Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T16:32:09.612Z Has data issue: false hasContentIssue false

Chapter 5 - Antiseizure Medications and Hormones

Published online by Cambridge University Press:  19 December 2024

Esther Bui
Affiliation:
Toronto Western Hospital
P. Emanuela Voinescu
Affiliation:
Brigham & Women's Hospital, Boston, MA
Get access

Summary

Antiseizure medications (ASMs) have endocrine related side effects. Long term use of ASMs may result in menstrual irregularities, sexual dysfunction, anovulatory cycles, polycystic ovaries, and reduced fertility. Some ASMs also interfere with glucose and bone metabolism, as well as normal thyroid function. Other ASMs may result in syndrome of inappropriate ADH secretion (SIADH) and hyponatremia. Epilepsy patients treated with ASMs are at risk for bone loss and fractures. This chapter explores the endocrine and hormonal effects of antiseizure medications.

Type
Chapter
Information
Women with Epilepsy
A Practical Management Handbook
, pp. 84 - 100
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pennell, PB, French, JA, Harden, CL, et al. Fertility and birth outcomes in women with epilepsy seeking pregnancy. JAMA Neurol. 2018;75(8):962–9.CrossRefGoogle ScholarPubMed
Hamed, SA. The effect of epilepsy and antiepileptic drugs on sexual, reproductive and gonadal health of adults with epilepsy. Expert Rev Clin Pharmacol. 2016;9(6):807–19.CrossRefGoogle ScholarPubMed
Macphee, GJ, Larkin, JG, Butler, E, Beastall, GH, Brodie, MJ. Circulating hormones and pituitary responsiveness in young epileptic men receiving long-term antiepileptic medication. Epilepsia. 1988;29(4):468–75.CrossRefGoogle Scholar
Isojarvi, JI. Serum steroid hormones and pituitary function in female epileptic patients during carbamazepine therapy. Epilepsia. 1990;31(4):438–45.CrossRefGoogle ScholarPubMed
Murialdo, G, Galimberti, CA, Gianelli, MV, et al. Effects of valproate, phenobarbital, and carbamazepine on sex steroid setup in women with epilepsy. Clin Neuropharmacol. 1998;21(1):52–8.Google ScholarPubMed
Herzog, AG. Differential impact of antiepileptic drugs on the effects of contraceptive methods on seizures: Interim findings of the Epilepsy Birth Control Registry. Seizure. 2015;28:71–5.CrossRefGoogle ScholarPubMed
Chen, SS, Shen, MR, Chen, TJ, Lai, SL. Effects of antiepileptic drugs on sperm motility of normal controls and epileptic patients with long-term therapy. Epilepsia. 1992;33(1):149–53.CrossRefGoogle ScholarPubMed
Roste, LS, Tauboll, E, Haugen, TB, et al. Alterations in semen parameters in men with epilepsy treated with valproate or carbamazepine monotherapy. Eur J Neurol. 2003;10(5):501–6.CrossRefGoogle ScholarPubMed
Svalheim, S, Tauboll, E, Luef, G, et al. Differential effects of levetiracetam, carbamazepine, and lamotrigine on reproductive endocrine function in adults. Epilepsy Behav. 2009;16(2):281–7.CrossRefGoogle ScholarPubMed
Artama, M, Isojarvi, JI, Auvinen, A. Antiepileptic drug use and birth rate in patients with epilepsy: A population-based cohort study in Finland. Hum Reprod. 2006;21(9):2290–5.CrossRefGoogle ScholarPubMed
Mattson, RH, Cramer, JA, Collins, JF, et al. Comparison of carbamazepine, phenobarbital, phenytoin, and primidone in partial and secondarily generalized tonic-clonic seizures. N Engl J Med. 1985;313(3):145–51.CrossRefGoogle ScholarPubMed
