Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T19:11:10.515Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  06 June 2024

James Bagrow
Affiliation:
University of Vermont
Yong‐Yeol Ahn
Affiliation:
Indiana University, Bloomington
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Working with Network Data
A Data Science Perspective
, pp. 477 - 512
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbe, E. 2018. Community Detection and Stochastic Block Models: Recent Developments. Journal of Machine Learning Research, 18(177), 186. (Cited on p. 356.)Google Scholar
Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F., and Spigler, R. 2005. The Kuramoto Model: A Simple Paradigm for Synchronization Phenomena. Reviews of Modern Physics, 77(1), 137185. (Cited on p. 235.)CrossRefGoogle Scholar
Adamic, L. A., and Adar, E. 2003. Friends and Neighbors on the Web. Social Networks, 25(3), 211230. (Cited on p. 131.)CrossRefGoogle Scholar
Aggarwal, C. C., Zhao, Y., and Yu, P. S. 2011. Outlier Detection in Graph Streams. Pages 399–409 of: 2011 IEEE 27th International Conference on Data Engineering. Hannover, Germany: IEEE. (Cited on p. 469.)Google Scholar
Ahn, Y.-Y., Bagrow, J. P., and Lehmann, S. 2010. Link Communities Reveal Multiscale Complexity in Networks. Nature, 466(7307), 761764. (Cited on pp. 184, 201.)CrossRefGoogle ScholarPubMed
Ahn, Y.-Y., Ahnert, S. E., Bagrow, J. P., and Barabási, A.-L. 2011. Flavor Network and the Principles of Food Pairing. Scientific Reports, 1(1), 196. (Cited on pp. 9, 10, 22, 24, 26.)CrossRefGoogle Scholar
Airoldi, E. M., Blei, D., Fienberg, S., and Xing, E. 2008. Mixed Membership Stochastic Blockmodels. In: Advances in Neural Information Processing Systems, vol. 21. Curran Associates, Inc. (Cited on p. 358.)Google Scholar
Al Hasan, M., and Dave, V. S. 2018. Triangle Counting in Large Networks: A Review. WIREs Data Mining and Knowledge Discovery, 8(2), e1226. (Cited on p. 469.)CrossRefGoogle Scholar
Albert, R., Jeong, H., and Barabási, A.-L. 2000. Error and Attack Tolerance of Complex Networks. Nature, 406(6794), 378382. (Cited on p. 167.)CrossRefGoogle ScholarPubMed
Allen, A. 2007. Vaccine: The Controversial Story of Medicine's Greatest Lifesaver. New York, NY: W.W. Norton. (Cited on p. 67.)Google Scholar
Almeida-Neto, M., Guimarães, P., GuimarãesJr, P. R., Loyola, R. D., and Ulrich, W. 2008. A Consistent Metric for Nestedness Analysis in Ecological Systems: Reconciling Concept and Measurement. Oikos, 117(8), 12271239. (Cited on p. 202.)CrossRefGoogle Scholar
Alon, U., and Yahav, E. 2021. On the Bottleneck of Graph Neural Networks and Its Practical Implications. In: International Conference on Learning Representations. Virtual Event, Austria: OpenReview.net. (Cited on p. 444.)Google Scholar
Alstott, J., Bullmore, E., and Plenz, D. 2014. Powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions. PLoS ONE, 9(1), e85777. (Cited on pp. 156, 163.)CrossRefGoogle ScholarPubMed
Amstrup, S. C., McDonald, T. L., and Manly, B. F. J. (eds.). 2005. Handbook of Capture-Recapture Analysis. Princeton, NJ: Princeton University Press. (Cited on pp. 391, 395.)Google Scholar
Ashburner, M., Ball, C. A., Blake, J. A. et al. 2000. Gene Ontology: Tool for the Unification of Biology. Nature Genetics, 25(1), 2529. (Cited on p. 116.)CrossRefGoogle ScholarPubMed
Ashmore, R., Calinescu, R., and Paterson, C. 2021. Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges. ACM Computing Surveys, 54(5), 111:1–111:39. (Cited on p. 31.)Google Scholar
Atmar, W., and Patterson, B. D. 1993. The Measure of Order and Disorder in the Distribution of Species in Fragmented Habitat. Oecologia, 96(3), 373382. (Cited on p. 202.)CrossRefGoogle ScholarPubMed
Babai, L. 2016. Graph Isomorphism in Quasipolynomial Time [Extended Abstract]. Pages 684–697 of: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing. STOC ’16. New York, NY: Association for Computing Machinery. (Cited on p. 443.)Google Scholar
Babai, L. 2019. Canonical Form for Graphs in Quasipolynomial Time: Preliminary Report. Pages 1237–1246 of: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. STOC 2019. New York, NY: Association for Computing Machinery. (Cited on p. 443.)Google Scholar
Backstrom, L., Boldi, P., Rosa, M., Ugander, J., and Vigna, S. 2012. Four Degrees of Separation. Pages 33–42 of: Proceedings of the 4th Annual ACM Web Science Conference. Evanston, IL: Association for Computing Machinery. (Cited on pp. 341, 458.)Google Scholar
Baek, J., Kang, M., and Hwang, S. J. 2022. Accurate Learning of Graph Representations with Graph Multiset Pooling. In: International Conference on Learning Representations. Virtual Event, Austria: OpenReview.net. (Cited on p. 442.)Google Scholar
Bagrow, J., and Ahn, Y.-Y. 2022. Network Cards: Concise, Readable Summaries of Network Data. Applied Network Science, 7(1), 1–17. (Cited on pp. 225, 232, 474.)CrossRefGoogle Scholar
Bagrow, J. P. 2008. Evaluating Local Community Methods in Networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(05), P05001. (Cited on p. 184.)CrossRefGoogle Scholar
Bagrow, J. P. 2012. Communities and Bottlenecks: Trees and Treelike Networks Have High Modularity. Physical Review E, 85(6), 066118. (Cited on p. 179.)CrossRefGoogle ScholarPubMed
Bagrow, J. P. 2020. Democratizing AI: Non-Expert Design of Prediction Tasks. PeerJ Computer Science, 6(Sept.), e296. (Cited on p. 374.)CrossRefGoogle ScholarPubMed
Bagrow, J. P., and Bollt, E. M. 2005. Local Method for Detecting Communities. Physical Review E, 72(4), 046108. (Cited on pp. 184, 185, 201.)CrossRefGoogle ScholarPubMed
Bagrow, J. P., and Bollt, E. M. 2019. An Information-Theoretic, All-Scales Approach to Comparing Networks. Applied Network Science, 4(1), 45. (Cited on pp. 24, 216, 228.)CrossRefGoogle Scholar
Bagrow, J. P., Lehmann, S., and Ahn, Y.-Y. 2015. Robustness and Modular Structure in Networks. Network Science, 3(4), 509525. (Cited on pp. 386, 395.)CrossRefGoogle Scholar
Bagrow, J. P., Danforth, C. M., and Mitchell, L. 2017. Which Friends Are More Popular than You?: Contact Strength and the Friendship Paradox in Social Networks. Pages 103–108 of: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. Sydney, Australia: Association for Computing Machinery. (Cited on p. 323.)Google Scholar
Bagrow, J. P., Liu, X., and Mitchell, L. 2019. Information Flow Reveals Prediction Limits in Online Social Activity. Nature Human Behaviour, 3(2), 122128. (Cited on p. 37.)CrossRefGoogle ScholarPubMed
Baker, R. J. 2010. CMOS: Circuit Design, Layout, and Simulation. 3rd edn. IEEE Press Series on Microelectronic Systems. Piscataway, NJ; Hoboken, NJ: IEEE. (Cited on p. 26.)Google Scholar
Balcilar, M., Renton, G., Héroux, P., Gaüzère, B., Adam, S., and Honeine, P. 2022. Analyzing the Expressive Power of Graph Neural Networks in a Spectral Perspective. In: International Conference on Learning Representations. Virtual Event, Austria: OpenReview.net. (Cited on p. 443.)Google Scholar
Ball, P. 2006. Critical Mass: How One Thing Leads to Another. New York, NY: Farrar, Straus and Giroux. (Cited on p. 5.)Google Scholar
Banerjee, O., El Ghaoui, L., and d’Aspremont, A. 2008. Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data. The Journal of Machine Learning Research, 9(June), 485516. (Cited on p. 371.)Google Scholar
Barabási, A.-L. 2016. Network Science. Cambridge: Cambridge University Press. (Cited on pp. 16, 472.)Google Scholar
Barabási, A.-L., and Albert, R. 1999. Emergence of Scaling in Random Networks. Science, 286(5439), 509512. (Cited on pp. 344, 346, 349.)Google Scholar
Barabási, A.-L., and Oltvai, Z. N. 2004. Network Biology: Understanding the Cell's Functional Organization. Nature Reviews Genetics, 5(2), 101113. (Cited on p. 25.)CrossRefGoogle ScholarPubMed
Barber, M. J., and Clark, J. W. 2009. Detecting Network Communities by Propagating Labels under Constraints. Physical Review E, 80(2), 026129. (Cited on p. 469.)CrossRefGoogle ScholarPubMed
Barnes, E. R. 1982. An Algorithm for Partitioning the Nodes of a Graph. SIAM Journal on Algebraic Discrete Methods, 3(4), 541550. (Cited on p. 427.)CrossRefGoogle Scholar
Bartomeus, I., Vilà, M., and Santamaría, L. 2008. Contrasting Effects of Invasive Plants in Plant–Pollinator Networks. Oecologia, 155(4), 761770. (Cited on p. 23.)CrossRefGoogle ScholarPubMed
Bascompte, J. 2007. Networks in Ecology. Basic and Applied Ecology, 8(6), 485–490. (Cited on p. 25.)CrossRefGoogle Scholar
Basser, P. J., Mattiello, J., and LeBihan, D. 1994. Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. Journal of Magnetic Resonance, Series B, 103(3), 247254. (Cited on p. 8.)CrossRefGoogle ScholarPubMed
Basser, P. J., Mattiello, J., and LeBihan, D. 1994. MR Diffusion Tensor Spectroscopy and Imaging. Biophysical Journal, 66(1), 259267. (Cited on p. 8.)CrossRefGoogle ScholarPubMed
Bassett, D. S., and Sporns, O. 2017. Network Neuroscience. Nature Neuroscience, 20(3), 353–364. (Cited on pp. 25, 82.)CrossRefGoogle ScholarPubMed
Batagelj, V., and Brandes, U. 2005. Efficient Generation of Large Random Networks. Physical Review E, 71(3), 036113. (Cited on p. 469.)CrossRefGoogle ScholarPubMed
Batson, J., Spielman, D. A., Srivastava, N., and Teng, S.-H. 2013. Spectral Sparsification of Graphs: Theory and Algorithms. Communications of the ACM, 56(8), 8794. (Cited on p. 134.)CrossRefGoogle Scholar
Battiston, S., Caldarelli, G., May, R. M., Roukny, T., and Stiglitz, J. E. 2016. The Price of Complexity in Financial Networks. Proceedings of the National Academy of Sciences, 113(36), 10031–10036. (Cited on p. 22.)CrossRefGoogle Scholar
Belkin, M., and Niyogi, P. 2003. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 15(6), 13731396. (Cited on p. 430.)CrossRefGoogle Scholar
Belkin, M., Hsu, D., Ma, S., and Mandal, S. 2019. Reconciling Modern Machine-Learning Practice and the Classical Bias–Variance Trade-Off. Proceedings of the National Academy of Sciences, 116(32), 15849–15854. (Cited on p. 277.)CrossRefGoogle ScholarPubMed
Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. 2021. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? Pages 610–623 of: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. Virtual Event, Canada: Association for Computing Machinery. (Cited on p. 29.)Google Scholar
Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. 2003. A Neural Probabilistic Language Model. The Journal of Machine Learning Research, 3(null), 11371155. (Cited on p. 445.)Google Scholar
Bentley, J., Knuth, D., and McIlroy, D. 1986. Programming Pearls: A Literate Program. Communications of the ACM, 29(6), 471483. (Cited on p. 313.)CrossRefGoogle Scholar
Bentley, J. L. 1975. Multidimensional Binary Search Trees Used for Associative Searching. Communications of the ACM, 18(9), 509517. (Cited on p. 426.)CrossRefGoogle Scholar
Bharat, K., Broder, A., Henzinger, M., Kumar, P., and Venkatasubramanian, S. 1998. The Connectivity Server: Fast Access to Linkage Information on the Web. Computer Networks and ISDN Systems, 30(1-7), 469477. (Cited on p. 469.)CrossRefGoogle Scholar
Bhattacharya, A., Friedland, S., and Peled, U. N. 2008. On the First Eigenvalue of Bipartite Graphs. The Electronic Journal of Combinatorics [electronic only], 15(1). (Cited on p. 197.)Google Scholar
Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Berlin, Heidelberg: Springer. (Cited on pp. 277, 472.)Google Scholar
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. 2008. Fast Unfolding of Communities in Large Networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. (Cited on pp. 179, 358.)CrossRefGoogle Scholar
Bloom, B. H. 1970. Space/Time Trade-Offs in Hash Coding with Allowable Errors. Communications of the ACM, 13(7), 422426. (Cited on p. 455.)CrossRefGoogle Scholar
Boguñá, M., Pastor-Satorras, R., and Vespignani, A. 2004. Cut-Offs and Finite Size Effects in Scale-Free Networks. The European Physical Journal B, 38(2), 205209. (Cited on pp. 163, 173.)CrossRefGoogle Scholar
Boguñá, M., Bonamassa, I., De Domenico, M., Havlin, S., Krioukov, D., and Serrano, M. Á. 2021. Network Geometry. Nature Reviews Physics, 3(2), 114135. (Cited on p. 438.)CrossRefGoogle Scholar
Böhning, D., van der Heijden, P. G. M., and Bunge, J. (eds.). 2018. Capture-Recapture Methods for the Social and Medical Sciences. Boca Raton, FL: CRC Press/Taylor & Francis Group. (Cited on pp. 391, 395.)Google Scholar
Boldi, P., and Vigna, S. 2004. The WebGraph Framework I: Compression Techniques. Pages 595–602 of: Proceedings of the 13th International Conference on World Wide Web. New York, NY: Association for Computing Machinery. (Cited on pp. 451, 469.)Google Scholar
