Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T12:02:36.996Z Has data issue: false hasContentIssue false

Mass prediction models for air cargo challenge aircraft

Published online by Cambridge University Press:  10 August 2021

G.L. Garcia
Affiliation:
Centre for Mechanical and Aerospace Science and Technologies (C-MAST-UBI), Universidade da Beira Interior, Covilhã, Portugal
P.V. Gamboa*
Affiliation:
Centre for Mechanical and Aerospace Science and Technologies (C-MAST-UBI), Universidade da Beira Interior, Covilhã, Portugal

Abstract

Design/Build/Fly competitions are attracting increased interest in the training of aerospace engineers at academic level worldwide. These competitions entail fundamental activities in aircraft design, optimization and manufacturing which foster student knowledge not possible in classical academic activities. Over the years, the competitiveness of these contests has increased due to the ever-increasing performance that the aircraft exhibit in the flight event. Mass prediction models, specific for competitions such as Air Cargo Challenge (ACC), are presented in this paper. These models are divided into two development methods: statistical and structure-based equations.

The statistical mass models are developed based on data collected from past ACC editions where model accuracy is mainly dependent on the amount of data available. Three models are derived, one containing all available aircraft and two more obtained by dividing the aircraft into balsa- or composite-dominated structures.

Using the structure-based equations method, where the amount of material required to withstand the stresses that the airplane is subjected to is determined, a model is developed for each one of the three considered wing structural concepts, namely two-cell Carbon-Fibre-Reinforced Plastic (CFRP), CFRP D-box and CFRP tube spar. The tail boom component equation is created independently, while the remaining components masses are determined from coefficients based on geometric characteristics and the computed wing or total masses. The average error associated with these models is inferior to 2% for the total mass.