Herzog, AG, Drislane, FW, Schomer, DL, et al. Differential effects of antiepileptic drugs on sexual function and hormones in men with epilepsy. Neurology. 2005;65(7):1016–20.CrossRefGoogle ScholarPubMed
Lofgren, E, Tapanainen, JS, Koivunen, R, Pakarinen, A, Isojarvi, JI. Effects of carbamazepine and oxcarbazepine on the reproductive endocrine function in women with epilepsy. Epilepsia. 2006;47(9):1441–6.CrossRefGoogle ScholarPubMed
Luef, G, Kramer, G, Stefan, H. Oxcarbazepine treatment in male epilepsy patients improves pre-existing sexual dysfunction. Acta Neurol Scand. 2009;119(2):94–9.CrossRefGoogle ScholarPubMed
European Database of Suspected Adverse Drug Reaction Reports: Topiramate. Accessed on December 18, 2016.Google Scholar
Chen, LW, Chen, MY, Chen, KY, et al. Topiramate-associated sexual dysfunction: A systematic review. Epilepsy Behav. 2017;73:1017.CrossRefGoogle ScholarPubMed
Zhao, S, Wang, X, Wang, Y, et al. Effects of valproate on reproductive endocrine function in male patients with epilepsy: A systematic review and meta-analysis. Epilepsy Behav. 2018;85:120–8.CrossRefGoogle ScholarPubMed
Hamed, SA, Moussa, EM, Tohamy, AM, et al. Seminal fluid analysis and testicular volume in adults with epilepsy receiving valproate. J Clin Neurosci. 2015;22(3):508–12.CrossRefGoogle ScholarPubMed
Xiaotian, X, Hengzhong, Z, Yao, X, et al. Effects of antiepileptic drugs on reproductive endocrine function, sexual function and sperm parameters in Chinese Han men with epilepsy. J Clin Neurosci. 2013;20(11):1492–7.CrossRefGoogle Scholar
Ocek, L, Tarhan, H, Uludag, FI, et al. Evaluation of sex hormones and sperm parameters in male epileptic patients. Acta Neurol Scand. 2018;137(4):409–16.CrossRefGoogle ScholarPubMed
Isojarvi, JI, Lofgren, E, Juntunen, KS, et al. Effect of epilepsy and antiepileptic drugs on male reproductive health. Neurology. 2004;62(2):247–53.CrossRefGoogle ScholarPubMed
Hamed, SA. Neuroendocrine hormonal conditions in epilepsy: Relationship to reproductive and sexual functions. Neurologist. 2008;14(3):157–69.CrossRefGoogle ScholarPubMed
Kose-Ozlece, H, Ilik, F, Cecen, K, Huseyinoglu, N, Serim, A. Alterations in semen parameters in men with epilepsy treated with valproate. Iran J Neurol. 2015;14(3):164–7.Google ScholarPubMed
Verrotti, A, Loiacono, G, Laus, M, et al. Hormonal and reproductive disturbances in epileptic male patients: Emerging issues. Reprod Toxicol. 2011;31(4):519–27.CrossRefGoogle ScholarPubMed
Verrotti, A, Mencaroni, E, Cofini, M, et al. Valproic acid metabolism and its consequences on sexual functions. Curr Drug Metab. 2016;17(6):573–81.CrossRefGoogle ScholarPubMed
Prabhakar, S, Sahota, P, Kharbanda, PS, et al. Sodium valproate, hyperandrogenism and altered ovarian function in Indian women with epilepsy: A prospective study. Epilepsia. 2007;48(7):1371–7.CrossRefGoogle ScholarPubMed
Meador, K, Reynolds, MW, Crean, S, Fahrbach, K, Probst, C. Pregnancy outcomes in women with epilepsy: A systematic review and meta-analysis of published pregnancy registries and cohorts. Epilepsy Res. 2008;81(1):113.CrossRefGoogle ScholarPubMed
Sahota, P, Prabhakar, S, Kharbanda, PS, et al. Seizure type, antiepileptic drugs, and reproductive endocrine dysfunction in Indian women with epilepsy: A cross-sectional study. Epilepsia. 2008;49(12):2069–77.CrossRefGoogle ScholarPubMed
Pack, AM. Implications of hormonal and neuroendocrine changes associated with seizures and antiepileptic drugs: A clinical perspective. Epilepsia. 2010;51 Suppl 3:150–3.CrossRefGoogle ScholarPubMed