Boldi, P., Rosa, M., and Vigna, S. 2011. HyperANF: Approximating the Neighbourhood Function of Very Large Graphs on a Budget. Pages 625–634 of: Proceedings of the 20th International Conference on World Wide Web. WWW ’11. New York, NY: Association for Computing Machinery. (Cited on pp. 456, 457, 469.)CrossRefGoogle Scholar
Boldi, P., Rosa, M., Santini, M., and Vigna, S. 2011. Layered Label Propagation: A Multiresolution Coordinate-Free Ordering for Compressing Social Networks. Pages 587–596 of: Proceedings of the 20th International Conference on World Wide Web. WWW ’11. New York, NY: Association for Computing Machinery. (Cited on pp. 452, 469.)Google Scholar
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. 2013. Translating Embeddings for Modeling Multi-relational Data. In: Advances in Neural Information Processing Systems, vol. 26. Curran Associates, Inc. (Cited on p. 437.)Google Scholar
Borgatti, S. P., and Everett, M. G. 2000. Models of Core/Periphery Structures. Social Networks, 21(4), 375–395. (Cited on pp. 194, 195, 201.)CrossRefGoogle Scholar
Borgatti, S. P., Carley, K. M., and Krackhardt, D. 2006. On the Robustness of Centrality Measures under Conditions of Imperfect Data. Social Networks, 28(2), 124136. (Cited on pp. 377, 395.)CrossRefGoogle Scholar
Borwein, J., and Bailey, D. 2013. The Reinhart-Rogoff Error – or How Not to Excel at Economics. The Conversation, Apr. (Cited on p. 36.)Google Scholar
Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford: Oxford University Press. (Cited on p. 277.)Google Scholar
Boswell, D., and Foucher, T. 2011. The Art of Readable Code. Theory in Practice. Sebastopol, CA: O’Reilly Media. (Cited on pp. 293, 300.)Google Scholar
Bouveyron, C., Celeux, G., Murphy, T. B., and Raftery, A. E. 2019. Model-Based Clustering and Classification for Data Science: With Applications in R. Cambridge: Cambridge University Press. (Cited on p. 428.)CrossRefGoogle Scholar
boyd, d., Golder, S., and Lotan, G. 2010. Tweet, Tweet, Retweet: Conversational Aspects of Retweeting on Twitter. Pages 1–10 of: 2010 43rd Hawaii International Conference on System Sciences. Honolulu, HI: IEEE. (Cited on p. 84.)Google Scholar
Breiger, R. L., Boorman, S. A., and Arabie, P. 1975. An Algorithm for Clustering Relational Data with Applications to Social Network Analysis and Comparison with Multidimensional Scaling. Journal of Mathematical Psychology, 12(3), 328383. (Cited on p. 374.)CrossRefGoogle Scholar
Brenner, S. 2009. In the Beginning Was the Worm …. Genetics, 182(2), 413–415. (Cited on p. 82.)CrossRefGoogle Scholar
Brin, S., and Page, L. 1998. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer Networks and ISDN Systems, 30(1), 107117. (Cited on p. 189.)CrossRefGoogle Scholar
Broder, A. 1997. On the Resemblance and Containment of Documents. Pages 21–29 of: Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171). Salerno, Italy: IEEE. (Cited on p. 455.)Google Scholar
Brody, S., Alon, U., and Yahav, E. 2022. How Attentive Are Graph Attention Networks? In: International Conference on Learning Representations. Virtual Event, Austria: OpenReview.net. (Cited on pp. 273, 442.)Google Scholar
Broido, A. D., and Clauset, A. 2019. Scale-Free Networks Are Rare. Nature Communications, 10(1), 1017. (Cited on p. 346.)CrossRefGoogle ScholarPubMed
Brown, T., Mann, B., Ryder, N. et al. 2020. Language Models Are Few-Shot Learners. Pages 1877–1901 of: Advances in Neural Information Processing Systems, vol. 33. Vancouver, BC: Curran Associates, Inc. (Cited on p. 261.)Google Scholar
Bryan, K., and Leise, T. 2006. The $25,000,000,000 Eigenvector: The Linear Algebra behind Google. SIAM Review, 48(3), 569581. (Cited on p. 427.)CrossRefGoogle Scholar
Buehrer, G., and Chellapilla, K. 2008. A Scalable Pattern Mining Approach to Web Graph Compression with Communities. Pages 95–106 of: Proceedings of the 2008 International Conference on Web Search and Data Mining. WSDM ‘08. New York, NY: Association for Computing Machinery. (Cited on p. 452.)Google Scholar
Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., and Schulz, C. 2016. Recent Advances in Graph Partitioning. Pages 117–158 of: Kliemann, L., and Sanders, P. (eds.), Algorithm Engineering, vol. 9220. Cham, Switzerland: Springer. (Cited on pp. 409, 427.)Google Scholar
Buolamwini, J., and Gebru, T. 2018. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Pages 77–91 of: Proceedings of the 1st Conference on Fairness, Accountability and Transparency. PMLR. (Cited on p. 28.)Google Scholar
Burnham, K. P., and Anderson, D. R. 2004. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33(2), 261304. (Cited on p. 162.)CrossRefGoogle Scholar
Burt, R. S. 1992. Structural Holes: The Social Structure of Competition. Cambridge, MA: Harvard University Press. (Cited on p. 15.)CrossRefGoogle Scholar
Busetto, L., Wick, W., and Gumbinger, C. 2020. How to Use and Assess Qualitative Research Methods. Neurological Research and Practice, 2(1), 14. (Cited on p. 226.)CrossRefGoogle ScholarPubMed
Butts, C. T. 2003. Network Inference, Error, and Informant (in)Accuracy: A Bayesian Approach. Social Networks, 25(2), 103140. (Cited on p. 134.)CrossRefGoogle Scholar
Butts, C. T. 2009. Revisiting the Foundations of Network Analysis. Science, 325(5939), 414–416. (Cited on p. 86.)Google Scholar
Callaway, D. S., Hopcroft, J. E., Kleinberg, J. M., Newman, M. E. J., and Strogatz, S. H. 2001. Are Randomly Grown Graphs Really Random? Physical Review E, 64(4), 041902. (Cited on p. 201.)CrossRefGoogle ScholarPubMed
Callaway, E. 2022. ‘The Entire Protein Universe’: AI Predicts Shape of Nearly Every Known Protein. Nature, 608(7921), 1516. (Cited on p. 17.)CrossRefGoogle ScholarPubMed
Cameron, A. C., and Trivedi, P. K. 2013. Regression Analysis of Count Data. 2nd edn. Econometric Society Monographs. Cambridge; New York, NY: Cambridge University Press. (Cited on pp. 159, 163.)Google Scholar
Cantwell, G. T., Kirkley, A., and Newman, M. E. J. 2021. The Friendship Paradox in Real and Model Networks. Journal of Complex Networks, 9(2), cnab011. (Cited on pp. 317, 324, 325.)Google Scholar
Cao, J., Packer, J. S., Ramani, V. et al. 2017. Comprehensive Single-Cell Transcriptional Profiling of a Multicellular Organism. Science, 357(6352), 661667. (Cited on p. 375.)CrossRefGoogle ScholarPubMed
Cao, M., Shu, N., Cao, Q., Wang, Y., and He, Y. 2014. Imaging Functional and Structural Brain Connectomics in Attention-Deficit/Hyperactivity Disorder. Molecular Neurobiology, 50(3), 11111123. (Cited on p. 85.)CrossRefGoogle ScholarPubMed
Caretta Cartozo, C., and De Los Rios, P. 2009. Extended Navigability of Small World Networks: Exact Results and New Insights. Physical Review Letters, 102(23), 238703. (Cited on p. 344.)CrossRefGoogle ScholarPubMed
Carmi, S., Carter, S., Sun, J., and ben-Avraham, D. 2009. Asymptotic Behavior of the Kleinberg Model. Physical Review Letters, 102(23), 238702. (Cited on p. 344.)CrossRefGoogle Scholar
Casey, B. J., Cannonier, T., Conley, M. I. et al. 2018. The Adolescent Brain Cognitive Development (ABCD) Study: Imaging Acquisition across 21 Sites. Developmental Cognitive Neuroscience, 32(Aug.), 4354. (Cited on pp. 19, 80.)CrossRefGoogle ScholarPubMed
Chami, I., Wolf, A., Juan, D.-C., Sala, F., Ravi, S., and , C. 2020. Low-Dimensional Hyperbolic Knowledge Graph Embeddings. Pages 6901–6914 of: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics. (Cited on p. 438.)Google Scholar
Chami, I., Abu-El-Haija, S., Perozzi, B., , C., and Murphy, K. 2022. Machine Learning on Graphs: A Model and Comprehensive Taxonomy. Journal of Machine Learning Research, 23(89), 164. (Cited on p. 445.)Google Scholar
Cheeger, J. 1969. A Lower Bound for the Smallest Eigenvalue of the Laplacian. Pages 195–200 of: Gunning, R. C. (ed.), Problems in Analysis: A Symposium in Honor of Salomon Bochner (PMS-31). Princeton, NJ: Princeton University Press. (Cited on p. 427.)Google Scholar
Chen, B. L., Hall, D. H., and Chklovskii, D. B. 2006. Wiring Optimization Can Relate Neuronal Structure and Function. Proceedings of the National Academy of Sciences, 103(12), 4723–4728. (Cited on p. 227.)CrossRefGoogle Scholar
Chen, M., Mao, S., and Liu, Y. 2014. Big Data: A Survey. Mobile Networks and Applications, 19(2), 171209. (Cited on p. 469.)CrossRefGoogle Scholar
Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., and Muthukrishnan, S. 2015. One Trillion Edges: Graph Processing at Facebook-Scale. Proceedings of the VLDB Endowment, 8(12), 1804–1815. (Cited on pp. 448, 453.)CrossRefGoogle Scholar
Christen, P. 2012. Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection. Data-Centric Systems and Applications. Berlin; New York: Springer. (Cited on p. 116.)Google Scholar
Chu, C.-C., and Iu, H. H.-C. 2017. Complex Networks Theory For Modern Smart Grid Applications: A Survey. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 7(2), 177191. (Cited on p. 26.)CrossRefGoogle Scholar
Chung, F. 2007. Four Proofs for the Cheeger Inequality and Graph Partition Algorithms. Page 378 of: Proceedings of ICCM, vol. 2. Providence, RI; Boston, MA: American Mathematical Society & International Press of Boston, for Citeseer. (Cited on p. 427.)Google Scholar
Chung, F., and Lu, L. 2002. Connected Components in Random Graphs with Given Expected Degree Sequences. Annals of Combinatorics, 6(2), 125145. (Cited on pp. 467, 468.)CrossRefGoogle Scholar
Chung, F. R. K. 1997. Spectral Graph Theory. Providence, RI: American Mathematical Society. (Cited on pp. 406, 413, 414, 427.)Google Scholar
Clauset, A., Shalizi, C. R., and Newman, M. E. J. 2009. Power-Law Distributions in Empirical Data. SIAM Review, 51(4), 661703. (Cited on pp. 153, 163.)CrossRefGoogle Scholar
Cleveland, W. S., and McGill, R. 1984. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association, 79(387), 531554. (Cited on p. 214.)CrossRefGoogle Scholar
Cohen, R., Erez, K., ben-Avraham, D., and Havlin, S. 2000. Resilience of the Internet to Random Breakdowns. Physical Review Letters, 85(21), 4626–4628. (Cited on pp. 167, 384, 386, 395.)CrossRefGoogle Scholar
Cohen, R., Erez, K., ben-Avraham, D., and Havlin, S. 2001. Breakdown of the Internet under Intentional Attack. Physical Review Letters, 86(16), 3682–3685. (Cited on p. 167.)CrossRefGoogle Scholar
Colizza, V., Flammini, A., Serrano, M. A., and Vespignani, A. 2006. Detecting Rich-Club Ordering in Complex Networks. Nature Physics, 2(2), 110115. (Cited on p. 202.)CrossRefGoogle Scholar
Cong, J., and Liu, H. 2014. Approaching Human Language with Complex Networks. Physics of Life Reviews, 11(4), 598618. (Cited on p. 26.)CrossRefGoogle ScholarPubMed
Conover, M. D., Gonçalves, B., Flammini, A., and Menczer, F. 2012. Partisan Asymmetries in Online Political Activity. EPJ Data Science, 1(1), 6. (Cited on p. 84.)CrossRefGoogle Scholar
Conte, D., Foggia, P., Sansone, C., and Vento, M. 2004. Thirty Years of Graph Matching in Pattern Recognition. International Journal of Pattern Recognition and Artificial Intelligence, 18(03), 265298. (Cited on p. 232.)CrossRefGoogle Scholar
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2022. Introduction to Algorithms. 4th edn. Cambridge, MA: MIT Press. (Cited on p. 61.)Google Scholar
Cutler, A. 1991. Nested Faunas and Extinction in Fragmented Habitats. Conservation Biology, 5(4), 496–504. (Cited on p. 202.)CrossRefGoogle Scholar
Dai, H., Li, H., Tian, T. et al. 2018. Adversarial Attack on Graph Structured Data. Pages 1115–1124 of: Proceedings of the 35th International Conference on Machine Learning. PMLR. (Cited on p. 444.)Google Scholar
Dalton, J. 1808. A New System of Chemical Philosophy. Part I. Cambridge: Cambridge University Press. (Cited on p. 4.)CrossRefGoogle Scholar
Dantzig, G. B., and Fulkerson, D. R. 1955. On the Max Flow Min Cut Theorem of Networks. Santa Monica, CA: RAND corporation. (Cited on pp. 201, 427.)Google Scholar
Dawid, A. P., and Skene, A. M. 1979. Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1), 2028. (Cited on p. 374.)Google Scholar
de Saussure, F. 1959. Course in General Linguistics. New York, NY: Philosophical Library. (Cited on p. 432.)Google Scholar
Dean, J., and Ghemawat, S. 2008. MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM, 51(1), 107113. (Cited on pp. 452, 453.)CrossRefGoogle Scholar
Decelle, A., Krzakala, F., Moore, C., and Zdeborová, L. 2011. Asymptotic Analysis of the Stochastic Block Model for Modular Networks and Its Algorithmic Applications. Physical Review E, 84(6), 066106. (Cited on pp. 356, 357.)CrossRefGoogle ScholarPubMed
