Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T12:33:21.074Z Has data issue: false hasContentIssue false

Uniform approximation of the Cox–Ingersoll–Ross process via exact simulation at random times

Published online by Cambridge University Press:  11 January 2017

Grigori N. Milstein*
Affiliation:
Ural Federal University
John Schoenmakers*
Affiliation:
Weierstrass Institute for Applied Analysis and Stochastics
*
* Postal address: Ural Federal University, Lenin Str. 51, 620083 Ekaterinburg, Russia.
*– Postal address: Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany. Email address: [email protected]

Abstract

In this paper we uniformly approximate the trajectories of the Cox–Ingersoll–Ross (CIR) process. At a sequence of random times the approximate trajectories will be even exact. In between, the approximation will be uniformly close to the exact trajectory. From a conceptual point of view, the proposed method gives a better quality of approximation in a path-wise sense than standard, or even exact, simulation of the CIR dynamics at some deterministic time grid.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alfonsi, A. (2005). On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Meth. Appl. 11, 355384.CrossRefGoogle Scholar
[2] Alfonsi, A. (2010). High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comput. 79, 209237.CrossRefGoogle Scholar
[3] Andersen, L. (2008 ). Simple and efficient simulation of the Heston stochastic volatility model. J. Comput. Finance 11, 142.CrossRefGoogle Scholar
[4] Bateman, H.and Erdélyi, A. (1953). Higher Transcendental Functions. McGraw-Hill, New York.Google Scholar
[5] Beskos, A. and Roberts, G. O. (2005). Exact simulation of diffusions. Ann. Appl. Prob. 15, 24222444.CrossRefGoogle Scholar
[6] Beskos, A., Peluchetti, S. and Roberts, G. (2012). ε-strong simulation of the Brownian path. Bernoulli 18, 12231248.CrossRefGoogle Scholar
[7] Blanchet, J. and Murthy, K. R. A. (2014). Exact simulation of multidimensional reflected Brownian motion. Preprint. Available at http://arxiv.org/abs/1405.6469v2.pdf.Google Scholar
[8] Blanchet, J., Chen, X. and Dong, J. (2014). ε-strong simulation for multidimensional stochastic differential equations via rough path analysis. Preprint. Available at http://arxiv.org/abs/1403.5722v3.pdf.Google Scholar
[9] Broadie, M.and Kaya, Ö. (2006). Exact simulation of stochastic volatility and other affine jump diffusion processes. Operat. Res. 54, 217231.CrossRefGoogle Scholar
[10] Chen, N. and Huang, Z. (2013). Localization and exact simulation of Brownian motion-driven stochastic differential equations. Math. Operat. Res. 38, 591616.CrossRefGoogle Scholar
[11] Cox, J. C., Ingersoll, J. E., Jr. and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica 53, 385407.CrossRefGoogle Scholar
[12] Dereich, S., Neuenkirch, A. and Szpruch, L. (2012). An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process. Proc. R. Soc. London A 468, 11051115.Google Scholar
[13] Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering Springer, New York.Google Scholar
[14] Göing-Jaeschke, A. and Yor, M. (2003). A survey and some generalizations of Bessel processes. Bernoulli 9, 313349.CrossRefGoogle Scholar
[15] Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies 6, 327343.CrossRefGoogle Scholar
[16] Higham, D. J. and Mao, X. (2005). Convergence of Monte Carlo simulations involving the mean-reverting square root process. J. Comput. Finance 8, 3561.CrossRefGoogle Scholar
[17] Higham, D. J., Mao, X. and Stuart, A. M. (2002). Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 10411063.CrossRefGoogle Scholar
[18] Ikeda, N. and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam.Google Scholar
[19] Itô, K. and McKean, H. P., Jr. (1974). Diffusion Processes and Their Sample Paths. Springer, Berlin.Google Scholar
[20] Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes. Academic Press, New York.Google Scholar
[21] Linetsky, V. (2004). Computing hitting time densities for CIR and OU diffusions: applications to mean-reverting models. J. Comput. Finance 7, 122.CrossRefGoogle Scholar
[22] Milstein, G. N. and Schoenmakers, J. (2015). Uniform approximation of the Cox–Ingersoll–Ross process. Adv. Appl. Prob. 47, 11321156.CrossRefGoogle Scholar
[23] Milstein, G. N. and Tretyakov, M. V. (1999). Simulation of a space-time bounded diffusion. Ann. Appl. Prob 9, 732779.CrossRefGoogle Scholar
[24] Milstein, G. N. and Tretyakov, M. V. (2004). Stochastic Numerics for Mathematical Physics. Springer, Berlin.CrossRefGoogle Scholar
[25] Milstein, G. N. and Tretyakov, M. V. (2005). Numerical analysis of Monte Carlo evaluation of Greeks by finite differences. J. Comput. Finance 8, 133. CrossRefGoogle Scholar
[26] Revuz, D.and Yor, M. (1991). Continuous Martingales and Brownian Motion. Springer, Berlin.CrossRefGoogle Scholar
[27] Rogers, L. C. G. and Williams, D. (1987). Diffusions, Markov Processes, and Martingales, Vol.2, Itô Calculus. John Wiley, New York.Google Scholar