Balen, A. Pathogenesis of polycystic ovary syndrome: The enigma unravels? Lancet. 1999;354(9183):966–7.CrossRefGoogle ScholarPubMed
Bauer, J, Cooper-Mahkorn, D. Reproductive dysfunction in women with epilepsy: Menstrual cycle abnormalities, fertility, and polycystic ovary syndrome. Int Rev Neurobiol. 2008;83:135–55.Google ScholarPubMed
Knochenhauer, ES, Key, TJ, Kahsar-Miller, M, et al. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: A prospective study. J Clin Endocrinol Metab. 1998;83(9):3078–82.Google ScholarPubMed
Isojarvi, JI, Laatikainen, TJ, Pakarinen, AJ, Juntunen, KT, Myllyla, VV. Polycystic ovaries and hyperandrogenism in women taking valproate for epilepsy. N Engl J Med. 1993;329(19):1383–8.CrossRefGoogle ScholarPubMed
Gil-Nagel, A, Lopez-Munoz, F, Serratosa, JM, et al. Effect of lamotrigine on sexual function in patients with epilepsy. Seizure. 2006;15(3):142–9.CrossRefGoogle ScholarPubMed
Kaufman, KR, Coluccio, M, Sivaraaman, K, Campeas, M. Lamotrigine-induced sexual dysfunction and non-adherence: Case analysis with literature review. BJPsych Open. 2017;3(5):249–53.CrossRefGoogle ScholarPubMed
Svalheim, S, Tauboll, E, Surdova, K, et al. Long-term levetiracetam treatment affects reproductive endocrine function in female Wistar rats. Seizure. 2008;17(2):203–9.CrossRefGoogle ScholarPubMed
Tauboll, E, Gregoraszczuk, EL, Tworzydo, A, Wojtowicz, AK, Ropstad, E. Comparison of reproductive effects of levetiracetam and valproate studied in prepubertal porcine ovarian follicular cells. Epilepsia. 2006;47(9):1580–3.CrossRefGoogle ScholarPubMed
Metin, SZ, Ozmen, M, Ozkara, C, Ozmen, E. Hypersexuality in a patient with epilepsy during treatment of levetiracetam. Seizure. 2013;22(2):151–2.CrossRefGoogle Scholar
Calabro, RS, Italiano, D, Militi, D, Bramanti, P. Levetiracetam-associated loss of libido and anhedonia. Epilepsy Behav. 2012;24(2):283–4.CrossRefGoogle ScholarPubMed
Kaufman, KR, Struck, PJ. Gabapentin-induced sexual dysfunction. Epilepsy Behav. 2011;21(3):324–6.CrossRefGoogle ScholarPubMed
Brannon, GE, Rolland, PD. Anorgasmia in a patient with bipolar disorder type 1 treated with gabapentin. J Clin Psychopharmacol. 2000;20(3):379–81.CrossRefGoogle Scholar
Dalal, A, Zhou, L. Gabapentin and sexual dysfunction: Report of two cases. Neurologist. 2008;14(1):50–1.CrossRefGoogle ScholarPubMed
Labbate, LA, Rubey, RN. Gabapentin-induced ejaculatory failure and anorgasmia. Am J Psychiatry. 1999;156(6):972.CrossRefGoogle ScholarPubMed
Clark, JD, Elliott, J. Gabapentin-induced anorgasmia. Neurology. 1999;53(9):2209.CrossRefGoogle ScholarPubMed
Hamed, SA. Sexual dysfunctions induced by pregabalin. Clinical Neuropharmacology. 2018;41(4):116–22.CrossRefGoogle ScholarPubMed
Bachmann, GA, Brown, CS, Phillips, NA, et al. Effect of gabapentin on sexual function in vulvodynia: A randomized, placebo-controlled trial. Am J Obstet Gynecol. 2019;220(1):89e1e8.CrossRefGoogle ScholarPubMed
Calabro, RS, Magaudda, A, Nibali, VC, Bramanti, P. Sexual dysfunction induced by lacosamide: An underreported side effect? Epilepsy Behav. 2015;46:252–3.CrossRefGoogle ScholarPubMed
Maschio, M, Saveriano, F, Dinapoli, L, Jandolo, B. Reversible erectile dysfunction in a patient with brain tumor-related epilepsy in therapy with zonisamide in add-on. J Sex Med. 2011;8(12):3515–17.CrossRefGoogle Scholar