Decelle, A., Krzakala, F., Moore, C., and Zdeborová, L. 2011. Inference and Phase Transitions in the Detection of Modules in Sparse Networks. Physical Review Letters, 107(6), 065701. (Cited on pp. 356, 357.)CrossRefGoogle ScholarPubMed
Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum Likelihood from Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 122. (Cited on pp. 134, 360, 362.)Google Scholar
Dessimoz, C., and Škunca, N. (eds.). 2017. The Gene Ontology Handbook. Methods in Molecular Biology, vol. 1446. New York, NY: Springer New York. (Cited on p. 116.)CrossRefGoogle Scholar
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Pages 4171–4186 of: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, MN: Association for Computational Linguistics. (Cited on p. 261.)Google Scholar
Devroye, L. 1986. Non-Uniform Random Variate Generation. New York, NY: Springer. (Cited on p. 466.)CrossRefGoogle Scholar
Dodds, P. S., Muhamad, R., and Watts, D. J. 2003. An Experimental Study of Search in Global Social Networks. Science, 301(5634), 827829. (Cited on p. 341.)CrossRefGoogle ScholarPubMed
Donath, W. E., and Hoffman, A. J. 1973. Lower Bounds for the Partitioning of Graphs. IBM Journal of Research and Development, 17(5), 420425. (Cited on pp. 427, 428.)CrossRefGoogle Scholar
Dong, X., Thanou, D., Rabbat, M., and Frossard, P. 2019. Learning Graphs From Data: A Signal Representation Perspective. IEEE Signal Processing Magazine, 36(3), 4463. (Cited on p. 238.)CrossRefGoogle Scholar
Doolittle, W. F. 2013. Is Junk DNA Bunk? A Critique of ENCODE. Proceedings of the National Academy of Sciences, 110(14), 5294–5300. (Cited on p. 122.)CrossRefGoogle Scholar
Dunbar, R. I. M. 1993. Coevolution of Neocortical Size, Group Size and Language in Humans. Behavioral and Brain Sciences, 16(4), 681694. (Cited on p. 181.)CrossRefGoogle Scholar
Dunning, T. 2012. Natural Experiments in the Social Sciences: A Design-Based Approach. Cambridge: Cambridge University Press. (Cited on p. 474.)CrossRefGoogle Scholar
Durand, M., and Flajolet, P. 2003. Loglog Counting of Large Cardinalities. Pages 605–617 of: Di Battista, G., and Zwick, U. (eds.), Algorithms—ESA 2003. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. (Cited on pp. 455, 469.)Google Scholar
Dwork, C., and Roth, A. 2014. The Algorithmic Foundations of Differential Privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4), 211407. (Cited on p. 475.)CrossRefGoogle Scholar
Eades, P. 1984. A Heuristic for Graph Drawing. Congressus Numerantium, vol.42, 149–160. (Cited on p. 221.)Google Scholar
Easley, D., and Kleinberg, J. 2010. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge: Cambridge University Press. (Cited on p. 472.)CrossRefGoogle Scholar
Edwards, P. N., Mayernik, M. S., Batcheller, A. L., Bowker, G. C., and Borgman, C. L. 2011. Science Friction: Data, Metadata, and Collaboration. Social Studies of Science, 41(5), 667690. (Cited on p. 292.)CrossRefGoogle ScholarPubMed
Efron, B., and Hastie, T. 2016. Computer Age Statistical Inference. Cambridge: Cambridge University Press. (Cited on pp. 62, 277, 472.)CrossRefGoogle Scholar
Ehrlich, B. 2022. The Brain in Search of Itself: Santiago Ramón y Cajal and the Story of the Neuron. New York, NY: Farrar, Straus and Giroux. (Cited on p. 16.)Google Scholar
Einstein, A. 1905. Über Die von Der Molekularkinetischen Theorie Der Wärme Geforderte Bewegung von in Ruhenden Flüssigkeiten Suspendierten Teilchen. Annalen der Physik, 322(8), 549560. (Cited on p. 327.)CrossRefGoogle Scholar
Ellson, J., Gansner, E., Koutsofios, L., North, S. C., and Woodhull, G. 2002. Graphviz—Open Source Graph Drawing Tools. Pages 483–484 of: Mutzel, P., Jünger, M., and Leipert, S. (eds.), Graph Drawing. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. (Cited on p. 206.)Google Scholar
Emmons, S. W. 2015. The Beginning of Connectomics: A Commentary on White et al. (1986) ‘The Structure of the Nervous System of the Nematode Caenorhabditis Elegans’. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1666), 20140309. (Cited on p. 82.)Google Scholar
Eom, Y.-H., and Jo, H.-H. 2015. Generalized Friendship Paradox in Complex Networks: The Case of Scientific Collaboration. Scientific Reports, 4(1), 4603. (Cited on p. 324.)CrossRefGoogle Scholar
Erdős, P., and Rényi, A. 1959. On Random Graphs I. Publicationes Mathematicae, 6(1), 290–297. (Cited on pp. 163, 349.)CrossRefGoogle Scholar
Erdős, P., and Rényi, A. 1960. On the Evolution of Random Graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1), 1760. (Cited on pp. 163, 349.)Google Scholar
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. 1996. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Pages 226–231 of: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. KDD ’96, vol. 96. Portland, OR: AAAI Press. (Cited on p. 428.)Google Scholar
Eswaran, D., Faloutsos, C., Guha, S., and Mishra, N. 2018. SpotLight: Detecting Anomalies in Streaming Graphs. Pages 1378–1386 of: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD ‘18. New York, NY: Association for Computing Machinery. (Cited on p. 469.)Google Scholar
Euzenat, J., and Shvaiko, P. 2013. Ontology Matching. 2nd edn. Berlin, Heidelberg: Springer. (Cited on p. 116.)CrossRefGoogle Scholar
Evans, T. S., and Lambiotte, R. 2009. Line Graphs, Link Partitions, and Overlapping Communities. Physical Review E, 80(1), 016105. (Cited on pp. 184, 201.)CrossRefGoogle ScholarPubMed
Evtushenko, A., and Kleinberg, J. 2023. Node-Based Generalized Friendship Paradox Fails. Scientific Reports, 13(1), 2074. (Cited on p. 324.)CrossRefGoogle ScholarPubMed
Fan, J., Han, F., and Liu, H. 2014. Challenges of Big Data Analysis. National Science Review, 1(2), 293314. (Cited on p. 469.)CrossRefGoogle ScholarPubMed
Feld, S. L. 1991. Why Your Friends Have More Friends Than You Do. American Journal of Sociology, 96(6), 14641477. (Cited on p. 324.)CrossRefGoogle Scholar
Ferguson, N. 2019. The Square and the Tower: Networks and Power, from the Freemasons to Facebook. New York, NY: Penguin. (Cited on p. 16.)Google Scholar
Fiedler, M. 1973. Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal, 23(2), 298–305. (Cited on pp. 412, 427, 428.)CrossRefGoogle Scholar
Firth, J. R. 1957. Studies in Linguistic Analysis. Publications of the Philological Society. Oxford: Blackwell. (Cited on pp. 272, 432.)Google Scholar
Flajolet, P., and Nigel Martin, G. 1985. Probabilistic Counting Algorithms for Data Base Applications. Journal of Computer and System Sciences, 31(2), 182209. (Cited on pp. 455, 469.)CrossRefGoogle Scholar
Flajolet, P., Fusy, É., Gandouet, O., and Meunier, F. 2007. HyperLogLog: The Analysis of a near-Optimal Cardinality Estimation Algorithm. Pages 137–156 of: Discrete Mathematics and Theoretical Computer Science, vol. AH. Nancy, France: Discrete Mathematics and Theoretical Computer Science. (Cited on pp. 455, 456, 469.)CrossRefGoogle Scholar
Ford, L. R., and Fulkerson, D. R. 1956. Maximal Flow Through a Network. Canadian Journal of Mathematics, 8, 399404. (Cited on p. 201.)CrossRefGoogle Scholar
Ford, L. R., and Fulkerson, D. R. 1962. Flows in Networks. Princeton, NJ: Princeton University Press. (Cited on p. 201.)Google Scholar
Fortunato, S. 2010. Community Detection in Graphs. Physics Reports, 486(3), 75–174. (Cited on p. 201.)CrossRefGoogle Scholar
Fortunato, S., and Barthélemy, M. 2007. Resolution Limit in Community Detection. Proceedings of the National Academy of Sciences, 104(1), 36–41. (Cited on p. 201.)CrossRefGoogle Scholar
Fortunato, S., and Newman, M. E. J. 2022. 20 Years of Network Community Detection. Nature Physics, 18(8), 848850. (Cited on p. 201.)CrossRefGoogle Scholar
Fosdick, B. K., Larremore, D. B., Nishimura, J., and Ugander, J. 2018. Configuring Random Graph Models with Fixed Degree Sequences. SIAM Review, 60(2), 315355. (Cited on p. 163.)CrossRefGoogle Scholar
Frank, O., and Strauss, D. 1986. Markov Graphs. Journal of the American Statistical Association, 81(395), 832–842. (Cited on pp. 163, 367.)Google Scholar
Frantz, T. L., Cataldo, M., and Carley, K. M. 2009. Robustness of Centrality Measures under Uncertainty: Examining the Role of Network Topology. Computational and Mathematical Organization Theory, 15(4), 303328. (Cited on pp. 377, 395.)CrossRefGoogle Scholar
Friedman, J., Hastie, T., and Tibshirani, R. 2008. Sparse Inverse Covariance Estimation with the Graphical Lasso. Biostatistics, 9(3), 432441. (Cited on pp. 373, 374.)CrossRefGoogle ScholarPubMed
Fruchterman, T. M. J., and Reingold, E. M. 1991. Graph Drawing by Force-Directed Placement. Software: Practice and Experience, 21(11), 11291164. (Cited on p. 221.)Google Scholar
Gao, X., Xiao, B., Tao, D., and Li, X. 2010. A Survey of Graph Edit Distance. Pattern Analysis and Applications, 13(1), 113129. (Cited on p. 232.)CrossRefGoogle Scholar
Garcia, D. 2017. Leaking Privacy and Shadow Profiles in Online Social Networks. Science Advances, 3(8), e1701172. (Cited on p. 37.)CrossRefGoogle ScholarPubMed
Garey, M., Johnson, D., and Stockmeyer, L. 1976. Some Simplified NP-complete Graph Problems. Theoretical Computer Science, 1(3), 237267. (Cited on p. 410.)CrossRefGoogle Scholar
Gauvin, L., Génois, M., Karsai, M. et al. 2022. Randomized Reference Models for Temporal Networks. SIAM Review, 64(4), 763830. (Cited on p. 243.)CrossRefGoogle Scholar
Gawande, A. 2010. The Checklist Manifesto: How to Get Things Right. New York, NY: Metropolitan Books. (Cited on p. 285.)Google Scholar
Gebru, T., Morgenstern, J., Vecchione, B. et al. 2020. Datasheets for Datasets. arXiv:1803.09010 [cs], Mar. (Cited on pp. 31, 474.)Google Scholar
Gelman, A., and Hill, J. 2007. Data Analysis Using Regression and Multi-level/Hierarchical Models. Analytical Methods for Social Research. Cambridge; New York: Cambridge University Press. (Cited on pp. 116, 134.)Google Scholar
Gelman, A., Carlin, Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. 2014. Bayesian Data Analysis. 3rd edn. Chapman & Hall/CRC Texts in Statistical Science. Boca Raton, FL: CRC Press. (Cited on pp. 62, 375, 472.)Google Scholar
Gertner, J. 2013. The Idea Factory: Bell Labs and the Great Age of American Innovation. London: Penguin Books. (Cited on p. 313.)Google Scholar
Ghosh, S., Das, N., Gonçalves, T., Quaresma, P., and Kundu, M. 2018. The Journey of Graph Kernels through Two Decades. Computer Science Review, 27(Feb.), 88111. (Cited on p. 232.)CrossRefGoogle Scholar
Gilbert, E. N. 1959. Random Graphs. The Annals of Mathematical Statistics, 30(4), 1141–1144. (Cited on pp. 163, 349.)CrossRefGoogle Scholar
Girvan, M., and Newman, M. E. J. 2002. Community Structure in Social and Biological Networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826. (Cited on pp. 185, 201.)CrossRefGoogle Scholar
Golub, G. H., and Van Loan, C. F. 2013. Matrix Computations. 4th edn. Johns Hopkins Studies in the Mathematical Sciences. Baltimore, MD: The Johns Hopkins University Press. (Cited on pp. 400, 427.)Google Scholar
Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin, C. 2012. Power-Graph: Distributed Graph-Parallel Computation on Natural Graphs. Pages 17–30 of: Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation. OSDI’12. Hollywood, CA: USENIX Association. (Cited on p. 453.)Google Scholar
Goodfellow, I., Bengio, Y., and Courville, A. 2016. Deep Learning. Cambridge, MA: MIT Press. (Cited on pp. 277, 472.)Google Scholar
Gower, J. C. 1975. Generalized Procrustes Analysis. Psychometrika, 40(1), 33–51. (Cited on p. 371.)CrossRefGoogle Scholar
Goyal, P., and Ferrara, E. 2018. Graph Embedding Techniques, Applications, and Performance: A Survey. Knowledge-Based Systems, 151(July), 7894. (Cited on p. 445.)CrossRefGoogle Scholar
Granovetter, M. 1976. Network Sampling: Some First Steps. American Journal of Sociology, 81(6), 1287–1303. (Cited on p. 395.)CrossRefGoogle Scholar
Granovetter, M. S. 1973. The Strength of Weak Ties. American Journal of Sociology, 78(6), 1360–1380. (Cited on pp. 21, 343.)CrossRefGoogle Scholar
Gray, J., Liu, D. T., Nieto-Santisteban, M., Szalay, A., DeWitt, D. J., and Heber, G. 2005. Scientific Data Management in the Coming Decade. ACM SIGMOD Record, 34(4), 3441. (Cited on p. 292.)CrossRefGoogle Scholar
Grohe, M., and Schweitzer, P. 2020. The Graph Isomorphism Problem. Com-munications of the ACM, 63(11), 128134. (Cited on p. 445.)CrossRefGoogle Scholar
Grover, A., and Leskovec, J. 2016. Node2vec: Scalable Feature Learning for Networks. Pages 855–864 of: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16. New York, NY: Association for Computing Machinery. (Cited on p. 435.)Google Scholar
