Published online by Cambridge University Press: 27 January 2010
Abstract
The energy cascade found in fully developed fluid turbulence is believed to originate as large-scale organized motions called coherent structures. The process of detecting, locating, and tracking these coherent structures is therefore of central importance to the continued study of turbulence. A number of researchers have applied wavelet-based methods to the problem of coherent structure detection, and significant performance improvements over other existing methods have already been reported.
In this paper, we compare the performance of various conventional as well as wavelet-based detector algorithms for cylinder wake flow data. The resulting ROC curves quantitatively demonstrate the effectiveness of wavelet methods. The detections are then used to form conditional averages of the velocity time-series, revealing their underlying physical structure.
Introduction
Recently, advances in the theoretical understanding and implementation of wavelets have led to their increased use in analysis and signal processing. Wavelet methods can be very effective in the study of non-stationary phenomena [7], and have thus sparked a concerted interest in applying them to the analysis of turbulent flows in general, and to the detection of coherent structures in particular [8].
It is possible that some coherent structure detectors are better suited for certain types of turbulent flows, or operate most effectively under specific conditions. As the numbers and types of detectors grow, it becomes increasingly important to measure their relative performance in quantitatively meaningful ways. In this chapter, we describe an approach to the comparison of detector algorithms by means of the Receiver Operating Characteristic (ROC) curves, and demonstrate the utility of this method for the case of cylinder wake flow.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.