Nicholas, JM, Ridsdale, L, Richardson, MP, Grieve, AP, Gulliford, MC. Fracture risk with use of liver enzyme inducing antiepileptic drugs in people with active epilepsy: Cohort study using the general practice research database. Seizure. 2013;22(1):3742.CrossRefGoogle ScholarPubMed
Sheik Ahmad, B, Hill, KD, O’Brien, TJ, et al. Falls and fractures in patients chronically treated with antiepileptic drugs. Neurology. 2012;79(2):145–51.Google Scholar
Souverein, PC, Webb, DJ, Petri, H, et al. Incidence of fractures among epilepsy patients: A population-based retrospective cohort study in the General Practice Research Database. Epilepsia. 2005;46(2):304–10.CrossRefGoogle ScholarPubMed
Pack, AM. Treatment of epilepsy to optimize bone health. Curr Treat Options Neurol. 2011;13(4):346–54.CrossRefGoogle ScholarPubMed
Telci, A, Cakatay, U, Kurt, BB, et al. Changes in bone turnover and deoxypyridinoline levels in epileptic patients. Clin Chem Lab Med. 2000;38(1):4750.CrossRefGoogle ScholarPubMed
Lee, HS, Wang, SY, Salter, DM, et al. The impact of the use of antiepileptic drugs on the growth of children. BMC Pediatr. 2013;13:211.CrossRefGoogle ScholarPubMed
Golbahar, J, Hamidi, A, Aminzadeh, MA, Omrani, GR. Association of plasma folate, plasma total homocysteine, but not methylenetetrahydrofolate reductase C667 T polymorphism, with bone mineral density in postmenopausal Iranian women: A cross-sectional study. Bone. 2004;35(3):760–5.CrossRefGoogle ScholarPubMed
Nilsson, OS, Lindholm, TS, Elmstedt, E, Lindback, A, Lindholm, TC. Fracture incidence and bone disease in epileptics receiving long-term anticonvulsant drug treatment. Arch Orthop Trauma Surg. 1986;105(3):146–9.CrossRefGoogle ScholarPubMed
Linde, J, Molholm Hansen, J, Siersbaek-Nielsen, K, Fuglsang-Fredriksen, V. Bone density in patients receiving long-term anticonvulsant therapy. Acta Neurol Scand. 1971;47(5):650–1.CrossRefGoogle ScholarPubMed
Mintzer, S, Boppana, P, Toguri, J, DeSantis, A. Vitamin D levels and bone turnover in epilepsy patients taking carbamazepine or oxcarbazepine. Epilepsia. 2006;47(3):510–15.Google ScholarPubMed
Sato, Y, Kondo, I, Ishida, S, et al. Decreased bone mass and increased bone turnover with valproate therapy in adults with epilepsy. Neurology. 2001;57(3):445–9.CrossRefGoogle ScholarPubMed
Nissen-Meyer, LS, Svalheim, S, Tauboll, E, et al. Levetiracetam, phenytoin, and valproate act differently on rat bone mass, structure, and metabolism. Epilepsia. 2007;48(10):1850–60.CrossRefGoogle ScholarPubMed
Moro-Alvarez, MJ, Diaz Curiel, M, de la Piedra, C, Marinoso, ML, Carrascal, MT. Bone disease induced by phenytoin therapy: Clinical and experimental study. Eur Neurol. 2009;62(4):219–30.CrossRefGoogle ScholarPubMed
Boluk, A, Guzelipek, M, Savli, H, et al. The effect of valproate on bone mineral density in adult epileptic patients. Pharmacol Res. 2004;50(1):93–7.CrossRefGoogle Scholar
Heo, K, Rhee, Y, Lee, HW, et al. The effect of topiramate monotherapy on bone mineral density and markers of bone and mineral metabolism in premenopausal women with epilepsy. Epilepsia. 2011;52(10):1884–9.CrossRefGoogle Scholar
Zhang, J, Wang, KX, Wei, Y, et al. [Effect of topiramate and carbamazepine on bone metabolism in children with epilepsy]. Zhongguo Dang Dai Er Ke Za Zhi. 2010;12(2):96–8.Google Scholar