Groves, R. M. 2011. Three Eras of Survey Research. Public Opinion Quarterly, 75(5), 861–871. (Cited on pp. 65, 68, 71.)CrossRefGoogle Scholar
Guimerà, R., and Sales-Pardo, M. 2009. Missing and Spurious Interactions and the Reconstruction of Complex Networks. Proceedings of the National Academy of Sciences, 106(52), 22073–22078. (Cited on p. 134.)CrossRefGoogle Scholar
Guimerà, R., Sales-Pardo, M., and Amaral, L. A. N. 2004. Modularity from Fluctuations in Random Graphs and Complex Networks. Physical Review E, 70(2), 025101. (Cited on p. 179.)CrossRefGoogle ScholarPubMed
Gutmann, M., and Hyvärinen, A. 2010. Noise-Contrastive Estimation: A New Estimation Principle for Unnormalized Statistical Models. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research. Sardinia, Italy: PMLR. (Cited on p. 435.)Google Scholar
Hagberg, A., and Lemons, N. 2015. Fast Generation of Sparse Random Kernel Graphs. PLOS ONE, 10(9), e0135177. (Cited on p. 469.)CrossRefGoogle ScholarPubMed
Hall, K. M. 1970. An R-Dimensional Quadratic Placement Algorithm. Management Science, 17(3), 219–229. (Cited on p. 221.)CrossRefGoogle Scholar
Hamilton, W., Ying, Z., and Leskovec, J. 2017. Inductive Representation Learning on Large Graphs. In: Guyon, I., Luxburg, U. V., Bengio, S. et al. (eds.), Advances in Neural Information Processing Systems, vol. 30. Long Beach, CA: Curran Associates, Inc. (Cited on pp. 273, 442.)Google Scholar
Hanel, R., Corominas-Murtra, B., Liu, B., and Thurner, S. 2017. Fitting Power-Laws in Empirical Data with Estimators That Work for All Exponents. PLOS ONE, 12(2), e0170920. (Cited on p. 163.)CrossRefGoogle ScholarPubMed
Harris, Z. S. 1954. Distributional Structure. WORD, 10(2-3), 146–162. (Cited on pp. 272, 432.)CrossRefGoogle Scholar
Hartle, H., Klein, B., McCabe, S. et al. 2020. Network Comparison and the Within-Ensemble Graph Distance. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2243), 20190744. (Cited on p. 232.)CrossRefGoogle Scholar
Hashimoto, K.-i. 1989. Zeta Functions of Finite Graphs and Representations of P-Adic Groups. Pages 211–280 of: Automorphic Forms and Geometry of Arithmetic Varieties. Advanced Studies in Pure Mathematics, vol. 15. Cambridge, MA: Academic Press. (Cited on pp. 357, 403.)CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., and Friedman, J. H. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd edn. Springer Series in Statistics. New York, NY: Springer. (Cited on pp. 277, 428, 472.)Google Scholar
Hastie, T., Tibshirani, R., and Wainwright, M. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations. New York, NY: Taylor & Francis. (Cited on pp. 277, 375.)CrossRefGoogle Scholar
Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., and Jennions, M. D. 2015. The Extent and Consequences of P-Hacking in Science. PLOS Biology, 13(3), e1002106. (Cited on pp. 35, 71.)CrossRefGoogle ScholarPubMed
Healy, K. 2018. Data Visualization: A Practical Introduction. Princeton, NJ: Princeton University Press. (Cited on p. 473.)Google Scholar
Heinrich, J. 2001. Drug Safety: Most Drugs Withdrawn in Recent Years Had Greater Health Risks for Women. Tech. rept. GAO-01-286R. US Government Printing Office, Washington, DC. (Cited on p. 28.)Google Scholar
Hellman, M. 2002. An Overview of Public Key Cryptography. IEEE Communications Magazine, 40(5), 42–49. (Cited on p. 313.)CrossRefGoogle Scholar
Hennig, C., Meila, M., Murtagh, F., and Rocci, R. (eds.). 2016. Handbook of Cluster Analysis. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. Boca Raton, FL; London; New York: CRC Press, Taylor & Francis Group. (Cited on p. 428.)Google Scholar
Heule, S., Nunkesser, M., and Hall, A. 2013. HyperLogLog in Practice: Algorithmic Engineering of a State of the Art Cardinality Estimation Algorithm. Pages 683–692 of: Proceedings of the 16th International Conference on Extending Database Technology. EDBT ’13. New York, NY: Association for Computing Machinery. (Cited on p. 469.)Google Scholar
Hočevar, T., and Demšar, J. 2014. A Combinatorial Approach to Graphlet Counting. Bioinformatics, 30(4), 559565. (Cited on p. 175.)CrossRefGoogle ScholarPubMed
Hodas, N., Kooti, F., and Lerman, K. 2013. Friendship Paradox Redux: Your Friends Are More Interesting Than You. Proceedings of the International AAAI Conference on Web and Social Media, 7(1), 225–233. (Cited on p. 324.)Google Scholar
Hofer, M., Hellmann, S., Dojchinovski, M., and Frey, J. 2020. The New DBpedia Release Cycle: Increasing Agility and Efficiency in Knowledge Extraction Workflows. Pages 1–18 of: Blomqvist, E., Groth, P., de Boer, V. et al. (eds.), Semantic Systems. In the Era of Knowledge Graphs. Lecture Notes in Computer Science. Cham, Switzerland: Springer. (Cited on p. 449.)Google Scholar
Hoff, P. D., Raftery, A. E., and Handcock, M. S. 2002. Latent Space Approaches to Social Network Analysis. Journal of the American Statistical Association, 97(460), 1090–1098. (Cited on pp. 369, 370, 371, 374.)CrossRefGoogle Scholar
Hofman, J. M., Watts, D. J., Athey, S. et al. 2021. Integrating Explanation and Prediction in Computational Social Science. Nature, 595(7866), 181188. (Cited on p. 474.)CrossRefGoogle ScholarPubMed
Holland, P. W., and Leinhardt, S. 1981. An Exponential Family of Probability Distributions for Directed Graphs. Journal of the American Statistical Association, 76(373), 3350. (Cited on p. 163.)CrossRefGoogle Scholar
Holland, P. W., Laskey, K. B., and Leinhardt, S. 1983. Stochastic Blockmodels: First Steps. Social Networks, 5(2), 109–137. (Cited on pp. 163, 374.)CrossRefGoogle Scholar
Holme, P. 2019. Rare and Everywhere: Perspectives on Scale-Free Networks. Nature Communications, 10(1), 1016. (Cited on p. 346.)Google Scholar
Holme, P., and Saramäki, J. 2012. Temporal Networks. Physics Reports, 519(3), 97–125. (Cited on pp. 249, 472.)CrossRefGoogle Scholar
Holme, P., and Saramäki, J. (eds.). 2019. Temporal Network Theory. Computational Social Science. Cham, Switzerland: Springer Naure. (Cited on p. 249.)Google Scholar
Holten, D., and Van Wijk, J. J. 2009. Force-Directed Edge Bundling for Graph Visualization. Computer Graphics Forum, 28(3), 983990. (Cited on p. 213.)CrossRefGoogle Scholar
Hosmer, D. W., Lemeshow, S., and Sturdivant, R. X. 2013. Applied Logistic Regression. Hoboken, NJ: John Wiley & Sons. (Cited on p. 256.)CrossRefGoogle Scholar
Howe, J., et al. 2006. The Rise of Crowdsourcing. Wired magazine, 14(6), 1–4. (Cited on p. 374.)Google Scholar
Humphreys, I. R., Pei, J., Baek, M. et al. 2021. Computed Structures of Core Eukaryotic Protein Complexes. Science, 374(6573), eabm4805. (Cited on p. 17.)CrossRefGoogle ScholarPubMed
Hyndman, R. J., and Athanasopoulos, G. 2021. Forecasting: Principles and Practice. 3rd edn. Melbourne, Australia: Otexts, Online Open-Access Textbooks. (Cited on p. 249.)Google Scholar
Israel, M., and Hay, I. 2006. Research Ethics for Social Scientists. Thousand Oaks, CA: SAGE. (Cited on p. 37.)CrossRefGoogle Scholar
Jackson, M. O. 2019. The Friendship Paradox and Systematic Biases in Perceptions and Social Norms. Journal of Political Economy, 127(2), 777818. (Cited on p. 325.)CrossRefGoogle Scholar
James, G., Witten, D., Hastie, T., and Tibshirani, R. 2021. An Introduction to Statistical Learning: With Applications in R. 2nd edn. Springer Texts in Statistics. New York, NY: Springer. (Cited on pp. 277, 472.)Google Scholar
Jha, M., Seshadhri, C., and Pinar, A. 2015. A Space-Efficient Streaming Algorithm for Estimating Transitivity and Triangle Counts Using the Birthday Paradox. ACM Transactions on Knowledge Discovery from Data, 9(3), 15:115:21. (Cited on p. 454.)CrossRefGoogle Scholar
Kanare, H. M. 1985. Writing the Laboratory Notebook. Washington, DC: American Chemical Society. (Cited on pp. 283, 287.)Google Scholar
Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., and Wu, A. 2002. An Efficient K-Means Clustering Algorithm: Analysis and Implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881892. (Cited on p. 426.)CrossRefGoogle Scholar
Karger, D., Oh, S., and Shah, D. 2011. Iterative Learning for Reliable Crowd-sourcing Systems. In: Advances in Neural Information Processing Systems, vol. 24. Granada, Spain: Curran Associates, Inc. (Cited on p. 374.)Google Scholar
Karinthy, F. 1929. Chain-Links. Everything is different, 21–26. (Cited on p. 15.)CrossRefGoogle Scholar
Karrer, B., and Newman, M. E. J. 2011. Stochastic Blockmodels and Community Structure in Networks. Physical Review E, 83(1), 016107. (Cited on p. 355.)CrossRefGoogle ScholarPubMed
Katz, L. 1953. A New Status Index Derived from Sociometric Analysis. Psy-chometrika, 18(1), 39–43. (Cited on pp. 189, 408, 427.)CrossRefGoogle Scholar
Kaufman, L., and Rousseeuw, P. J. 2009. Finding Groups in Data: An Introduction to Cluster Analysis. New York, NY: John Wiley & Sons. (Cited on pp. 232, 428.)Google Scholar
Kernighan, B. W., and Lin, S. 1970. An Efficient Heuristic Procedure for Partitioning Graphs. The Bell System Technical Journal, 49(2), 291307. (Cited on pp. 201, 427.)CrossRefGoogle Scholar
Kernighan, B. W. 2020. UNIX: A History and a Memoir. Seattle, WA: Kindle Direct Publishing. (Cited on p. 313.)Google Scholar
Kessler, M. D., Yerges-Armstrong, L., Taub, M. A. et al. 2016. Challenges and Disparities in the Application of Personalized Genomic Medicine to Populations with African Ancestry. Nature Communications, 7(1), 12521. (Cited on p. 28.)CrossRefGoogle ScholarPubMed
Kipf, T. N., and Welling, M. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In: International Conference on Learning Representations. Toulon, France: OpenReview.net. (Cited on pp. 273, 442.)Google Scholar
Kirchgässner, G., Wolters, J., and Hassler, U. 2013. Introduction to Modern Time Series Analysis. 2nd edn. Springer Texts in Business and Economics. Berlin, Heidelberg: Springer. (Cited on p. 249.)Google Scholar
Kleinberg, J. M. 1999. Authoritative Sources in a Hyperlinked Environment. Journal of the ACM, 46(5), 604632. (Cited on p. 189.)CrossRefGoogle Scholar
Kleinberg, J. M. 2000. Navigation in a Small World. Nature, 406(6798), 845–845. (Cited on p. 344.)Google Scholar
Kleinberg, J. M., Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. S. 1999. The Web as a Graph: Measurements, Models, and Methods. Pages 1–17 of: Goos, G., Hartmanis, J., van Leeuwen, J. et al. (eds.), Computing and Combinatorics, vol. 1627. Berlin, Heidelberg: Springer. (Cited on pp. 346, 349.)Google Scholar
Knuth, D. E. 1984. Literate Programming. The Computer Journal, 27(2), 97–111. (Cited on p. 301.)CrossRefGoogle Scholar
Kojaku, S., and Masuda, N. 2017. Finding Multiple Core-Periphery Pairs in Networks. Physical Review E, 96(5), 052313. (Cited on p. 195.)CrossRefGoogle ScholarPubMed
Kojaku, S., Yoon, J., Constantino, I., and Ahn, Y.-Y. 2021. Residual2Vec: Debi-asing Graph Embedding with Random Graphs. Pages 24150–24163 of: Advances in Neural Information Processing Systems, vol. 34. Online: Curran Associates, Inc. (Cited on pp. 435, 445.)Google Scholar
Koponen, J., and Hildén, J. 2019. Data Visualization Handbook. Aalto, Finland: Aalto University. (Cited on p. 473.)Google Scholar
Kosinski, M., Stillwell, D., and Graepel, T. 2013. Private Traits and Attributes Are Predictable from Digital Records of Human Behavior. Proceedings of the National Academy of Sciences, 110(15), 5802–5805. (Cited on p. 32.)CrossRefGoogle Scholar
Köster, J., and Rahmann, S. 2012. Snakemake—a Scalable Bioinformatics Workflow Engine. Bioinformatics, 28(19), 2520–2522. (Cited on p. 302.)CrossRefGoogle Scholar
Krapivsky, P. L., and Redner, S. 2001. Organization of Growing Random Networks. Physical Review E, 63(6), 066123. (Cited on pp. 345, 346, 348, 349.)CrossRefGoogle Scholar
Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., and Boguñá, M. 2010. Hyperbolic Geometry of Complex Networks. Physical Review E, 82(3), 036106. (Cited on p. 438.)CrossRefGoogle ScholarPubMed
Kruja, E., Marks, J., Blair, A., and Waters, R. 2002. A Short Note on the History of Graph Drawing. Pages 272–286 of: Mutzel, P., Jünger, M., and Leipert, S. (eds.), Graph Drawing. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. (Cited on p. 221.)Google Scholar
Kruschke, J. K. 2015. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. 2nd edn. Boston, MA: Academic Press. (Cited on pp. 62, 472.)Google Scholar
Kruskal, J. B., and Wish, M. 1978. Multidimensional Scaling. Sage University Papers Quantitative Applications in the Social Sciences, no. 11. Newbury Park, CA: SAGE. (Cited on p. 370.)Google Scholar
Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K., and Moult, J. 2021. Critical Assessment of Methods of Protein Structure Prediction (CASP)—Round XIV. Proteins: Structure, Function, and Bioinformatics, 89(12), 16071617. (Cited on p. 17.)CrossRefGoogle ScholarPubMed
Krzakala, F., Moore, C., Mossel, E. et al. 2013. Spectral Redemption in Clustering Sparse Networks. Proceedings of the National Academy of Sciences, 110(52), 20935–20940. (Cited on pp. 356, 357, 421.)CrossRefGoogle Scholar
Kumar, S., Morstatter, F., and Liu, H. 2014. Twitter Data Analytics. Springer-Briefs in Computer Science. New York, NY: Springer. (Cited on p. 71.)Google Scholar
Landauer, T. K., Foltz, P. W., and Laham, D. 1998. An Introduction to Latent Semantic Analysis. Discourse Processes, 25(2-3), 259284. (Cited on pp. 438, 445.)CrossRefGoogle Scholar
Lang, T. A., and Altman, D. G. 2015. Basic Statistical Reporting for Articles Published in Biomedical Journals: The “Statistical Analyses and Methods in the Published Literature” or the SAMPL Guidelines. International Journal of Nursing Studies, 52(1), 59. (Cited on p. 163.)CrossRefGoogle ScholarPubMed
Latapy, M., Viard, T., and Magnien, C. 2018. Stream Graphs and Link Streams for the Modeling of Interactions over Time. Social Network Analysis and Mining, 8(1), 61. (Cited on p. 240.)CrossRefGoogle Scholar
Lazer, D., Pentland, A., Adamic, L. et al. 2009. Computational Social Science. Science, 323(5915), 721723. (Cited on p. 25.)CrossRefGoogle ScholarPubMed
Lazer, D. M. J., Pentland, A., Watts, D. J. et al. 2020. Computational Social Science: Obstacles and Opportunities. Science, 369(6507), 10601062. (Cited on p. 474.)CrossRefGoogle ScholarPubMed
Lee, C., and Wilkinson, D. J. 2019. A Review of Stochastic Block Models and Extensions for Graph Clustering. Applied Network Science, 4(1), 150. (Cited on pp. 353, 374.)CrossRefGoogle Scholar
Lee, J. R., Gharan, S. O., and Trevisan, L. 2014. Multiway Spectral Partitioning and Higher-Order Cheeger Inequalities. Journal of the ACM, 61(6), 130. (Cited on pp. 417, 427.)CrossRefGoogle Scholar
Lehmann, S. 2019. Fundamental Structures in Temporal Communication Networks. Pages 25–48 of: Holme, P., and Saramäki, J. (eds.), Temporal Network Theory. Computational Social Sciences. Cham, Switzerland: Springer. (Cited on p. 473.)Google Scholar
Levy, O., and Goldberg, Y. 2014. Neural Word Embedding as Implicit Matrix Factorization. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 2. Montreal, Canada: Curran Associates, Inc. (Cited on pp. 272, 438, 439, 440, 445.)Google Scholar
Levy, O., Goldberg, Y., and Dagan, I. 2015. Improving Distributional Similarity with Lessons Learned from Word Embeddings. Transactions of the Association for Computational Linguistics, 3(Dec.), 211225. (Cited on p. 272.)CrossRefGoogle Scholar
Lewandowsky, S., Mann, M. E., Bauld, L., Hastings, G., and Loftus, a. E. F. 2013. The Subterranean War on Science. APS Observer, 26. (Cited on p. 284.)Google Scholar
Lewis, S. 2019. The Racial Bias Built into Photography. The New York Times, Apr. (Cited on p. 29.)Google Scholar
Liben-Nowell, D., and Kleinberg, J. 2007. The Link-Prediction Problem for Social Networks. Journal of the American Society for Information Science and Technology, 58(7), 10191031. (Cited on p. 134.)CrossRefGoogle Scholar
Liggett, T. M. 1999. Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes. Grundlehren Der Mathematischen Wissenschaften, no. 324. Berlin; New York: Springer. (Cited on p. 235.)Google Scholar
Liggett, T. M. 2005. Interacting Particle Systems. Classics in Mathematics. Berlin; New York: Springer. (Cited on p. 235.)Google Scholar
Lin, J. W.-B., Aizenman, H., Espinel, E. M. C., Gunnerson, K. N., and Liu, J. 2022. An Introduction to Python Programming for Scientists and Engineers. Cambridge; New York, NY: Cambridge University Press. (Cited on p. 61.)Google Scholar
Lin, T., Wang, Y., Liu, X., and Qiu, X. 2022. A Survey of Transformers. AI Open, 3(Jan.), 111132. (Cited on p. 433.)CrossRefGoogle Scholar
Liu, Y., Safavi, T., Dighe, A., and Koutra, D. 2018. Graph Summarization Methods and Applications: A Survey. ACM Computing Surveys, 51(3), 62:1–62:34. (Cited on pp. 232, 452, 469.)Google Scholar
Louis, A., Raghavendra, P., Tetali, P., and Vempala, S. 2012. Many Sparse Cuts via Higher Eigenvalues. Pages 1131–1140 of: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing. New York, NY: Association for Computing Machinery. (Cited on pp. 417, 427.)Google Scholar
Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. 2010. GraphLab: A New Framework for Parallel Machine Learning. Pages 340–349 of: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence. UAI’10. Arlington, VA: AUAI Press. (Cited on p. 453.)Google Scholar
Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., and Hellerstein, J. M. 2012. Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. Proceedings of the VLDB Endowment, 5(8), 716–727. (Cited on p. 453.)CrossRefGoogle Scholar
, L., and Zhou, T. 2011. Link Prediction in Complex Networks: A Survey. Physica A: Statistical Mechanics and its Applications, 390(6), 11501170. (Cited on p. 134.)CrossRefGoogle Scholar
Luck, K., Kim, D.-K., Lambourne, L. et al. 2020. A Reference Map of the Human Binary Protein Interactome. Nature, 580(7803), 402–408. (Cited on pp. 24, 84, 130, 389, 390.)Google Scholar
Lusher, D., Koskinen, J., and Robins, G. (eds.). 2013. Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications. Structural Analysis in the Social Sciences, no. 32. Cambridge: Cambridge University Press. (Cited on p. 163.)Google Scholar
Macleod, M., Collings, A. M., Graf, C. et al. 2021. The MDAR (Materials Design Analysis Reporting) Framework for Transparent Reporting in the Life Sciences. Proceedings of the National Academy of Sciences, 118(17), e2103238118. (Cited on p. 163.)CrossRefGoogle Scholar
Madden, S. 2012. From Databases to Big Data. IEEE Internet Computing, 16(3), 4–6. (Cited on p. 469.)CrossRefGoogle Scholar
Makalowski, W. 2003. Not Junk After All. Science, 300(5623), 1246–1247. (Cited on p. 122.)Google Scholar
Makin, T. R., and Orban de Xivry, J.-J. 2019. Ten Common Statistical Mistakes to Watch out for When Writing or Reviewing a Manuscript. eLife, 8(Oct.), e48175. (Cited on p. 163.)Google ScholarPubMed
Malewicz, G., Austern, M. H., Bik, A. J. et al. 2010. Pregel: A System for Large-Scale Graph Processing. Pages 135–146 of: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. SIGMOD ’10. New York, NY: Association for Computing Machinery. (Cited on p. 453.)Google Scholar
Manzoor, E., Milajerdi, S. M., and Akoglu, L. 2016. Fast Memory-efficient Anomaly Detection in Streaming Heterogeneous Graphs. Pages 1035–1044 of: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16. New York, NY: Association for Computing Machinery. (Cited on p. 469.)Google Scholar
Marai, G. E., Pinaud, B., Bühler, K., Lex, A., and Morris, J. H. 2019. Ten Simple Rules to Create Biological Network Figures for Communication. PLOS Computational Biology, 15(9), e1007244. (Cited on p. 221.)CrossRefGoogle ScholarPubMed
Mariani, M. S., Ren, Z.-M., Bascompte, J., and Tessone, C. J. 2019. Nestedness in Complex Networks: Observation, Emergence, and Implications. Physics Reports, 813(June), 190. (Cited on pp. 197, 198, 202.)CrossRefGoogle Scholar
Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. 2019. Invariant and Equivariant Graph Networks. In: International Conference on Learning Representations. New Orleans, LA: OpenReview.net. (Cited on p. 443.)Google Scholar
Martin, C., and Niemeyer, P. 2019. Influence of Measurement Errors on Networks: Estimating the Robustness of Centrality Measures. Network Science, 7(2), 180195. (Cited on pp. 377, 395.)CrossRefGoogle Scholar
Martin, T., Ball, B., and Newman, M. E. J. 2016. Structural Inference for Uncertain Networks. Physical Review E, 93(1), 012306. (Cited on p. 134.)CrossRefGoogle ScholarPubMed
Marx, V. 2013. The Big Challenges of Big Data. Nature, 498(7453), 255–260. (Cited on p. 469.)Google Scholar
Masuda, N., and Lambiotte, R. 2020. A Guide to Temporal Networks. 2nd edn. Series on Complexity Science, vol. 06. London: World Scientific. (Cited on pp. 238, 240, 241, 242, 249, 472.)Google Scholar
Masuda, N., Porter, M. A., and Lambiotte, R. 2017. Random Walks and Diffusion on Networks. Physics Reports, 716–717(Nov.), 158. (Cited on p. 428.)CrossRefGoogle Scholar
Matejka, J., and Fitzmaurice, G. 2017. Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing. Pages 1290–1294 of: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver, CO: Association for Computing Machinery. (Cited on p. 203.)Google Scholar
McGregor, A. 2014. Graph Stream Algorithms: A Survey. ACM SIGMOD Record, 43(1), 9–20. (Cited on pp. 453, 454, 469.)CrossRefGoogle Scholar
McGregor, A., Vorotnikova, S., and Vu, H. T. 2016. Better Algorithms for Counting Triangles in Data Streams. Pages 401–411 of: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. San Francisco, CA: Association for Computing Machinery. (Cited on pp. 454, 469.)Google Scholar
McInnes, L., Healy, J., and Melville, J. 2018. UMAP: Uniform Manifold Approx-imation and Projection for Dimension Reduction. arXiv:1802.03426. (Cited on p. 259.)Google Scholar
Mead, C., and Conway, L. 1980. Introduction to VLSI Systems. Reading, MA: Addison-Wesley. (Cited on p. 26.)Google Scholar
Meinshausen, N., and Bühlmann, P. 2006. High-Dimensional Graphs and Variable Selection with the Lasso. The Annals of Statistics, 34(3). (Cited on p. 371.)CrossRefGoogle Scholar
Menczer, F., Fortunato, S., and Davis, C. A. 2020. A First Course in Network Science. Cambridge: Cambridge University Press. (Cited on pp. 16, 472.)CrossRefGoogle Scholar
Meusel, R., Vigna, S., Lehmberg, O., and Bizer, C. 2014. Graph Structure in the Web—Revisited: A Trick of the Heavy Tail. Pages 427–432 of: Proceedings of the 23rd International Conference on World Wide Web. WWW ’14 Companion. New York, NY: Association for Computing Machinery. (Cited on p. 448.)Google Scholar
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. 2013. Distributed Representations of Words and Phrases and Their Compositionality. In: Advances in Neural Information Processing Systems, vol. 26. Lake Tahoe, NV: Curran Associates, Inc. (Cited on pp. 272, 431, 434, 445.)Google Scholar
Milgram, S. 1963. Behavioral Study of Obedience. The Journal of Abnormal and Social Psychology, 67, 371378. (Cited on p. 341.)CrossRefGoogle ScholarPubMed
Milgram, S. 1967. The Small-World Problem. Psychology Today, 1, 61. (Cited on pp. 15, 192, 458.)Google Scholar
Miller, J. C., and Hagberg, A. 2011. Efficient Generation of Networks with Given Expected Degrees. Pages 115–126 of: Frieze, A., Horn, P., and Prałat, P. (eds.), Algorithms and Models for the Web Graph, vol. 6732. Berlin, Heidelberg: Springer. (Cited on pp. 468, 469.)Google Scholar
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. 2002. Network Motifs: Simple Building Blocks of Complex Networks. Science, 298(5594), 824827. (Cited on p. 201.)CrossRefGoogle ScholarPubMed
Mitchell, T. M. 1997. Machine Learning. New York, NY: McGraw-Hill. (Cited on pp. 254, 472.)Google Scholar
Molloy, M., and Reed, B. 1995. A Critical Point for Random Graphs With a Given Degree Sequence. Random Structures & Algorithms, 6(2-3), 161180. (Cited on pp. 163, 333.)CrossRefGoogle Scholar
Molloy, M., and Reed, B. 1998. The Size of the Giant Component of a Random Graph with a Given Degree Sequence. Combinatorics, Probability and Computing, 7(3), 295305. (Cited on pp. 163, 333.)CrossRefGoogle Scholar
Molnar, C. 2020. Interpretable Machine Learning. Morrisville, NC: Lulu Press, Inc. (Cited on p. 275.)Google Scholar
Moore, P. B., Hendrickson, W. A., Henderson, R., and Brunger, A. T. 2022. The Protein-Folding Problem: Not Yet Solved. Science, 375(6580), 507507. (Cited on p. 17.)CrossRefGoogle ScholarPubMed
Moreno, J. L. 1934. Who Shall Survive?: A New Approach to the Problem of Human Interrelations. Washington, DC: Nervous and Mental Disease Publishing Co. (Cited on pp. 7, 16, 25, 78, 221.)CrossRefGoogle Scholar
Moreno, J. L. 1953. Who Shall Survive? Foundations of Sociometry, Group Psychotherapy and Socio-Drama. 2nd edn. Oxford: Beacon House. (Cited on p. 7.)Google Scholar
Moreno, R. 2021. Words of the Daughter: A Memoir. Morrisville, NC: Lulu Press, Inc. (Cited on p. 16.)Google Scholar
Morris, C., Ritzert, M., Fey, M. et al. 2019. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 4602–4609. (Cited on p. 443.)CrossRefGoogle Scholar
Morris, R. 1978. Counting Large Numbers of Events in Small Registers. Com-munications of the ACM, 21(10), 840842. (Cited on p. 469.)CrossRefGoogle Scholar
