Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T19:27:35.089Z Has data issue: false hasContentIssue false

A Mortar Method Using Nonconforming and Mixed Finite Elements for the Coupled Stokes-Darcy Model

Published online by Cambridge University Press:  17 January 2017

Peiqi Huang*
Affiliation:
Department of Applied Mathematics, Nanjing Forestry University, Nanjing, Jiangsu 210037, China Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
Jinru Chen*
Affiliation:
Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
Mingchao Cai*
Affiliation:
Department of Mathematics, Morgan State University, 1700 E Cold Spring Ln, Baltimore, MD 21251, USA
*
*Corresponding author. Email:[email protected] (P. Q. Huang), [email protected] (J. R. Chen), [email protected] (M. C. Cai)
*Corresponding author. Email:[email protected] (P. Q. Huang), [email protected] (J. R. Chen), [email protected] (M. C. Cai)
*Corresponding author. Email:[email protected] (P. Q. Huang), [email protected] (J. R. Chen), [email protected] (M. C. Cai)
Get access

Abstract

In this work, we study numerical methods for a coupled fluid-porous media flow model. The model consists of Stokes equations and Darcy's equations in two neighboring subdomains, coupling together through certain interface conditions. The weak form for the coupled model is of saddle point type. A mortar finite element method is proposed to approximate the weak form of the coupled problem. In our method, nonconforming Crouzeix-Raviart elements are applied in the fluid subdomain and the lowest order Raviart-Thomas elements are applied in the porous media subdomain; Meshes in different subdomains are allowed to be nonmatching on the common interface; Interface conditions are weakly imposed via adding constraint in the definition of the finite element space. The well-posedness of the discrete problem and the optimal error estimate for the proposed method are established. Numerical experiments are also given to confirm the theoretical results.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arbogast, T. and Gomez, M., A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media, Comput. Geosci., 13 (2009), pp. 331348.Google Scholar
[2] Babuska, I. and Gatica, G. N., A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem, SIAM J. Numer. Anal., 48 (2010), pp. 498523.Google Scholar
[3] Beavers, G. S. and Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), pp. 197207.Google Scholar
[4] Bernardi, C., Hecht, F. and Mghazli, Z., Mortar finite element discretization for the flow in a non homogeneous porous medium, Comput. Methods Appl. Mech. Eng., 196 (2007), pp. 15541573.Google Scholar
[5] Bernardi, C., Maday, Y. and Patera, A. T., A new nonconforming approach to domain decomposition: the mortar element method, in College de France Seminar, XI, Brezis, H. and Lions, J. L. eds., Pitman, (1994), pp. 1351.Google Scholar
[6] Bernardi, C., Rebollo, T. C., Hecht, F. and Mghazli, Z., Mortar finite element discretization of a model coupling Darcy and Stokes equations, Math. Model. Numer. Anal., 42 (2008), pp. 375410.Google Scholar
[7] Boland, J. M. and Nicolaides, R. A., Stability of finite elements under divergence constraints, SIAM J. Numer. Anal., 20 (1983), pp. 722731.Google Scholar
[8] Brenner, S. C., Poincaré-Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal., 41 (2003), pp. 306324.Google Scholar
[9] Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.CrossRefGoogle Scholar
[10] Burman, E. and Hansbo, P., A unified stabilized method for Stokes’ and Darcy's equations, J. Comput. Appl. Math., 198 (2007), pp. 3551.Google Scholar
[11] Cai, M. C. and Mu, M., A multilevel decoupled method for a mixed Stokes/Darcy model, J. Comput. Appl. Math., 236 (2012), pp. 24522465.Google Scholar
[12] Cai, M. C., Mu, M. and Xu, J. C., Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal., 47 (2009), pp. 33253338.CrossRefGoogle Scholar
[13] Chen, Z. M. and Wu, H. J., Selected Topics in Finite Element Method, Science Press, Beijing, 2010.Google Scholar