The results obtained from the application to the considered study cases are also presented, and the validity, accuracy, and application in terms of the design phase for each method are discussed.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Raymer, D.P. Aircraft Design : A Conceptual Approach. 4th ed., American Institute of Aeronautics and Astronautics, Inc., 2006, Reston, Virginia, USA.Google Scholar
Elham, A., La Rocca, G. and Van Tooren, M.J.L. Development and implementation of an advanced, design-sensitive method for wing weight estimation, Aerosp. Sci. Technol, 2013, 29, (1), pp 100113.CrossRefGoogle Scholar
Dababneh, O. and Kipouros, T. A review of aircraft wing mass estimation methods, Aerosp. Sci. Technol, 2018, 72, pp 256266.CrossRefGoogle Scholar
Roskam, J. Airplane design, DARcorporation, 1985, Lawrence, Kansas, USA.Google Scholar
Jenkinson, L.R., Simpkin, P. and Rhodes, D. Civil Jet Aircraft Design, Arnold Publishers, 1999, London, UK.CrossRefGoogle Scholar
Torenbeek, E. Synthesis of Subsonic Airplane Design, Delft University Press, 1982, Delft, The Netherlands.CrossRefGoogle Scholar
Glatt, C.R. WAATS - A computer program for Weights Analysis of Advanced Transportation Systems, NASA-CR-2420, 1974.Google Scholar
Niu, M.C.Y. Airframe Structural Design: Practical Design Information and Data on Aircraft Structures. Conmilit Press Ltd., 1988.Google Scholar
Howe, D. Aircraft Conceptual Design Synthesis, Professional Engineering Publishing, 2000, London, UK.CrossRefGoogle Scholar
Bindolino, G., Ghiringhelli, G., Ricci, S. and Terraneo, M. Multilevel structural optimization for preliminary wing-box weight estimation, J. Aircr, 2010, 47, (2), pp 475489.CrossRefGoogle Scholar
Ardema, M.D., Chambers, M.C., Patron, A.P., Hahn, A.S., Miura, H. and Moore, M.D. Estimation of Transport Aircraft Analytical Fuselage and Wing Weight, Nasa Tech. Memo. 110392, 1996.Google Scholar
Burt, M.E. Weight prediction for wings of box construction, Ministry of Supply, Royal Aircraft Establishment, 1955, Farnborough, UK.Google Scholar
Torenbeek, E. Development and Application of a Comprehensive, Design-sensitive Weight Predicition Method for Wing Structures of Transport Category Aircraft,” Report LR-693, Delft University of Technology, 1992.Google Scholar
van der Velden, A., Kelm, R. and Mertens, J. Application of MDO to Large Subsonic Transport Aircraft, 38th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 10–13 Jan 2000.CrossRefGoogle Scholar
can Dijk, G.J. Development of a wing weight prediction method, Haarlem Instute of Technology, 1987, Haarlem.Google Scholar
“About Air Cargo Challenge.” [Online]. Available: http://www.acc2017.com/page/about-air-cargo-challenge. [Accessed: 02-Mar-2018].Google Scholar
“AIAA’s Design/Build/Fly.” [Online]. Available: https://www.aiaadbf.org/. [Accessed: 11-May-2018].Google Scholar
Lasdon, L.S., Fox, R.L., and Ratner, M.W. Nonlinear optimization using the generalized reduced gradient method, Rev. Fr. d’Automatique, Inform. Rech. Opérationnelle, 1974, 3, pp 73104.Google Scholar
Cameron, A.C. and Windmeijer, F.A.G. An R-squared measure of goodness of fit for some common nonlinear regression models, J. Econ., 1997, 77, (2), pp 329342.CrossRefGoogle Scholar
Noth, A., Siegwart, R. and Engel, W. Design of Solar Powered Airplanes for Continuous Flight, Environ. Res, 2007, 18010, p 18.Google Scholar
Megson, T.H.G. Aircraft Structures for engineering students, 6th ed., Elsevier Aeroespace Engineering Series, Elsevier, 2017.Google Scholar
Anonymus, UBI Pegasus II – Air Cargo Challenge 2007, Design Report, University of Beira Interior, Covilhã, 2007.Google Scholar
Anonymus, LUSOFLY – Air Cargo Challenge 2009, Design Report, Air Force Academy, Lisboa, 2009.Google Scholar
Geiser, M., JÄkel, S., Kauser, C., Klam, H-P., Scheur, N. and Kerler, M. TUHeavy – Air Cargo Challenge 2009, Design Report, Technische UniversitÄt MÜnchen, MÜnchen, 2009.Google Scholar
Mihalcut, C.C., Chitu, C.C., Slave, C.A., Parvu, D.S., Anton, S.M. and Istrate, B.I. INFINIteam – Air Cargo Challenge 2009, Design Report, Polytechnic University of Bucharest, Bucuresti, 2009.Google Scholar
Becerra, J.C., Company, M.C., Prats, J.C., Olcina, G., Lorente, A.P., López, R.S. and Escobedo, S.V. TRENCÀLOS – Air Cargo Challenge 2009, Design Report, Universitat Politécnica de Catalunya, Terrassa, 2009.Google Scholar
Rautenberg, A., BÜhler, R., Illg, J., Pudell, E., Abel, M., Schwarzbach, M. and ZÖbisch, A. AKAModell09 – Air Cargo Challenge 2009, Design Report, AKAModell Stuttgart, Stuttgart, 2009.Google Scholar
Ganea, P., Dibla, M., Mihalache, R., Dinu, V., Bondar, A. and Marculescu, B. SONICKIDS – Air Cargo Challenge 2009, Design Report, Universitatea “POLITEHNiCA” Bucuresti, Bucuresti, 2009.Google Scholar
Almeida, A., Freitas, C., Costa, C.H., Nunes, G. and Costa, R. COLIBRI – Air Cargo Challenge 2009, Design Report, University of Minho, Braga, 2009.Google Scholar