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and Onnela, J.-P. 2010. Community Structure in Time-Dependent, Multiscale, and Multiplex Networks. Science, 328(5980), 876878. (Cited on pp. 181, 201.)CrossRefGoogle ScholarPubMed
Munafò, M. R., Nosek, B. A., Bishop, D. V. M. et al. 2017. A Manifesto for Reproducible Science. Nature Human Behaviour, 1(1), 0021. (Cited on p. 163.)CrossRefGoogle ScholarPubMed
Murphy, K. P. 2022. Probabilistic Machine Learning: An Introduction. Cambridge, MA: MIT Press. (Cited on p. 473.)Google Scholar
Murray, D., Yoon, J., Kojaku, S. et al. 2021 (June). Unsupervised Embedding of Trajectories Captures the Latent Structure of Mobility. arXiv:2012.02785. (Cited on p. 435.)CrossRefGoogle Scholar
Nadakuditi, R. R., and Newman, M. E. J. 2012. Graph Spectra and the Detectabil-ity of Community Structure in Networks. Physical Review Letters, 108(18), 188701. (Cited on p. 357.)CrossRefGoogle Scholar
Narayanan, A., Shi, E., and Rubinstein, B. I. P. 2011. Link Prediction by De-Anonymization: How We Won the Kaggle Social Network Challenge. Pages 1825–1834 of: The 2011 International Joint Conference on Neural Networks. San Jose, CA: IEEE. (Cited on p. 33.)Google Scholar
National Academies of Sciences, Engineering, and Medicine. 2019. Reproducibility and Replicability in Science. Washington, DC: National Academies Press. (Cited on p. 474.)Google Scholar
Nemeth, R. J., and Smith, D. A. 1985. International Trade and World-System Structure: A Multiple Network Analysis. Review (Fernand Braudel Center), 8(4), 517560. (Cited on p. 194.)Google Scholar
Newman, E. A., Araque, A., Dubinsky, J. M., Swanson, L. W., King, L. S., and Himmel, E. (eds.). 2017. The Beautiful Brain: The Drawings of Santiago Ramón y Cajal. New York, NY: Abrams. (Cited on p. 16.)Google Scholar
Newman, M. E. J. 2002. Assortative Mixing in Networks. Physical Review Letters, 89(20), 208701. (Cited on pp. 111, 201.)CrossRefGoogle Scholar
Newman, M. E. J. 2003. Mixing Patterns in Networks. Physical Review E, 67(2), 026126. (Cited on pp. 111, 116, 163, 173, 201.)CrossRefGoogle Scholar
Newman, M. E. J. 2006. Finding Community Structure in Networks Using the Eigenvectors of Matrices. Physical Review E, 74(3), 036104. (Cited on pp. 421, 427.)CrossRefGoogle ScholarPubMed
Newman, M. E. J. 2006. Modularity and Community Structure in Networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582. (Cited on pp. 201, 417, 418, 427.)CrossRefGoogle Scholar
Newman, M. E. J. 2012. Communities, Modules and Large-Scale Structure in Networks. Nature Physics, 8(1), 2531. (Cited on p. 201.)CrossRefGoogle Scholar
Newman, M. E. J. 2013. Spectral Methods for Community Detection and Graph Partitioning. Physical Review E, 88(4), 042822. (Cited on p. 427.)CrossRefGoogle ScholarPubMed
Newman, M. E. J. 2018. Network Structure from Rich but Noisy Data. Nature Physics, 14(6), 542–545. (Cited on pp. 134, 365, 374.)CrossRefGoogle Scholar
Newman, M. E. J., and Girvan, M. 2004. Finding and Evaluating Community Structure in Networks. Physical Review E, 69(2), 026113. (Cited on p. 201.)CrossRefGoogle ScholarPubMed
Newman, M. E. J., and Park, J. 2003. Why Social Networks Are Different from Other Types of Networks. Physical Review E, 68(3), 036122. (Cited on pp. 380, 395.)CrossRefGoogle ScholarPubMed
Newman, M. E. J., Strogatz, S. H., and Watts, D. J. 2001. Random Graphs with Arbitrary Degree Distributions and Their Applications. Physical Review E, 64(2), 026118. (Cited on p. 340.)CrossRefGoogle ScholarPubMed
Newman, M. E. J., Watts, D. J., and Strogatz, S. H. 2002. Random Graph Models of Social Networks. Proceedings of the National Academy of Sciences, 99(suppl. 1), 2566–2572. (Cited on p. 380.)CrossRefGoogle Scholar
Newman, M. 2018. Networks. Oxford: Oxford University Press. (Cited on pp. 16, 172, 472.)CrossRefGoogle Scholar
Newman, M. 2005. Power Laws, Pareto Distributions and Zipf's Law. Contemporary Physics, 46(5), 323–351. (Cited on p. 163.)CrossRefGoogle Scholar
Ng, A., Jordan, M., and Weiss, Y. 2001. On Spectral Clustering: Analysis and an Algorithm. Advances in Neural Information Processing Systems, 14. (Cited on p. 428.)Google Scholar
Nica, B. 2018. A Brief Introduction to Spectral Graph Theory. EMS Textbooks in Mathematics. Zürich, Switzerland: European Mathematical Society. (Cited on p. 427.)Google Scholar
Nickel, M., Tresp, V., and Kriegel, H.-P. 2011. A Three-Way Model for Collective Learning on Multi-Relational Data. Pages 809–816 of: Proceedings of the 28th International Conference on International Conference on Machine Learning. ICML’11. Madison, WI: Omnipress. (Cited on p. 437.)Google Scholar
Nickel, M., and Kiela, D. 2017. Poincaré Embeddings for Learning Hierarchical Representations. In: Advances in Neural Information Processing Systems, vol. 30. Long Beach, CA: Curran Associates, Inc. (Cited on p. 438.)Google Scholar
Nilsson, N. J. 2009. The Quest for Artificial Intelligence. Cambridge: Cambridge University Press. (Cited on p. 276.)CrossRefGoogle Scholar
Nolte, D. D. 2019. Introduction to Modern Dynamics: Chaos, Networks, Space and Time. 2nd edn. Oxford; New York, NY: Oxford University Press. (Cited on p. 428.)CrossRefGoogle Scholar
Nowicki, K., and Snijders, T. A. B. 2001. Estimation and Prediction for Stochastic Blockstructures. Journal of the American Statistical Association, 96(455), 10771087. (Cited on p. 374.)CrossRefGoogle Scholar
Obermeyer, Z., Powers, B., Vogeli, C., and Mullainathan, S. 2019. Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science, 366(6464), 447453. (Cited on pp. 30, 31.)CrossRefGoogle Scholar
O’Neil, C. 2017. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York, NY: Crown. (Cited on pp. 37, 277.)Google Scholar
Ozella, L., Paolotti, D., Lichand, G. et al. 2021. Using Wearable Proximity Sensors to Characterize Social Contact Patterns in a Village of Rural Malawi. EPJ Data Science, 10(1), 46. (Cited on pp. 25, 37, 246.)CrossRefGoogle Scholar
Palla, G., Derényi, I., Farkas, I., and Vicsek, T. 2005. Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society. Nature, 435(7043), 814818. (Cited on pp. 181, 201.)CrossRefGoogle ScholarPubMed
Palmer, C. R., Gibbons, P. B., and Faloutsos, C. 2002. ANF: A Fast and Scalable Tool for Data Mining in Massive Graphs. Pages 81–90 of: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’02. New York, NY: Association for Computing Machinery. (Cited on pp. 456, 457, 469.)Google Scholar
Panko, R. R. 1998. What We Know About Spreadsheet Errors. Journal of Organizational and End User Computing, 10(2), 1521. (Cited on p. 36.)CrossRefGoogle Scholar
Pantel, P. 2005. Inducing Ontological Co-Occurrence Vectors. Pages 125–132 of: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. ACL ’05. Ann Arbor, MI: Association for Computational Linguistics. (Cited on pp. 432, 445.)Google Scholar
Park, J., Wood, I. B., Jing, E. et al. 2019. Global Labor Flow Network Reveals the Hierarchical Organization and Dynamics of Geo-Industrial Clusters. Nature Communications, 10(1), 3449. (Cited on p. 21.)CrossRefGoogle ScholarPubMed
Park, J., and Newman, M. E. J. 2004. Solution of the Two-Star Model of a Network. Physical Review E, 70(6), 066146. (Cited on p. 369.)CrossRefGoogle ScholarPubMed
Park, J., and Newman, M. E. J. 2005. A Network-Based Ranking System for US College Football. Journal of Statistical Mechanics: Theory and Experiment, 2005(10), P10014–P10014. (Cited on p. 216.)CrossRefGoogle Scholar
Pascual, M., and Dunne, J. A. 2005. Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford: Oxford University Press. (Cited on p. 25.)CrossRefGoogle Scholar
Pastor-Satorras, R., and Vespignani, A. 2001. Epidemic Spreading in Scale-Free Networks. Physical Review Letters, 86(14), 32003203. (Cited on p. 333.)CrossRefGoogle ScholarPubMed
Patterson, B. D., and Atmar, W. 1986. Nested Subsets and the Structure of Insular Mammalian Faunas and Archipelagos. Biological Journal of the Linnean Society, 28(1–2), 6582. (Cited on p. 202.)CrossRefGoogle Scholar
Peel, L., Larremore, D. B., and Clauset, A. 2017. The Ground Truth about Meta-data and Community Detection in Networks. Science Advances, 3(5), e1602548. (Cited on p. 107.)CrossRefGoogle Scholar
Peixoto, T. P. 2013. Parsimonious Module Inference in Large Networks. Physical Review Letters, 110(14), 148701. (Cited on p. 354.)CrossRefGoogle ScholarPubMed
Peixoto, T. P. 2014. Hierarchical Block Structures and High-Resolution Model Selection in Large Networks. Physical Review X, 4(1), 011047. (Cited on p. 358.)CrossRefGoogle Scholar
Pelleg, D., and Moore, A. W. 2000. X-Means: Extending K-means with Efficient Estimation of the Number of Clusters. Pages 727–734 of: Proceedings of the Seventeenth International Conference on Machine Learning. ICML ’00. San Francisco, CA: Morgan Kaufmann. (Cited on p. 426.)Google Scholar
Pereira, D. A., and Williams, J. A. 2007. Origin and Evolution of High Throughput Screening. British Journal of Pharmacology, 152(1), 5361. (Cited on p. 82.)CrossRefGoogle ScholarPubMed
Perozzi, B., Al-Rfou, R., and Skiena, S. 2014. DeepWalk: Online Learning of Social Representations. Pages 701–710 of: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY: Association for Computing Machinery. (Cited on pp. 435, 445.)Google Scholar
Perry, B. L., Pescosolido, B. A., and Borgatti, S. P. 2018. Egocentric Network Analysis: Foundations, Methods, and Models. Cambridge: Cambridge University Press. (Cited on p. 201.)CrossRefGoogle Scholar
Pfeiffer, J., and Neville, J. 2021. Methods to Determine Node Centrality and Clustering in Graphs with Uncertain Structure. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 590–593. (Cited on pp. 387, 395.)CrossRefGoogle Scholar
Phan, T. Q., and Airoldi, E. M. 2015. A Natural Experiment of Social Network Formation and Dynamics. Proceedings of the National Academy of Sciences, 112(21), 6595–6600. (Cited on p. 474.)CrossRefGoogle Scholar
Pilgrim, C., and Hills, T. T. 2021. Bias in Zipf's Law Estimators. Scientific Reports, 11(1), 17309. (Cited on p. 163.)CrossRefGoogle ScholarPubMed
Pimentel, J. F., Murta, L., Braganholo, V., and Freire, J. 2019. A Large-Scale Study About Quality and Reproducibility of Jupyter Notebooks. Pages 507–517 of: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR). Montreal, Canada: IEEE. (Cited on p. 302.)Google Scholar
Porter, M., and Gleeson, J. 2016. Dynamical Systems on Networks: A Tutorial. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, no. 4. Cham, Switzerland: Springer. (Cited on pp. 235, 428.)Google Scholar
Porter, M. A., Onnela, J.-P., Mucha, P. J., et al. 2009. Communities in Networks. Notices of the AMS, 56(9), 10821097. (Cited on p. 201.)Google Scholar
Pothen, A., Simon, H. D., and Liou, K.-P. 1990. Partitioning Sparse Matrices with Eigenvectors of Graphs. SIAM Journal on Matrix Analysis and Applications, 11(3), 430452. (Cited on pp. 412, 427.)CrossRefGoogle Scholar
Price, D. D. S. 1976. A General Theory of Bibliometric and Other Cumulative Advantage Processes. Journal of the American Society for Information Science, 27(5), 292306. (Cited on p. 349.)CrossRefGoogle Scholar
Price, D. J. d. S. 1965. Networks of Scientific Papers: The Pattern of Bibliographic References Indicates the Nature of the Scientific Research Front. Science, 149(3683), 510515. (Cited on p. 349.)CrossRefGoogle Scholar
Proulx, S. R., Promislow, D. E. L., and Phillips, P. C. 2005. Network Thinking in Ecology and Evolution. Trends in Ecology & Evolution, 20(6), 345353. (Cited on p. 25.)CrossRefGoogle ScholarPubMed
Pržulj, N. 2007. Biological Network Comparison Using Graphlet Degree Distribution. Bioinformatics, 23(2), e177–e183. (Cited on p. 228.)CrossRefGoogle Scholar
Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., and Tang, J. 2018. Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and Node2vec. Pages 459–467 of: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. WSDM ’18. New York, NY: Association for Computing Machinery. (Cited on pp. 440, 441, 445.)CrossRefGoogle Scholar
Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. 2018. Improving Language Understanding by Generative Pre-Training. (Cited on p. 261.)Google Scholar
Raghavan, U. N., Albert, R., and Kumara, S. 2007. Near Linear Time Algorithm to Detect Community Structures in Large-Scale Networks. Physical Review E, 76(3), 036106. (Cited on pp. 458, 459, 469.)CrossRefGoogle ScholarPubMed
Ramani, A. S., Eikmeier, N., and Gleich, D. F. 2019. Coin-Flipping, Ball-Dropping, and Grass-Hopping for Generating Random Graphs from Matrices of Edge Probabilities. SIAM Review, 61(3), 549595. (Cited on p. 469.)CrossRefGoogle Scholar
