We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter we are going to discuss the two-level quasi-geostrophic prediction model. This model divides the atmosphere into four layers as shown in Figure 24.1. The vorticity equation is applied to levels l = 1 and l = 3 while the heat equation is applied to level l = 2. By eliminating the vertical velocity ω it becomes possible to determine the tendency of the geopotential ∂φ/∂t. Initially only the geopotential φ(x, y, p, t0 = 0) for the entire vertical pressure range 0 ≤ p ≤ p0 must be available. The discussion will be facilitated by resolving the dependent variables in the vertical direction only. The remaining differentials will be left in their original forms, which may be approximated by finite differences whenever desired.
In the second part of this chapter we are going to discuss the concept of baroclinic instability. In a rotating atmosphere this type of instability, which was first investigated by Charney (1947) and Eady (1949), arises from the vertical wind shear if the static stability is not too large. The stability properties of the Charney model are difficult to analyze. The two-level model, however, makes it possible to obtain the stability criteria in a rather simple way, with results consistent with Charney's model. Details, for example, are given by Haltiner and Williams (1980).
The mathematical development of the two-level model
The basic system consists of the vorticity equation (23.44) and the first law of thermodynamics (23.19).
Barotropic and baroclinic atmospheric processes manifest themselves in the numerous facets of large-scale weather phenomena. Typical examples are the formation and propagation of synoptic waves having wavelengths of several thousand kilometers and the characteristic life cycles of high- and low-pressure systems. The barotropic and baroclinic physics provides the physical basis of numerical weather prediction. In this chapter we will consider various aspects of barotropic models. It is realized that the prediction of the daily weather by means of barotropic models is no longer practiced by the national weather services. Nevertheless, by discussing the mathematical theory of the barotropic physics we can learn very well how physical variables are interconnected and how much care must be taken to construct even a very simple prediction model. The first numerical barotropic weather-prediction model was introduced by the renowned meteorologist C. G. Rossby and by the famous mathematician John von Neumann. Baroclinic models will be described in some detail in later chapters.
Barotropic models are short-range-prediction models that include only the reversible part of atmospheric physics. The consequence is that the atmosphere is treated as a one-component gas consisting of dry air. The irreversible physics such as non-adiabatic heating and cloud formation is not taken into account.
The basic assumptions of the barotropic model
The name of the model is derived from the assumption that the atmosphere is in a barotropic state throughout the prediction period. The condition of barotropy by itself, however, is not sufficient to construct a barotropic prediction model; additional assumptions are mandatory. The model described here rests on three basic assumptions.
This book has been written for students of meteorology and of related sciences at the senior and graduate level. The goal of the book is to provide the background for graduate studies and individual research. The second part, Thermodynamics of the Atmosphere, will appear shortly. To a considerable degree we have based our book on the excellent lecture notes of Professor Karl Hinkelmann on various topics in dynamic meteorology, including Prandtl-layer theory and turbulence. Moreover, we were fortunate to have Dr Korb's outstanding lecture notes on kinematics of the atmosphere and on mathematical tools for the meteorologist at our disposal.
Quite early on during the writing of this book, it became apparent that we had to replace various topics treated in their notes by more modern material in order to give a reasonably up-to-date account of theoretical meteorology. We were guided by the idea that any topic we have selected for presentation should be treated in some depth in order for it to be of real value to the reader. Insofar as space would permit, all but the most trivial steps have been included in every development. This is the reason why our book is somewhat more bulky than some other books on theoretical meteorology. The student may judge for himself whether our approach is profitable. The reader will soon recognize that various interesting and important topics have been omitted from this textbook. Including these and still keeping the book of the same length would result in the loss of numerous mathematical details.
This monograph deals with the generalized Riemann problem (GRP) of mathematical fluid dynamics and its application to computational fluid dynamics. It shows how the solution to this problem serves as a basic tool in the construction of a robust numerical scheme that can be successfully implemented in a wide variety of fluid dynamical topics. The flows covered by this exposition may be quite different in nature, yet they share some common features; they all belong to the class of compressible, inviscid, time-dependent flows. Fluid dynamical phenomena of this type often contain a number of smooth flow regions separated by singularities such as shock fronts, detonation waves, interfaces, and centered rarefaction waves. One must then address various computational issues related to this class of fluid dynamical problems, notably the “capturing” of discontinuities such as shock fronts, detonation waves, or interfaces; resolution of centered rarefaction waves where flow gradients are unbounded; and evaluation of flow variables in irregular computational cells at the intersection of a moving boundary surface with an underlying mesh.