[14] Chen, W. B., Chen, P. Y., Gunzburger, M. and Yan, N. N., Superconvergence analysis of FEMs for the Stokes-Darcy system, Math. Meth. Appl. Sci., 33 (2010), pp. 16051617.Google Scholar
[15] Correa, M. R. and Loula, A. F. D., A unified mixed formulation naturally coupling Stokes and Darcy flows, Comput. Methods Appl. Mech. Eng., 198 (2009), pp. 27102722.Google Scholar
[16] Crouzeix, M. and Raviart, P.-A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, RAIRO Anal. Numer., 7 (1973), pp. 3375.Google Scholar
[17] Discacciati, M., Miglio, E. and Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), pp. 5774.Google Scholar
[18] Ervin, V. J., Jenkins, E. W. and Sun, S. Y., Coupling nonlinear Stokes and Darcy flow using mortar finite elements, Appl. Numer. Math., 61 (2011), pp. 11981222.Google Scholar
[19] Feng, M. F., Qi, R. S., Zhu, R. and Ju, B. T., Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem, Appl. Math. Mech. Engl. Ed., 31 (2010), pp. 393404.CrossRefGoogle Scholar
[20] Galvis, J. and Sarkis, M., Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations, Electron. Trans. Numer. Anal., 26 (2007), pp. 350384.Google Scholar
[21] Gartling, D. K., Hickox, C. E. and Givler, R. C., Simulation of coupled viscous and porous flow problems, Comput. Fluid Dyn., 7 (1996), pp. 2348.Google Scholar
[22] Gatica, G. N., Meddahi, S. and Oyarzúa, R., A conforming mixed finite-element method for the coupling of fluid flow with porous media flow, IMA J. Numer. Anal., 29 (2009), pp. 86108.CrossRefGoogle Scholar
[23] Gatica, G. N., Oyarzúa, R. and Sayas, F. J., Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem, Math. Comput., 80 (2011), pp. 19111948.Google Scholar
[24] Girault, V. and Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, Berlin, New York, 1986.Google Scholar
[25] Hoppe, R. H. W., Porta, P. and Vassilevski, Y., Computational issues related to iterative coupling of subsurface and channel flows, CALCOLO, 44 (2007), pp. 120.Google Scholar
[26] Huang, P. Q. and Chen, J. R., Two-level and multilevel methods for Stokes-Darcy problem discretized by nonconforming elements on nonmatching meshes (in Chinese), Sci. Sin. Math., 42 (2012), pp. 389402.Google Scholar
[27] Huang, P. Q., Chen, J. R. and Cai, M. C., A mixed and nonconforming FEM with nonmatching meshes for a coupled Stokes-Darcy model, J. Sci. Comput., 53 (2012), pp. 377394.CrossRefGoogle Scholar
[28] Kanschat, G. and Riviere, B., A strongly conservative finite element method for the coupling of Stokes and Darcy flow, J. Comput. Phys., 229 (2010), pp. 59335943.CrossRefGoogle Scholar
[29] Layton, W. J., Schieweck, F. and Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2003), pp. 21952218.CrossRefGoogle Scholar
[30] Marcinkowski, L., The mortar element method with locally nonconforming elements, BIT, 39 (1999), pp. 716739.Google Scholar
[31] Mu, M. and Xu, J. C., A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 45 (2007), pp. 18011813.Google Scholar
[32] Raviart, P. A. and Thomas, J. M., A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lect. Notes Math., 606 Springer (1977), pp. 2920–315.Google Scholar
[33] Riviere, B. and Yotov, I., Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42 (2005), pp. 19591977.Google Scholar
[34] Saffman, P., On the boundary condition at the surface of a porous media, Stud. Appl. Math., 50 (1971), pp. 93101.Google Scholar
[35] Salinger, A. G., Aris, R. and Derby, J. J., Finite element formulations for large-scale coupled flows in adjacent porous and open fluid domains, Int. J. Numer. Meth. Fluids, 18 (1994), pp. 11851209.CrossRefGoogle Scholar
[36] Vassilev, D., Wang, C. and Yotov, I., Domain decomposition for coupled Stokes and Darcy flows, Comput. Methods Appl. Mech. Eng., 268 (2014), pp. 264283.Google Scholar
[37] Xie, X. P., Xu, J. C. and Xue, G. R., Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models, J. Comput. Math., 26 (2008), pp. 437455.Google Scholar
[38] Xu, X. J. and Zhang, S. Y., A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations, SIAM J. Sci. Comput., 32 (2010), pp. 855874.Google Scholar