Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T03:48:34.175Z Has data issue: false hasContentIssue false

Convergence of Monotone Schemes for Conservation Laws with Zero-Flux Boundary Conditions

Published online by Cambridge University Press:  17 January 2017

K. H. Karlsen*
Affiliation:
Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo, Norway
J. D. Towers*
Affiliation:
MiraCosta College, 3333 Manchester Avenue, Cardiff-by-the-Sea, CA 92007-1516, USA
*
*Corresponding author. Email:[email protected] (K. H. Karlsen), [email protected] (J. D. Towers)
*Corresponding author. Email:[email protected] (K. H. Karlsen), [email protected] (J. D. Towers)
Get access

Abstract

We consider a scalar conservation law with zero-flux boundary conditions imposed on the boundary of a rectangular multidimensional domain. We study monotone schemes applied to this problem. For the Godunov version of the scheme, we simply set the boundary flux equal to zero. For other monotone schemes, we additionally apply a simple modification to the numerical flux. We show that the approximate solutions produced by these schemes converge to the unique entropy solution, in the sense of [7], of the conservation law. Our convergence result relies on a BV bound on the approximate numerical solution. In addition, we show that a certain functional that is closely related to the total variation is nonincreasing from one time level to the next. We extend our scheme to handle degenerate convection-diffusion equations and for the one-dimensional case we prove convergence to the unique entropy solution.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Andreianov, B. and Gazibo, M. K., Entropy formulation of degenerate parabolic equation with zero-flux boundary condition, Z. Angew. Math. Phys., 64(5) (2013), pp. 14711491.CrossRefGoogle Scholar
[2] Andreianov, B. and Gazibo, M. K., Convergence of finite volume scheme for degenerate parabolic problem with zero flux boundary condition, In Finite Volumes for Complex Applications VII. Methods and Theoretical Aspects, volume 77 of Springer Proc. Math. Stat., pages 303311, Springer, Cham, 2014.Google Scholar
[3] Andreianov, B. and Sbihi, K., Well-posedness of general boundary-value problems for scalar conservation laws, Trans. Amer. Math. Soc., 367(6) (2015), pp. 37633806.CrossRefGoogle Scholar
[4] Bardos, C., Le Roux, A. Y. and Nédélec, J.-C., First order quasilinear equations with boundary conditions, Commun. Partial Differential Equations, 4(9) (1979), pp. 10171034.CrossRefGoogle Scholar
[5] Bürger, R., Evje, S. and Karlsen, K. H., On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes, J. Math. Anal. Appl., 247(2) (2000), pp. 517556.CrossRefGoogle Scholar
[6] Bürger, R., Frid, H. and Karlsen, K. H., On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration, SIAM J. Math. Anal., 34(3) (2003), pp. 611635 (electronic).CrossRefGoogle Scholar
[7] Bürger, R., Frid, H. and Karlsen, K. H., On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition, J. Math. Anal. Appl., 326(1) (2007), pp. 108120.CrossRefGoogle Scholar
[8] Bürger, R. and Karlsen, K. H., On some upwind difference schemes for the phenomenological sedimentation-consolidation model, J. Eng. Math., 41(2-3) (2001), pp. 145166.CrossRefGoogle Scholar
[9] Bürger, R., García, A., Karlsen, K. H. and Towers, J. D., A family of numerical schemes for kinematic flows with discontinuous flux, J. Eng. Math., 60 (2008), pp. 387425.CrossRefGoogle Scholar
[10] Bürger, R. and Kunik, M., A critical look at the kinematic-wave theory for sedimentation-consolidation processes in closed vessels, Math. Models Methods Appl. Sci., 24 (2001), pp. 12571273.CrossRefGoogle Scholar
[11] Crandall, M. G. and Majda, A., Monotone difference approximations for scalar conservation laws, Math. Comput., 34(149) (1980), pp. 121.CrossRefGoogle Scholar
[12] Evans, L. C. and Gariepy, R. F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.Google Scholar
[13] Evje, S. and Karlsen, K. H., Monotone difference approximations of BV solutions to degenerate convection-diffusion equations, SIAM J. Numer. Anal., 37(6) (2000), pp. 18381860 (electronic).CrossRefGoogle Scholar
[14] Gazibo, M. K., Degenerate parabolic equation with zero flux boundary condition and its approximations, Preprint available at http://hal.archives-ouvertes.fr/hal-00855746.Google Scholar
[15] Harten, A., Hyman, J. and Lax, P., On finite-difference approximations and entropy conditions for shocks, Commun. Pure Appl. Math., XXIX (1976), pp. 297322.CrossRefGoogle Scholar
[16] Hilliges, M. and Weidlich, W., A phenomenologicalmodel for dynamic traffic flow in networks, Transp. Res. B, 29 (1995), pp. 407431.CrossRefGoogle Scholar
[17] Holden, H. and Risebro, N. H., Front Tracking for Hyperbolic Conservation Laws, volume 152 of Applied Mathematical Sciences Springer-Verlag, New York, 2002.CrossRefGoogle Scholar
[18] Karlsen, K. H., Lie, K.-A. and Risebro, N. H., A front tracking method for conservation laws with boundary conditions, In Hyperbolic Problems: Theory, Numerics, Applications, Vol. I (Zürich, 1998), pages 493502, Birkhäuser, Basel, 1999.Google Scholar
[19] Kružkov, S. N., First order quasi-linear equations in several independent variables, Math. USSR Sbornik, 10 (1970), pp. 217243.CrossRefGoogle Scholar
[20] Lions, P.-L., Perthame, B. and Tadmor, E., A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7(1) (1994), pp. 169191.CrossRefGoogle Scholar
[21] Sanders, R., On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comput., 40(161) (1983), pp. 91106.CrossRefGoogle Scholar