Cansu, A, Yesilkaya, E, Serdaroglu, A, et al. Evaluation of bone turnover in epileptic children using oxcarbazepine. Pediatr Neurol. 2008;39(4):266–71.CrossRefGoogle ScholarPubMed
Guo, Y, Lin, Z, Huang, Y, Yu, L. Effects of valproate, lamotrigine, and levetiracetam monotherapy on bone health in newly diagnosed adult patients with epilepsy. Epilepsy Behav. 2020;113:107489.CrossRefGoogle Scholar
Guo, CY, Ronen, GM, Atkinson, SA. Long-term valproate and lamotrigine treatment may be a marker for reduced growth and bone mass in children with epilepsy. Epilepsia. 2001;42(9):1141–7.CrossRefGoogle ScholarPubMed
Pack, AM, Morrell, MJ, Marcus, R, et al. Bone mass and turnover in women with epilepsy on antiepileptic drug monotherapy. Ann Neurol. 2005;57(2):252–7.CrossRefGoogle ScholarPubMed
Kim, SH, Lee, JW, Choi, KG, Chung, HW, Lee, HW. A 6-month longitudinal study of bone mineral density with antiepileptic drug monotherapy. Epilepsy Behav. 2007;10(2):291–5.CrossRefGoogle ScholarPubMed
Koo, DL, Joo, EY, Kim, D, Hong, SB. Effects of levetiracetam as a monotherapy on bone mineral density and biochemical markers of bone metabolism in patients with epilepsy. Epilepsy Res. 2013;104(1–2):134–9.CrossRefGoogle Scholar
Beniczky, SA, Viken, J, Jensen, LT, Andersen, NB. Bone mineral density in adult patients treated with various antiepileptic drugs. Seizure. 2012;21(6):471–2.CrossRefGoogle ScholarPubMed
Koo, DL, Nam, H. Effects of zonisamide monotherapy on bone health in drug-naive epileptic patients. Epilepsia. 2020;61(10):2142–9.CrossRefGoogle Scholar
Takahashi, A, Onodera, K, Kamei, J, et al. Effects of chronic administration of zonisamide, an antiepileptic drug, on bone mineral density and their prevention with alfacalcidol in growing rats. J Pharmacol Sci. 2003;91(4):313–18.CrossRefGoogle Scholar
Jette, N, Lix, LM, Metge, CJ, et al. Association of antiepileptic drugs with nontraumatic fractures: A population-based analysis. Arch Neurol. 2011;68(1):107–12.CrossRefGoogle ScholarPubMed
Ensrud, KE, Walczak, TS, Blackwell, TL, et al. Antiepileptic drug use and rates of hip bone loss in older men: A prospective study. Neurology. 2008;71(10):723–30.CrossRefGoogle ScholarPubMed
Vestergaard, P. Effects of antiepileptic drugs on bone health and growth potential in children with epilepsy. Paediatr Drugs. 2015;17(2):141–50.CrossRefGoogle Scholar
Andress, DL, Ozuna, J, Tirschwell, D, et al. Antiepileptic drug-induced bone loss in young male patients who have seizures. Arch Neurol. 2002;59(5):781–6.CrossRefGoogle Scholar
Mikati, MA, Dib, L, Yamout, B, et al. Two randomized vitamin D trials in ambulatory patients on anticonvulsants: Impact on bone. Neurology. 2006;67(11):2005–14.CrossRefGoogle ScholarPubMed
Pylvanen, V, Knip, M, Pakarinen, A, et al. Serum insulin and leptin levels in valproate-associated obesity. Epilepsia. 2002;43(5):514–17.CrossRefGoogle ScholarPubMed
Luef, G, Abraham, I, Trinka, E, et al. Hyperandrogenism, postprandial hyperinsulinism and the risk of PCOS in a cross sectional study of women with epilepsy treated with valproate. Epilepsy Res. 2002;48(1–2):91102.CrossRefGoogle Scholar
Cansu, A, Serdaroglu, A, Camurdan, O, Hirfanoglu, T, Cinaz, P. Serum insulin, cortisol, leptin, neuropeptide Y, galanin and ghrelin levels in epileptic children receiving valproate. Horm Res Paediatr. 2011;76(1):6571.CrossRefGoogle ScholarPubMed
Egger, J, Brett, EM. Effects of sodium valproate in 100 children with special reference to weight. Br Med J (Clin Res Ed). 1981;283(6291):577–81.Google ScholarPubMed
