity in this subgroup. However, the small number of trials and heterogeneity in the subgroup without internal teat sealants suggests that the relative risk between treatments may differ from the determined point estimates based on other unmeasured factors.
A systematic review and network meta-analysis were conducted to assess the relative efficacy of antimicrobial therapy for clinical mastitis in lactating dairy cattle. Controlled trials in lactating dairy cattle with natural disease exposure were eligible if they compared an antimicrobial treatment to a non-treated control, placebo, or a different antimicrobial, for the treatment of clinical mastitis, and assessed clinical or bacteriologic cure. Potential for bias was assessed using a modified Cochrane Risk of Bias 2.0 tool. From 14775 initially identified records, 54 trials were assessed as eligible. Networks were established for bacteriologic cure by bacterial species group, and clinical cure. Disparate networks among bacteriologic cures precluded meta-analysis. Network meta-analysis was conducted for trials assessing clinical cure, but lack of precision of point estimates resulted in wide credibility intervals for all treatments, with no definitive conclusions regarding relative efficacy. Consideration of network geometry can inform future research to increase the utility of current and previous work. Replication of intervention arms and consideration of connection to existing networks would improve the future ability to determine relative efficacy. Challenges in the evaluation of bias in primary research stemmed from a lack of reporting. Consideration of reporting guidelines would also improve the utility of future research.
A systematic review and network meta-analysis (NMA) were conducted to address the question, ‘What is the efficacy of litter management strategies to reduce morbidity, mortality, condemnation at slaughter, or total antibiotic use in broilers?’ Eligible studies were clinical trials published in English evaluating the efficacy of litter management in broilers on morbidity, condemnations at slaughter, mortality, or total antibiotic use. Multiple databases and two conference proceedings were searched for relevant literature. After relevance screening and data extraction, there were 50 trials evaluating litter type, 22 trials evaluating litter additives, 10 trials comparing fresh to re-used litter, and six trials evaluating floor type. NMAs were conducted for mortality (61 trials) and for the presence or absence of footpad lesions (15 trials). There were no differences in mortality among the litter types, floor types, or additives. For footpad lesions, peat moss appeared beneficial compared to straw, based on a small number of comparisons. In a pairwise meta-analysis, there was no association between fresh versus used litter on the risk of mortality, although there was considerable heterogeneity among studies (I2 = 66%). There was poor reporting of key design features in many studies, and analyses rarely accounted for non-independence of observations within flocks.
The objective of this systematic review was to evaluate the efficacy of antibiotics to prevent or control colibacillosis in broilers. Studies found eligible were conducted controlled trials in broilers that evaluated an antibiotic intervention, with at least one of the following outcomes: mortality, feed conversion ratio (FCR), condemnations at slaughter, or total antibiotic use. Four electronic databases plus the gray literature were searched. Abstracts were screened for eligibility and data were extracted from eligible trials. Risk of bias was evaluated.
Seven trials reported eligible outcomes in a format that allowed data extraction; all reported results for FCR and one also reported mortality. Due to the heterogeneity in the interventions and outcomes evaluated, it was not feasible to conduct meta-analysis.
Qualitatively, for FCR, comparisons between an antibiotic and an alternative product did not show a significant benefit for either. Some of the comparisons between an antibiotic and a no-treatment placebo showed a numerical benefit to antibiotics, but with wide confidence intervals. The risk-of-bias assessment revealed concerns with reporting of key trial features.
The results of this review do not provide compelling evidence for or against the efficacy of antibiotics for the control of colibacillosis.
A systematic review and network meta-analysis (MA) was conducted to address the question, ‘What is the efficacy of bacterial vaccines to prevent respiratory disease in swine?’ Four electronic databases and the grey literature were searched to identify clinical trials in healthy swine where at least one intervention arm was a commercially available vaccine for one or more bacterial pathogens associated with respiratory disease in swine, including Mycoplasma hyopneumoniae, Actinobacillus pleuropneumonia, Actinobacillus suis, Bordetella bronchiseptica, Pasteurella multocida, Stretococcus suis, Haemophils parasuis, and Mycoplasma hyorhinis. To be eligible, trials had to measure at least one of the following outcomes: incidence of clinical morbidity, mortality, lung lesions, or total antibiotic use. There were 179 eligible trials identified in 146 publications. Network MA was undertaken for morbidity, mortality, and the presence or absence of non-specific lung lesions. However, there was not a sufficient body of research evaluating the same interventions and outcomes to allow a meaningful synthesis of the comparative efficacy of the vaccines. To build this body of research, additional rigor in trial design and analysis, and detailed reporting of trial methods and results are warranted.
Prevention and control of respiratory disease is a major contributor to antibiotic use in swine. A systematic review was conducted to address the question, ‘What is the comparative efficacy of antimicrobials for the prevention of swine respiratory disease?’ Eligible studies were controlled trials published in English evaluating prophylactic antibiotics in swine, where clinical morbidity, mortality, or total antibiotic use was assessed. Four databases and the gray literature were searched for relevant articles. Two reviewers working independently screened titles and abstracts for eligibility followed by full-text articles, and then extracted data and evaluated risk of bias for eligible trials. There were 44 eligible trials from 36 publications. Clinical morbidity was evaluated in eight trials where antibiotics were used in nursery pigs and 10 trials where antibiotics were used in grower pigs. Mortality was measured in 22 trials in nursery pigs and 12 trials in grower pigs. There was heterogeneity in the antibiotic interventions and comparisons published in the literature; thus, there was insufficient evidence to allow quantification of the efficacy, or relative efficacy, of antibiotic interventions. Concerns related to statistical non-independence and quality of reporting were noted in the included trials.
To implement effective stewardship in food animal production, it is essential that producers and veterinarians are aware of preventive interventions to reduce illness in livestock. Systematic reviews and meta-analyses (SR/MA) provide transparent, replicable, and quality-assessed overviews. At present, it is unknown how many SR/MA evaluate preventive antibiotic use or management practices aimed at reducing disease risk in animal agriculture. Further, the quality of existing reviews is unknown. Our aim was to identify reviews investigating these topics and to provide an assessment of their quality. Thirty-eight relevant reviews were identified. Quality assessment was based on the AMSTAR 2 framework for the critical appraisal of systematic reviews. The quality of most of the reviews captured was classified as critically low (84.2%, n = 32/38), and only a small percentage of the evaluated reviews did not contain critical weaknesses (7.9%, n = 3/38). Particularly, a small number of reviews reported the development of an a priori protocol (15.8%, n = 6/38), and few reviews stated that key review steps were conducted in duplicate (study selection/screening: 26.3%, n = 10/38; data extraction: 15.8%, n = 6/38). The development of high-quality reviews summarizing evidence on approaches to antibiotic reduction is essential, and thus greater adherence to quality conduct guidelines for synthesis research is crucial.