In his 1916 book, Aircraft in Warfare, the Dawn of the Fourth Arm, F.W. Lanchester wrote:
“The supremacy of British aircraft can only be maintained by the adoption of a thoroughly progressive constructional policy, guided constantly by the most recent scientific discovery and research, and by utilising to the full information and experience gained in the Services.”
The recent successful flight trials of the Taranis low-observable unmanned demonstrator aircraft provide the latest evidence of the UK’s continued capacity for the entire design, development, manufacture, and flight testing of world-leading combat aircraft, particularly with regard to Aerodynamics. Taranis is both the culmination of many years’ research and development in the UK and a starting-point for the next generation of UK combat air systems.
In this lecture, Taranis is reviewed, in such detail as current sensitivities will allow, in the wider context of UK combat aircraft aerodynamic capability, exemplified by the leading roles taken by the UK in the Tornado and Typhoon programmes and the important contribution made to the development of the F-35 Lightning II Joint Strike Fighter.
The immediate technical challenges associated with the aerodynamic design and qualification of a low-observable air vehicle are considerable. In this instance they have been compounded by the balanced view taken within the project of trade-offs against many parameters. However, the UK aerodynamics community faces equally stringent challenges in terms of the identification and delivery of the most appropriate future systems; increasingly complex and demanding operational and functional requirements; and, perhaps most of all, maintaining an affordable and cost-effective capability in the face of strict budgetary pressures and austere economic conditions.
Nevertheless, those challenges are accompanied by a wide range of opportunities, namely for national and international partnership; radically innovative engineering solutions and approaches; new thinking; and the engagement of the best minds and ideas in the UK academic community.
Taranis represented a big integration task, requiring a particular set of skills to pull together the total package, resting on a bedrock of mastery of the technical issues. It has been an inspirational experience for those of us who have worked on it. It has demonstrated that the UK is capable of achieving the most demanding current and anticipated military aerodynamic requirements and has signposted the way to an exciting and nationally important future.