Alves, P., Rebelo, J., Rebelo, T., Santos, P., Coelho, A. and Silvestre, M.A.R. UBI – Air Cargo Challenge 2011, Design Report, University of Beira Interior, Covilhã, 2011.Google Scholar
Şener, H., Tamkan, D., Yildrim, A., KaragÖz, E., KaragÖz, F., Pelit, E.M., GÜrler, M., IÇen, M., Ural, H., SeferbeyoĞlu, T. and Ünal, A. Anatolian Craft – Air Cargo Challenge 2013, Design Report, Middle East Technical University, Ankara, 2013.Google Scholar
Anatasios, T., Antonis, M., Nikoleta, B., Kostas, N., Dimitra, Z. and Spyros, K. ATLAS III B – Air Cargo Challenge 2013, Design Report, University of Patras, Patras, 2013.Google Scholar
Polyxeni, D., Nikolaos, E., Manos, S., Katerina, G., Anna-Maria, P. and Alexantros, K. ATLAS IV – Air Cargo Challenge 2013, Design Report, University of Patras, Patras, 2013.Google Scholar
Albuquerque, P.F., Vicente, D., Melo, D., Lopes, H.D., Eleutério, A. and Precioso, P. LUSITÂNIA – Team Air Cargo Challenge 2013, Design Report, Instituto Superior Técnico, Lisboa, 2013.Google Scholar
Istrate, A., Baetu, C., Neculai, R., Anghel, V., Popescu, F., Buliga, S. and Muresan, C. PHOENIX – Air Cargo Challenge 2013, Design Report, Universitatea “POLITEHNiCA” Bucuresti, Bucuresti, 2013.Google Scholar
RogóŻ, J., JabŁoŃski, D., PrĘga, P., Rusiecki, T., Skowronek, M., SobociŃski, W. and Wasilewski, S. Rzeszów – Air Cargo Challenge 2013, Design Report, Rzeszów University of Technology, Rzeszów, 2013.Google Scholar
Pereira, L.T.L., Canhadas, A.R., Soares, L.B., Paula, N.C.G., Almeida, R.M. and Bustamante, J.P.R. EESC-USP Juliett – Air Cargo Challenge 2013, Design Report, Escola de Engenharia de São Carlos, São Paulo, 2013.Google Scholar
BÜhler, R., Molter, C., Illg, J., Abel, M., Armbrumster, B. and Hille, C. AKAModell Stuttgart – Air Cargo Challenge 2013, Design Report, AKAModell Stuttgart, Stuttgart, 2013.Google Scholar
Guangyao, G., Yang, G., Yiying, Z., Shuai, H., Xiaochi, Z., Dong, L., Kuerui, W. and Xiaogiang, S. Gravity – Air Cargo Challenge 2013, Design Report, Beihang University, Beihang, 2013.Google Scholar
Silvestre, M.A.R., Rebelo, J., Chaves, F., Fraqueiro, F., Moutinho, P., Gomes, A. and Sousa, D. AERO@UBI_Team – Air Cargo Challenge 2015, Design Report, University of Beira Interior, Covilhã, 2015.Google Scholar
Andrade, A., Brum, A., Gomes, A., Silvestre, B., Fraqueiro, F. and Almeida, H. AERO@UBI_MARS – Air Cargo Challenge 2017, Design Report, University of Beira Interior, Covilhã, 2017.Google Scholar
Franco, A., Martins, B., Ventura, F., Leal, F., Morão, I. and Licova, N. AERO@UBI_PVG – Air Cargo Challenge 2017, Design Report, University of Beira Interior, Covilhã, 2017.Google Scholar
AlemdaroĞlu, N., Turgut, Ö., KayabaŞi, I., Çetiner, A.E., Korkut, B. and Karban, U. KELAYNAK – Air Cargo Challenge 2009, Design Report, Middle East Technical University, Ankara, 2009.Google Scholar
Garcia, L., Company, M., Capardon, M., Garcia, J., Duran, C., Torné, A., Lopez, R. and Sotilla, O. Trencalòs – Team Air Cargo Challenge 2013, Design Report, Universitat Politécnica de Catalunya, BarcelonaTech, Terrassa, 2013.Google Scholar
Siwy, T., PŁatek, K., SmoliŃski, M. and Hecel, M. High Flyers – Air Cargo Challenge 2013, Design Report, Silesian University of Technology, Silesia, 2013.Google Scholar
Lukaszewicz, A., Grodzki, W., Wojtecki, W. and Chomaniuk, M. Podlasie Tigers Air – Cargo Challenge 2013, Design Report, Bialystok University of Technology, Byalistok, 2013.Google Scholar
Ge, D., Yang, G., Du, X., Gao, W., Gao, Y., Lim, J. and Xie, Q. Aircraft Design Report of Tsinghua Team – Air Cargo Challenge 2013, Design Report, Tsinghua University, Beijing, 2013.Google Scholar
Pereira, A., Vieira, J., Nascimento, J., Andrade, M., Santos, N., Pereira, P. and Cruz, S. Gryphus II – Air Cargo Challenge 2013, Design Report, Universidade de Aveiro, Aveiro, 2013.Google Scholar
Daniels, J., Maeyer, J., FranÇois-Xavier, T., Serneels, M., Vandebroek, F. and Theys, B. Team LU Leuven – Air Cargo Challenge 2013, Design Report, Katholieke Universiteit Leuven, Leuven, 2013.Google Scholar
Jing, G., Xiaochi, Z., Yiying, Z., Shuai, H., Yang, G., Xuerui, W., Dong, L. and Xiaogiang, S. LIFT – Air Cargo Challenge 2013, Design Report, Beihang University, Beihang, 2013.Google Scholar
AndraŠec, J., BalaŠko, M., Čulina, J., KnezoviĆ, I., Lisjak, N., PaĐen, I. and RadoŠeviĆ, I. Projekt letjelice HUSZ Tern, Sveuciliste U Zagrebeu, Fakultet Strojarstva I Brodogradne, Zagreb, 2016.Google Scholar
Silva, F., Palmeira, R., Ferreira, M., Lousada, M., Domingues, R. and Morão, T. AERO@UBI – Air Cargo Challenge 2019, Design Report, Universidade da Beira Interior, Covilhã, 2019.Google Scholar
Gomes, A. Development of an UAV for the Air Cargo Challenge 2017 Competition, MSc Thesis, Universidade da Beira Interior, 2017.Google Scholar