From the mathematical point of view, the various systems of equations governing compressible, inviscid, time-dependent flow phenomena may all be characterized as systems of “(nonlinear) hyperbolic conservation laws.”
Hyperbolic conservation laws (in one space variable) are systems of time-dependent partial differential equations.
The GRP algorithm was developed in Part I and tested against a variety of analytical examples. The next challenge is to adapt it to the needs of “Scientific Computing,” that is, to implement it in the simulation of problems of physical significance. This is a formidable task for any numerical algorithm. The problems encountered in applications usually are multidimensional and involve complex geometries and additional physical phenomena. In this chapter we first describe in more detail some of these problems, as a general background for the following chapters. We then proceed to the main goal of the chapter, namely, the upgrading of the GRP algorithm (which is essentially one dimensional) to a two-dimensional, second-order scheme. To this end we recall (Section 7.2) Strang's method of “operator splitting” and then (Section 7.3) apply it to the (planar) fluid-dynamical case. Although the method can be further extended to the three-dimensional case, we confine our presentation to the two-dimensional setup, which serves in our numerical examples (Chapters 8 and 10).
General Discussion
In Part I we studied the mathematical basis of the GRP method. We also considered a variety of numerical examples for which analytic (or at least asymptotic) solutions were available. This provided us with some measure of the accuracy of the computational results, and helped identifiy potential difficulties (such as the resolution of contact discontinuities).
For the analysis and depiction of meteorological data it is useful and customary to map the surface of the earth onto a plane. Therefore, it is advisable for purposes of numerical weather prediction to formulate and evaluate the atmospheric equations in stereographic coordinates. Such a map projection should represent the spherical surface as accurately as possible, but obviously some features will be lost. It is extremely important to preserve the angle between intersecting curves such as the right angle between latitude circles and meridians. Maps possessing this desirable and valuable property are called conformal. If distances were preserved by mapping the sphere onto the projection plane, the map would be called isometric. Mapping from the sphere to the stereographic plane is conformal but not isometric. In order to remove this deficiency to a tolerable level, a scale factor m, also called the image scale, will be introduced.
The stereographic projection
We will now describe the sphere-to-plane mapping by introducing a projection plane that is parallel to the equatorial plane. On the projection plane we may construct a Cartesian (x, y, z)-coordinate system with a square rectangular grid. The stereographic Cartesian coordinate system differs from the regular Cartesian coordinates since the metric fundamental quantities are not gij = δij. In fact, they still contain the Gaussian curvature 1/r of the spherical coordinate system, showing that in reality we have not left the sphere.
The GRP method was developed (Chapter 5) for compressible, unsteady flow in a duct of varying cross section. In the case of a planar two-dimensional duct, the quasi-1-D formulation is taken to be a reasonable approximation of the actual (2-D) flow. In this chapter we study a duct flow where an incident wave interacts with a short converging segment, producing interesting wave structures. An illustrative case is that of a rarefaction wave propagating through a “converging corridor,” producing (at later times) a complex “reflected” wave pattern. Such a case is studied (numerically) in this chapter, using (a) the quasi-1-D approach of Chapter 5 and (b) the full two-dimensional computation as described in Section 8.3 (with the duct contour taken as a stationary boundary). The comparison between the two computations reveals some bounds of validity of the quasi-1-D approximation. We conclude the chapter by listing (Remark 10.1) several articles describing the application of the GRP to diverse fluid-dynamical problems, including well-known test cases, shock wave reflection phenomena compared to experimental observation, and even a case where a “moving boundary” experiment is favorably compared to the corresponding GRP solution.
Consider a centered rarefaction wave that propagates in a planar duct comprising two long segments of uniform cross-sectional area joined by a smooth converging nozzle.