Verrotti, A, la Torre, R, Trotta, D, Mohn, A, Chiarelli, F. Valproate-induced insulin resistance and obesity in children. Horm Res. 2009;71(3):125–31.Google ScholarPubMed
Vorbrodt, AW, Dobrogowska, DH, Kozlowski, PB, et al. Immunogold study of effects of prenatal exposure to lipopolysaccharide and/or valproic acid on the rat blood-brain barrier vessels. J Neurocytol. 2005;34(6):435–46.CrossRefGoogle ScholarPubMed
Hamed, SA, Fida, NM, Hamed, EA. States of serum leptin and insulin in children with epilepsy: Risk predictors of weight gain. Eur J Paediatr Neurol. 2009;13(3):261–8.CrossRefGoogle ScholarPubMed
Gungor, S, Yucel, G, Akinci, A, et al. The role of ghrelin in weight gain and growth in epileptic children using valproate. J Child Neurol. 2007;22(12):1384–8.CrossRefGoogle ScholarPubMed
Martin, CK, Han, H, Anton, SD, Greenway, FL, Smith, SR. Effect of valproic acid on body weight, food intake, physical activity and hormones: Results of a randomized controlled trial. J Psychopharmacol. 2009;23(7):814–25.CrossRefGoogle ScholarPubMed
Aydin, K, Serdaroglu, A, Okuyaz, C, Bideci, A, Gucuyener, K. Serum insulin, leptin, and neuropeptide y levels in epileptic children treated with valproate. J Child Neurol. 2005;20(10):848–51.CrossRefGoogle ScholarPubMed
Brill, J, Lee, M, Zhao, S, Fernald, RD, Huguenard, JR. Chronic valproic acid treatment triggers increased neuropeptide y expression and signaling in rat nucleus reticularis thalami. J Neurosci. 2006;26(25):6813–22.CrossRefGoogle ScholarPubMed
Tokgoz, H, Aydin, K, Oran, B, Kiyici, A. Plasma leptin, neuropeptide Y, ghrelin, and adiponectin levels and carotid artery intima media thickness in epileptic children treated with valproate. Childs Nerv Syst. 2012;28(7):1049–53.CrossRefGoogle ScholarPubMed
Biton, V, Mirza, W, Montouris, G, et al. Weight change associated with valproate and lamotrigine monotherapy in patients with epilepsy. Neurology. 2001;56(2):172–7.CrossRefGoogle ScholarPubMed
Beydoun, A, Uthman, BM, Kugler, AR, et al. Safety and efficacy of two pregabalin regimens for add-on treatment of partial epilepsy. Neurology. 2005;64(3):475–80.CrossRefGoogle ScholarPubMed
Ben-Menachem, E. Weight issues for people with epilepsy: A review. Epilepsia. 2007;48 Suppl 9:42–5.CrossRefGoogle ScholarPubMed
Gilliam, FG, Veloso, F, Bomhof, MA, et al. A dose-comparison trial of topiramate as monotherapy in recently diagnosed partial epilepsy. Neurology. 2003;60(2):196202.CrossRefGoogle ScholarPubMed
Yang, J, Lee, MS, Joe, SH, Jung, IK, Kim, SH. Zonisamide-induced weight loss in schizophrenia: Case series. Clin Neuropharmacol. 2010;33(2):104–6.CrossRefGoogle ScholarPubMed
Shi, RF, Wang, KL, Li, QH, et al. [Changes of body weight and galanin in epileptic children treated with topiramate]. Zhonghua Er Ke Za Zhi. 2007;45(3):199202.Google ScholarPubMed
Richard, D, Picard, F, Lemieux, C, et al. The effects of topiramate and sex hormones on energy balance of male and female rats. Int J Obes Relat Metab Disord. 2002;26(3):344–53.CrossRefGoogle ScholarPubMed
Picard, F, Deshaies, Y, Lalonde, J, Samson, P, Richard, D. Topiramate reduces energy and fat gains in lean (Fa/?) and obese (fa/fa) Zucker rats. Obes Res. 2000;8(9):656–63.CrossRefGoogle Scholar
Kim, DW, Yoo, MW, Park, KS. Low serum leptin level is associated with zonisamide-induced weight loss in overweight female epilepsy patients. Epilepsy Behav. 2012;23(4):497–9.CrossRefGoogle ScholarPubMed