Ramón y Cajal, S. 1899. Comparative Study of the Sensory Areas of the Human Cortex. Worcester, MA: Clark University. (Cited on p. 5.)Google Scholar
Ramón y Cajal, S. 2004. Advice for a Young Investigator. Cambridge, MA: MIT Press. (Cited on p. 16.)Google Scholar
Ramón y Cajal, S., and Cowan, W. M. 1989. Recollections of My Life. Cambridge, MA: MIT Press. (Cited on p. 16.)CrossRefGoogle Scholar
Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C., and Samatova, N. F. 2015. Anomaly Detection in Dynamic Networks: A Survey. WIREs Computational Statistics, 7(3), 223247. (Cited on p. 469.)CrossRefGoogle Scholar
Reed, B. J., and Segal, D. R. 2006. Social Network Analysis and Counterinsurgency Operations: The Capture of Saddam Hussein. Sociological Focus, 39(4), 251264. (Cited on p. 33.)CrossRefGoogle Scholar
Reichardt, J., and Bornholdt, S. 2006. Statistical Mechanics of Community Detection. Physical Review E, 74(1), 016110. (Cited on p. 181.)CrossRefGoogle ScholarPubMed
Reichardt, J., and Bornholdt, S. 2006. When Are Networks Truly Modular? Physica D: Nonlinear Phenomena, 224(1-2), 2026. (Cited on p. 179.)CrossRefGoogle Scholar
Reinhart, C. M., and Rogoff, K. S. 2010. Growth in a Time of Debt. American Economic Review, 100(2), 573578. (Cited on p. 36.)CrossRefGoogle Scholar
Resnik, D. B. 1998. The Ethics of Science: An Introduction. London: Routledge. (Cited on p. 37.)Google Scholar
Ribeiro, P., Paredes, P., Silva, M. E. P., Aparicio, D., and Silva, F. 2022. A Survey on Subgraph Counting: Concepts, Algorithms, and Applications to Network Motifs and Graphlets. ACM Computing Surveys, 54(2), 136. (Cited on p. 201.)Google Scholar
Rider, P. R. 1955. Truncated Binomial and Negative Binomial Distributions. Journal of the American Statistical Association, 50(271), 877883. (Cited on p. 393.)CrossRefGoogle Scholar
Robins, G., and Alexander, M. 2004. Small Worlds Among Interlocking Directors: Network Structure and Distance in Bipartite Graphs. Computational & Mathematical Organization Theory, 10(1), 6994. (Cited on p. 194.)CrossRefGoogle Scholar
Robins, G., Pattison, P., Kalish, Y., and Lusher, D. 2007. An Introduction to Exponential Random Graph (P*) Models for Social Networks. Social Networks, 29(2), 173191. (Cited on pp. 163, 374.)CrossRefGoogle Scholar
Robinson, I., Webber, J., and Eifrem, E. 2015. Graph Databases: New Opportunities for Connected Data. Sebastopol, CA: O’Reilly Media. (Cited on p. 469.)Google Scholar
Rombach, M. P., Porter, M. A., Fowler, J. H., and Mucha, P. J. 2014. Core-Periphery Structure in Networks. SIAM Journal on Applied Mathematics, 74(1), 167190. (Cited on pp. 195, 202.)CrossRefGoogle Scholar
Rota, G.-C. 1964. The Number of Partitions of a Set. The American Mathematical Monthly, 71(5), 498. (Cited on p. 178.)CrossRefGoogle Scholar
Roughan, M., and Tuke, J. 2015. The Hitchhikers Guide to Sharing Graph Data. Pages 435–442 of: 2015 3rd International Conference on Future Internet of Things and Cloud. Rome, Italy: IEEE. (Cited on p. 98.)Google Scholar
Roughan, M., Tuke, S. J., and Maennel, O. 2008. Bigfoot, Sasquatch, the Yeti and Other Missing Links: What We Don’t Know about the as Graph. Pages 325–330 of: Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement. Vouliagmeni, Greece: Association for Computing Machinery. (Cited on pp. 392, 395.)Google Scholar
Rousseeuw, P. J. 1987. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics, 20(Nov.), 5365. (Cited on p. 426.)CrossRefGoogle Scholar
Rozenblatt-Rosen, O., Regev, A., Oberdoerffer, P. et al. 2020. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell, 181(2), 236249. (Cited on p. 473.)CrossRefGoogle ScholarPubMed
Rubin, D. B. 1976. Inference and Missing Data. Biometrika, 63(3), 581–592. (Cited on p. 134.)CrossRefGoogle Scholar
Rubin, D. B. 1996. Multiple Imputation after 18+ Years. Journal of the American Statistical Association, 91(434), 473–489. (Cited on pp. 116, 134.)CrossRefGoogle Scholar
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning Representations by Back-Propagating Errors. Nature, 323(6088), 533536. (Cited on p. 258.)CrossRefGoogle Scholar
Russell, M. A. 2013. Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More. Sebastopol, CA: O’Reilly Media. (Cited on p. 71.)Google Scholar
Russell, S. J., and Norvig, P. 2021. Artificial Intelligence: A Modern Approach. New York, NY: Pearson. (Cited on p. 473.)Google Scholar
Russell, S. J., Russell, S., and Norvig, P. 2020. Artificial Intelligence: A Modern Approach. New York, NY: Pearson. (Cited on p. 277.)Google Scholar
Salganik, M. J. 2018. Bit by Bit: Social Research in the Digital Age. Princeton, NJ: Princeton University Press. (Cited on pp. 25, 65, 68, 71, 82.)Google Scholar
Sambourg, L., and Thierry-Mieg, N. 2010. New Insights into Protein-Protein Interaction Data Lead to Increased Estimates of the S. Cerevisiae Interactome Size. BMC Bioinformatics, 11(1), 605. (Cited on p. 395.)CrossRefGoogle Scholar
Sarigol, E., Garcia, D., and Schweitzer, F. 2014. Online Privacy as a Collective Phenomenon. Pages 95–106 of: Proceedings of the Second ACM Conference on Online Social Networks. COSN ’14. New York, NY: Association for Computing Machinery. (Cited on p. 37.)Google Scholar
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. 2009. The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1), 6180. (Cited on p. 445.)CrossRefGoogle ScholarPubMed
Schaub, M. T., Delvenne, J.-C., Rosvall, M., and Lambiotte, R. 2017. The Many Facets of Community Detection in Complex Networks. Applied Network Science, 2(1), 113. (Cited on p. 201.)CrossRefGoogle ScholarPubMed
Schimel, J. 2012. Writing Science: How to Write Papers That Get Cited and Proposals That Get Funded. New York, NY: Oxford University Press. (Cited on p. 473.)Google Scholar
Schreier, A. A., Wilson, K., and Resnik, D. 2006. Academic Research Record-Keeping: Best Practices for Individuals, Group Leaders, and Institutions. Academic Medicine, 81(1), 4247. (Cited on pp. 287, 292.)CrossRefGoogle ScholarPubMed
Schwabish, J. 2021. Better Data Visualizations: A Guide for Scholars, Researchers, and Wonks. New York, NY: Columbia University Press. (Cited on p. 473.)CrossRefGoogle Scholar
Scopatz, A., and Huff, K. D. 2015. Effective Computation in Physics: Field Guide to Research with Python. Sebastopol, CA: O’Reilly Media. (Cited on pp. 102, 312, 313.)Google Scholar
Seal, H. L. 1952. The Maximum Likelihood Fitting of the Discrete Pareto Law. Journal of the Institute of Actuaries, 78(1), 115121. (Cited on p. 163.)CrossRefGoogle Scholar
Seebauer, E. G., and Barry, R. L. 2000. Fundamentals of Ethics for Scientists and Engineers. Oxford: Oxford University Press. (Cited on p. 37.)Google Scholar
Serafino, M., Cimini, G., Maritan, A. et al. 2021. True Scale-Free Networks Hidden by Finite Size Effects. Proceedings of the National Academy of Sciences, 118(2), e2013825118. (Cited on p. 346.)Google Scholar
Serrano, M. Á., Boguñá, M., and Vespignani, A. 2009. Extracting the Multiscale Backbone of Complex Weighted Networks. Proceedings of the National Academy of Sciences, 106(16), 6483–6488. (Cited on pp. 126, 134, 375.)Google ScholarPubMed
Sheppard, C. 2017. Tree-Based Machine Learning Algorithms: Decision Trees, Random Forests, and Boosting. Seattle, WA: CreateSpace. (Cited on p. 275.)Google Scholar
Sherman, R. M., Forman, J., Antonescu, V. et al. 2019. Assembly of a Pan-Genome from Deep Sequencing of 910 Humans of African Descent. Nature Genetics, 51(1), 3035. (Cited on p. 29.)CrossRefGoogle ScholarPubMed
Shervashidze, N., Vishwanathan, S. V. N., Petri, T., Mehlhorn, K., and Borgwardt, K. 2009. Efficient Graphlet Kernels for Large Graph Comparison. Pages 488–495 of: Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 5. Clearwater Beach, FL: PMLR. (Cited on p. 228.)Google Scholar
Shi, J., and Malik, J. 2000. Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905. (Cited on pp. 412, 413, 428.)CrossRefGoogle Scholar
Shneiderman, B. 2020. Bridging the Gap Between Ethics and Practice: Guidelines for Reliable, Safe, and Trustworthy Human-centered AI Systems. ACM Transactions on Interactive Intelligent Systems, 10(4), 26:126:31. (Cited on p. 31.)CrossRefGoogle Scholar
Shumway, R. H. 2017. Time Series Analysis and Its Applications: With R Examples. New York, NY: Springer Science+Business Media. (Cited on p. 249.)CrossRefGoogle Scholar
Simkin, M., and Roychowdhury, V. 2011. Re-Inventing Willis. Physics Reports, May, S0370157310003339. (Cited on p. 349.)CrossRefGoogle Scholar
Simon, H. A. 1955. On a Class of Skew Distribution Functions. Biometrika, 42(3–4), 425–440. (Cited on pp. 344, 349.)CrossRefGoogle Scholar
Sinclair, A., and Jerrum, M. 1989. Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains. Information and Computation, 82(1), 93133. (Cited on p. 427.)CrossRefGoogle Scholar
Sirugo, G., Williams, S. M., and Tishkoff, S. A. 2019. The Missing Diversity in Human Genetic Studies. Cell, 177(1), 2631. (Cited on p. 28.)CrossRefGoogle ScholarPubMed
Smith, R. C. 2013. Uncertainty Quantification: Theory, Implementation, and Applications. Computational Science and Engineering Series. Philadelphia, PA: Society for Industrial and Applied Mathematics. (Cited on p. 395.)Google Scholar
Snijders, T. A. B., Pattison, P. E., Robins, G. L., and Handcock, M. S. 2006. New Specifications for Exponential Random Graph Models. Sociological Methodology, 36(1), 99153. (Cited on p. 369.)CrossRefGoogle Scholar
Snijders, T. A., and Nowicki, K. 1997. Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure. Journal of Classification, 14(1), 75100. (Cited on pp. 353, 374.)CrossRefGoogle Scholar
Sood, V., and Redner, S. 2005. Voter Model on Heterogeneous Graphs. Physical Review Letters, 94(17), 178701. (Cited on p. 235.)CrossRefGoogle ScholarPubMed
Soranzo, N., Bianconi, G., and Altafini, C. 2007. Comparing Association Network Algorithms for Reverse Engineering of Large-Scale Gene Regulatory Networks: Synthetic versus Real Data. Bioinformatics, 23(13), 16401647. (Cited on p. 134.)CrossRefGoogle ScholarPubMed
Soundarajan, S., Eliassi-Rad, T., and Gallagher, B. 2014. A Guide to Selecting a Network Similarity Method. Pages 1037–1045 of: Proceedings of the 2014 SIAM International Conference on Data Mining (SDM). Philadelphia, PA: Society for Industrial and Applied Mathematics. (Cited on p. 232.)Google Scholar
Spielman, D. A. 2007. Spectral Graph Theory and Its Applications. Pages 29–38 of: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07). Providence, Rhode Island: IEEE. (Cited on p. 427.)Google Scholar
Sporns, O. 2016. Networks of the Brain. Cambridge, MA: MIT Press. (Cited on pp. 25, 82.)Google Scholar
Staiano, J., Lepri, B., Aharony, N., Pianesi, F., Sebe, N., and Pentland, A. 2012. Friends Don’t Lie: Inferring Personality Traits from Social Network Structure. Pages 321–330 of: Proceedings of the 2012 ACM Conference on Ubiquitous Computing. UbiComp ’12. New York, NY: Association for Computing Machinery. (Cited on p. 37.)Google Scholar
Stewart, J. 2017. Python for Scientists. 2nd edn. Cambridge; New York, NY: Cambridge University Press. (Cited on p. 61.)CrossRefGoogle Scholar
Stopczynski, A., Sekara, V., Sapiezynski, P. et al. 2014. Measuring Large-Scale Social Networks with High Resolution. PLOS ONE, 9(4), e95978. (Cited on p. 473.)CrossRefGoogle ScholarPubMed
Strang, G. 2019. Linear Algebra and Learning from Data. Wellesley, MA: Wellesley-Cambridge Press. (Cited on pp. 62, 277, 427.)Google Scholar
Strang, G. 2023. Introduction to Linear Algebra. 6th edn. Wellesley, MA: Wellesley-Cambridge. (Cited on pp. 61, 427.)Google Scholar
Stumpf, M. P. H., Thorne, T., de Silva, E. et al. 2008. Estimating the Size of the Human Interactome. Proceedings of the National Academy of Sciences, 105(19), 6959–6964. (Cited on pp. 390, 395.)CrossRefGoogle Scholar
Sugimoto, C. R., Ahn, Y.-Y., Smith, E., Macaluso, B., and Larivière, V. 2019. Factors Affecting Sex-Related Reporting in Medical Research: A Cross-Disciplinary Bibliometric Analysis. The Lancet, 393(10171), 550559. (Cited on p. 28.)CrossRefGoogle ScholarPubMed
Sullivan, D. 2020. A Reintroduction to Our Knowledge Graph and Knowledge Panels. (Cited on p. 449.)Google Scholar
Sullivan, T. J. 2015. Introduction to Uncertainty Quantification. Texts in Applied Mathematics, no. 63. Cham, Switzerland: Springer. (Cited on p. 395.)Google Scholar
Sun, J., Bagrow, J. P., Bollt, E. M., and Skufca, J. D. 2009. Dynamic Computation of Network Statistics via Updating Schema. Physical Review E, 79(3), 036116. (Cited on pp. 459, 465, 466, 469.)CrossRefGoogle Scholar