Gadde, KM, Allison, DB, Ryan, DH, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): A randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9774):1341–52.CrossRefGoogle Scholar
Bergen, DC, Ristanovic, RK, Waicosky, K, Kanner, A, Hoeppner, TJ. Weight loss in patients taking felbamate. Clin Neuropharmacol. 1995;18(1):23–7.CrossRefGoogle ScholarPubMed
Tunbridge, WM, Vanderpump, MP. Population screening for autoimmune thyroid disease. Endocrinol Metab Clin North Am. 2000;29(2):239–53.CrossRefGoogle ScholarPubMed
Samuels, MH. Subclinical thyroid disease in the elderly. Thyroid. 1998;8(9):803–13.CrossRefGoogle ScholarPubMed
Hamed, SA, Hamed, EA, Kandil, MR, et al. Serum thyroid hormone balance and lipid profile in patients with epilepsy. Epilepsy Res. 2005;66(1–3):173–83.CrossRefGoogle ScholarPubMed
Isojarvi, JI, Pakarinen, AJ, Myllyla, VV. Thyroid function with antiepileptic drugs. Epilepsia. 1992;33(1):142–8.CrossRefGoogle ScholarPubMed
Yilmaz, U, Yilmaz, TS, Akinci, G, Korkmaz, HA, Tekgul, H. The effect of antiepileptic drugs on thyroid function in children. Seizure. 2014;23(1):2935.CrossRefGoogle ScholarPubMed
Tanaka, K, Kodama, S, Yokoyama, S, et al. Thyroid function in children with long-term anticonvulsant treatment. Pediatr Neurosci. 1987;13(2):90–4.CrossRefGoogle ScholarPubMed
Aygun, F, Ekici, B, Aydinli, N, et al. Thyroid hormones in children on antiepileptic therapy. Int J Neurosci. 2012;122(2):6973.CrossRefGoogle ScholarPubMed
Mikati, MA, Tarabay, H, Khalil, A, et al. Risk factors for development of subclinical hypothyroidism during valproic acid therapy. J Pediatr. 2007;151(2):178–81.CrossRefGoogle ScholarPubMed
Hegedus, L, Hansen, JM, Luhdorf, K, et al. Increased frequency of goiter in epileptic patients on long-term phenytoin or carbamazepine treatment. Clin Endocrinol (Oxf). 1985;23(4):423–9.CrossRefGoogle ScholarPubMed
Chakova, L, Karakhanian, E, Dimitrov, H, Lutakova, E. Effect of antiepileptic drugs on the thyroid gland in children with epilepsy (preliminary report). Folia Med (Plovdiv). 1998;40(1):80–3.Google ScholarPubMed
Benedetti, MS, Whomsley, R, Baltes, E, Tonner, F. Alteration of thyroid hormone homeostasis by antiepileptic drugs in humans: Involvement of glucuronosyltransferase induction. Eur J Clin Pharmacol. 2005;61(12):863–72.CrossRefGoogle ScholarPubMed
Lu, X, Wang, X. Hyponatremia induced by antiepileptic drugs in patients with epilepsy. Expert Opin Drug Saf. 2017;16(1):7787.CrossRefGoogle ScholarPubMed
Dong, X, Leppik, IE, White, J, Rarick, J. Hyponatremia from oxcarbazepine and carbamazepine. Neurology. 2005;65(12):1976–8.CrossRefGoogle ScholarPubMed
Kellinghaus, C, Berning, S, Stogbauer, F. Use of oxcarbazepine for treatment of refractory status epilepticus. Seizure. 2014;23(2):151–4.CrossRefGoogle ScholarPubMed
Kim, YS, Kim, DW, Jung, KH, et al. Frequency of and risk factors for oxcarbazepine-induced severe and symptomatic hyponatremia. Seizure. 2014;23(3):208–12.CrossRefGoogle ScholarPubMed
Gupta, E, Kunjal, R, Cury, JD. Severe hyponatremia due to valproic acid toxicity. J Clin Med Res. 2015;7(9):717–19.CrossRefGoogle ScholarPubMed
Mewasingh, L, Aylett, S, Kirkham, F, Stanhope, R. Hyponatraemia associated with lamotrigine in cranial diabetes insipidus. Lancet. 2000;356(9230):656.CrossRefGoogle ScholarPubMed
Belcastro, V, Costa, C, Striano, P. Levetiracetam-associated hyponatremia. Seizure. 2008;17(4):389–90.CrossRefGoogle ScholarPubMed
Braunhofer, J, Zicha, L. [Does tegretal offer new possibilities of therapy in several neurologic and endocrine diseases? A clinical electroencephalographic and thin-layer chromatographic study]. Med Welt. 1966;36:1875–80.Google Scholar
Kalff, R, Houtkooper, MA, Meyer, JW, et al. Carbamazepine and serum sodium levels. Epilepsia. 1984;25(3):390–7.CrossRefGoogle ScholarPubMed
Henry, DA, Lawson, DH, Reavey, P, Renfrew, S. Hyponatraemia during carbamazepine treatment. Br Med J. 1977;1(6053):83–4.CrossRefGoogle ScholarPubMed
Kuz, GM, Manssourian, A. Carbamazepine-induced hyponatremia: Assessment of risk factors. Ann Pharmacother. 2005;39(11):1943–6.CrossRefGoogle ScholarPubMed
Lahr, MB. Hyponatremia during carbamazepine therapy. Clin Pharmacol Ther. 1985;37(6):693–6.CrossRefGoogle ScholarPubMed
Friis, ML, Kristensen, O, Boas, J, et al. Therapeutic experiences with 947 epileptic out-patients in oxcarbazepine treatment. Acta Neurol Scand. 1993;87(3):224–7.Google ScholarPubMed
Tambucci, R, Basti, C, Maresca, M, Coppola, G, Verrotti, A. Update on the role of eslicarbazepine acetate in the treatment of partial-onset epilepsy. Neuropsychiatr Dis Treat. 2016;12:1251–60.Google ScholarPubMed
Sperling, MR, Abou-Khalil, B, Harvey, J, et al. Eslicarbazepine acetate as adjunctive therapy in patients with uncontrolled partial-onset seizures: Results of a phase III, double-blind, randomized, placebo-controlled trial. Epilepsia. 2015;56(2):244–53.Google ScholarPubMed
Beers, E, Van Puijenbroek, EP, Bartelink, IH, Van der Linden, CM, Jansen, PA. Syndrome of inappropriate antidiuretic hormone secretion (SIADH) or hyponatraemia associated with valproic acid: Four case reports from the Netherlands and a case/non-case analysis of VigiBase. Drug Saf. 2010;33(1):4755.CrossRefGoogle ScholarPubMed
Ikeda, K, Moriyasu, H, Yasaka, M, Oita, J, Yamaguchi, T. [Valproate-related syndrome of inappropriate secretion of antidiuretic hormone (SIADH): A case report]. Rinsho Shinkeigaku. 1994;34(9):911–13.Google ScholarPubMed
Miyaoka, T, Seno, H, Itoga, M, et al. Contribution of sodium valproate to the syndrome of inappropriate secretion of antidiuretic hormone. Int Clin Psychopharmacol. 2001;16(1):5961.CrossRefGoogle Scholar
Branten, AJ, Wetzels, JF, Weber, AM, Koene, RA. Hyponatremia due to sodium valproate. Ann Neurol. 1998;43(2):265–7.CrossRefGoogle ScholarPubMed
Nasrallah, K, Silver, B. Hyponatremia associated with repeated use of levetiracetam. Epilepsia. 2005;46(6):972–3.CrossRefGoogle ScholarPubMed
Wilton, LV, Shakir, S. A postmarketing surveillance study of gabapentin as add-on therapy for 3,100 patients in England. Epilepsia. 2002;43(9):983–92.CrossRefGoogle ScholarPubMed
Inamura, T, Kuba, H, Morioka, T, et al. [Carbamazepine-induced hyponatremia]. No Shinkei Geka. 1999;27(1):85–7.Google ScholarPubMed
Berghuis, B, De Haan, GJ, Van den Broek, MP, et al. Epidemiology, pathophysiology and putative genetic basis of carbamazepine- and oxcarbazepine-induced hyponatremia. Eur J Neurol. 2016;23(9):1393–9.CrossRefGoogle ScholarPubMed
Isojarvi, JI, Huuskonen, UE, Pakarinen, AJ, Vuolteenaho, O, Myllyla, VV. The regulation of serum sodium after replacing carbamazepine with oxcarbazepine. Epilepsia. 2001;42(6):741–5.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×