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. 2015. LINE: Large-scale Information Network Embedding. Pages 1067–1077 of: Proceedings of the 24th International Conference on World Wide Web. WWW ’15. Geneva, Switzerland: International World Wide Web Conferences Steering Committee. (Cited on pp. 437, 440.)Google Scholar
Taylor, D., Myers, S. A., Clauset, A., Porter, M. A., and Mucha, P. J. 2017. Eigenvector-Based Centrality Measures for Temporal Networks. Multiscale Modeling & Simulation, 15(1), 537574. (Cited on p. 241.)CrossRefGoogle ScholarPubMed
Taylor, J. R. 1997. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. 2nd edn. Sausalito, CA: University Science Books. (Cited on pp. 134, 392.)Google Scholar
Gene Ontology Consortium, The, Carbon, S., Douglass, E. et al. 2021. The Gene Ontology Resource: Enriching a GOld Mine. Nucleic Acids Research, 49(D1), D325–D334. (Cited on p. 116.)CrossRefGoogle Scholar
Thiebes, S., Lins, S., and Sunyaev, A. 2021. Trustworthy Artificial Intelligence. Electronic Markets, 31(2), 447464. (Cited on p. 31.)CrossRefGoogle Scholar
Thorndike, R. L. 1953. Who Belongs in the Family? Psychometrika, 18(4), 267–276. (Cited on p. 426.)CrossRefGoogle Scholar
Tibshirani, R., Walther, G., and Hastie, T. 2001. Estimating the Number of Clusters in a Data Set via the Gap Statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411423. (Cited on p. 426.)CrossRefGoogle Scholar
Ting, D. 2016. Towards Optimal Cardinality Estimation of Unions and Intersections with Sketches. Pages 1195–1204 of: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ‘16. New York, NY: Association for Computing Machinery. (Cited on p. 456.)Google Scholar
Traag, V. A., Waltman, L., and van Eck, N. J. 2019. From Louvain to Leiden: Guaranteeing Well-Connected Communities. Scientific Reports, 9(1), 5233. (Cited on p. 179.)CrossRefGoogle ScholarPubMed
Tracy, S. J. 2010. Qualitative Quality: Eight “Big-Tent” Criteria for Excellent Qualitative Research. Qualitative Inquiry, 16(10), 837851. (Cited on p. 226.)CrossRefGoogle Scholar
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and Bouchard, G. 2016. Complex Embeddings for Simple Link Prediction. Pages 2071–2080 of: Proceedings of the 33rd International Conference on International Conference on Machine Learning. ICML’16, vol. 48. New York, NY: JMLR.org. (Cited on p. 437.)Google Scholar
Tufte, E. R. 2001. The Visual Display of Quantitative Information. 2nd edn. Cheshire, CT: Graphics Press. (Cited on p. 473.)Google Scholar
Tukey, J. W. 1977. Exploratory Data Analysis. Addison-Wesley Series in Behavioral Science. Reading, MA: Addison-Wesley. (Cited on pp. 71, 162.)Google Scholar
Tutte, W. T. 1963. How to Draw a Graph. Proceedings of the London Mathematical Society, 3(1), 743–767. (Cited on p. 221.)CrossRefGoogle Scholar
Ugander, J., Backstrom, L., Marlow, C., and Kleinberg, J. 2012. Structural Diversity in Social Contagion. Proceedings of the National Academy of Sciences, 109(16), 5962–5966. (Cited on p. 201.)CrossRefGoogle Scholar
Ulrich, W., Almeida-Neto, M., and Gotelli, N. J. 2009. A Consumer's Guide to Nestedness Analysis. Oikos, 118(1), 317. (Cited on p. 202.)CrossRefGoogle Scholar
van Buuren, S. 2018. Flexible Imputation of Missing Data. 2nd edn. Chapman and Hall/CRC Interdisciplinary Statistics Series. Boca Raton, FL: CRC Press, Taylor and Francis Group. (Cited on pp. 116, 134.)Google Scholar
van den Heuvel, M. P., and Sporns, O. 2011. Rich-Club Organization of the Human Connectome. Journal of Neuroscience, 31(44), 15775–15786. (Cited on p. 202.)CrossRefGoogle ScholarPubMed
van der Maaten, L., and Hinton, G. 2008. Visualizing Data Using T-SNE. Journal of Machine Learning Research, 9(86), 25792605. (Cited on p. 259.)Google Scholar
van Mieghem, P. 2010. Graph Spectra for Complex Networks. Cambridge: Cambridge University Press. (Cited on pp. 406, 427.)CrossRefGoogle Scholar
Vanderplas, J. T. 2016. Python Data Science Handbook: Essential Tools for Working with Data. Sebastopol, CA: O’Reilly Media. (Cited on p. 102.)Google Scholar
Vaswani, A., Shazeer, N., Parmar, N. et al. 2017. Attention Is All You Need. In: Advances in Neural Information Processing Systems, vol. 30. Long Beach, CA: Curran Associates, Inc. (Cited on p. 273.)Google Scholar
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. 2018. Graph Attention Networks. In: International Conference on Learning Representations. Vancouver, BC: OpenReview.net. (Cited on pp. 273, 442.)Google Scholar
Vitter, J. S. 1985. Random Sampling with a Reservoir. ACM Transactions on Mathematical Software, 11(1), 3757. (Cited on p. 453.)CrossRefGoogle Scholar
Voitalov, I., van der Hoorn, P., van der Hofstad, R., and Krioukov, D. 2019. Scale-Free Networks Well Done. Physical Review Research, 1(3), 033034. (Cited on p. 346.)CrossRefGoogle Scholar
von Luxburg, U. 2007. A Tutorial on Spectral Clustering. Statistics and Com-puting, 17(4), 395–416. (Cited on pp. 205, 232, 423, 425, 428.)CrossRefGoogle Scholar
Vreeman, R. C., and Carroll, A. E. 2008. Festive Medical Myths. BMJ, 337, a2769. (Cited on p. 86.)CrossRefGoogle Scholar
Wagner, C., Strohmaier, M., Olteanu, A., Kıcıman, E., Contractor, N., and Eliassi-Rad, T. 2021. Measuring Algorithmically Infused Societies. Nature, 595(7866), 197204. (Cited on p. 473.)CrossRefGoogle ScholarPubMed
Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (eds.). 2017. Probability & Statistics for Engineers & Scientists. 9th edn. Boston, MA: Pearson. (Cited on p. 62.)Google Scholar
Wang, C. C., Prather, K. A., Sznitman, J. et al. 2021. Airborne Transmission of Respiratory Viruses. Science, 373(6558), eabd9149. (Cited on p. 86.)CrossRefGoogle Scholar
Wang, Y. X. R., and Bickel, P. J. 2017. Likelihood-Based Model Selection for Stochastic Block Models. The Annals of Statistics, 45(2), 500528. (Cited on p. 354.)CrossRefGoogle Scholar
Wasserman, L. A. 2004. All of Statistics: A Concise Course in Statistical Inference. New York, NY: Springer Science & Business Media. (Cited on pp. 62, 375, 472.)CrossRefGoogle Scholar
Wasserman, S., and Faust, K. 1994. Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences. Cambridge: Cambridge University Press. (Cited on pp. 25, 163, 201, 380, 472.)Google Scholar
Watts, D. J., and Strogatz, S. H. 1998. Collective Dynamics of ‘Small-World’ Networks. Nature, 393(6684), 440–442. (Cited on pp. 15, 201, 343, 346, 349.)Google Scholar
Weisfeiler, B., and Leman, A. 1968. The Reduction of a Graph to Canonical Form and the Algebra Which Appears Therein. Nauchno-Technicheskaya Informatsia, Seriya, 2(9), 1216. (Cited on p. 443.)Google Scholar
Wernicke, S. 2006. Efficient Detection of Network Motifs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(4), 347359. (Cited on p. 175.)CrossRefGoogle ScholarPubMed
White, H. C., Boorman, S. A., and Breiger, R. L. 1976. Social Structure from Multiple Networks. I. Blockmodels of Roles and Positions. American Journal of Sociology, 81(4), 730780. (Cited on p. 374.)CrossRefGoogle Scholar
Wickham, H. 2014. Tidy Data. Journal of Statistical Software, 59(Sept.), 1–23. (Cited on pp. 109, 116, 217.)CrossRefGoogle Scholar
Wickham, H., and Grolemund, G. 2016. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. Sebastopol, CA: O’Reilly Media. (Cited on pp. 61, 102.)Google Scholar
Wilf, H. S. 2006. Generatingfunctionology. Wellesley, MA: A K Peters, Ltd. (Cited on p. 349.)Google Scholar
Wilson, G., Aruliah, D. A., Brown, C. T. et al. 2014. Best Practices for Scientific Computing. PLOS Biology, 12(1), e1001745. (Cited on p. 300.)CrossRefGoogle ScholarPubMed
Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., and Teal, T. K. 2017. Good Enough Practices in Scientific Computing. PLOS Computational Biology, 13(6), e1005510. (Cited on p. 300.)CrossRefGoogle ScholarPubMed
Wong, D. M. 2013. The Wall Street Journal Guide to Information Graphics: The Do's And Don’ts Of Presenting Data Facts And Figures. Washington, DC: National Geographic Books. (Cited on p. 473.)Google Scholar
Xin, R. S., Gonzalez, J. E., Franklin, M. J., and Stoica, I. 2013. GraphX: A Resilient Distributed Graph System on Spark. Pages 1–6 of: First International Workshop on Graph Data Management Experiences and Systems. GRADES ’13. New York, NY: Association for Computing Machinery. (Cited on p. 453.)Google Scholar
Xu, K., Hu, W., Leskovec, J., and Jegelka, S. 2019. How Powerful Are Graph Neural Networks? In: International Conference on Learning Representations. New Orleans, LA: OpenReview.net. (Cited on p. 443.)Google Scholar
Xu, M. 2021. Understanding Graph Embedding Methods and Their Applications. SIAM Review, 63(4), 825–853. (Cited on p. 445.)CrossRefGoogle Scholar
Xu, R., and Wunsch, D. 2005. Survey of Clustering Algorithms. IEEE Transactions on Neural Networks, 16(3), 645678. (Cited on p. 232.)CrossRefGoogle ScholarPubMed
Yanai, I., and Lercher, M. 2020. A Hypothesis Is a Liability. Genome Biology, 21(1), 231. (Cited on p. 70.)CrossRefGoogle ScholarPubMed
Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. 2015. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. arXiv:1412.6575. (Cited on p. 437.)Google Scholar
Young, J.-G., Desrosiers, P., Hébert-Dufresne, L., Laurence, E., and Dubé, L. J. 2017. Finite-Size Analysis of the Detectability Limit of the Stochastic Block Model. Physical Review E, 95(6), 062304. (Cited on p. 357.)CrossRefGoogle ScholarPubMed
Young, J.-G., Cantwell, G. T., and Newman, M. E. J. 2021. Bayesian Inference of Network Structure from Unreliable Data. Journal of Complex Networks, 8(6), cnaa046. (Cited on p. 394.)CrossRefGoogle Scholar
Yule, G. U. 1924. II.—A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F. R. S. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, 213(402–410), 21–87. (Cited on pp. 344, 349.)CrossRefGoogle Scholar
Zachary, W. W. 1977. An Information Flow Model for Conflict and Fission in Small Groups. Journal of Anthropological Research, 33(4), 452–473. (Cited on pp. 23, 82, 355, 418.)CrossRefGoogle Scholar
Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. 2021. Understanding Deep Learning (Still) Requires Rethinking Generalization. Communications of the ACM, 64(3), 107115. (Cited on p. 277.)CrossRefGoogle Scholar
Zhang, H., Goel, A., Govindan, R., Mason, K., and Van Roy, B. 2004. Making Eigenvector-Based Reputation Systems Robust to Collusion. Pages 92–104 of: Leonardi, S. (ed.), Algorithms and Models for the Web-Graph, vol. 3243. Berlin, Heidelberg: Springer. (Cited on p. 189.)Google Scholar
Zhou, J., Cui, G., Hu, S. et al. 2020. Graph Neural Networks: A Review of Methods and Applications. AI Open, 1(Jan.), 5781. (Cited on p. 445.)CrossRefGoogle Scholar
Zhou, S., and Mondragon, R. 2004. The Rich-Club Phenomenon in the Internet Topology. IEEE Communications Letters, 8(3), 180182. (Cited on p. 202.)CrossRefGoogle Scholar
Zhou, Z.-H. 2021. Machine Learning. Singapore: Springer Singapore. (Cited on p. 472.)CrossRefGoogle ScholarPubMed
Ziemann, M., Eren, Y., and El-Osta, A. 2016. Gene Name Errors Are Widespread in the Scientific Literature. Genome Biology, 17(1), 177. (Cited on p. 36.)CrossRefGoogle ScholarPubMed
Zuboff, S. 2020. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power. New York, NY: PublicAffairs. (Cited on pp. 32, 34.)Google Scholar
Zuckerman, E. W., and Jost, J. T. 2001. What Makes You Think You’re so Popular? Self-Evaluation Maintenance and the Subjective Side of the “Friendship Paradox”. Social Psychology Quarterly, 64(3), 207223. (Cited on p. 324.)CrossRefGoogle Scholar
Zügner, D., Akbarnejad, A., and Günnemann, S. 2018. Adversarial Attacks on Neural Networks for Graph Data. Pages 2847–2856 of: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD ’18. New York, NY: Association for Computing Machinery. (Cited on p. 444.)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • James Bagrow, University of Vermont, Yong‐Yeol Ahn, Indiana University, Bloomington
  • Book: Working with Network Data
  • Online publication: 06 June 2024
  • Chapter DOI: https://doi.org/10.1017/9781009212601.034
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • James Bagrow, University of Vermont, Yong‐Yeol Ahn, Indiana University, Bloomington
  • Book: Working with Network Data
  • Online publication: 06 June 2024
  • Chapter DOI: https://doi.org/10.1017/9781009212601.034
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • James Bagrow, University of Vermont, Yong‐Yeol Ahn, Indiana University, Bloomington
  • Book: Working with Network Data
  • Online publication: 06 June 2024
  • Chapter DOI: https://doi.org/10.1017/9781009212601.034
Available formats
×