Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Global change and plant water relations
- 2 Cavitation. A review: past, present and future
- 3 Effect of cavitation on the status of water in plants
- 4 Stomatal control of xylem cavitation
- 5 Refilling of embolized xylem
- 6 Interpretation of the dynamics of plant water potential
- 7 A proposed mechanism of freezing and thawing in conifer xylem
- 8 Winter xylem embolism and spring recovery in Betula cordifolia, Fagus grandifolia, Abies balsamea and Picea rubens
- 9 Drought resistance strategies and vulnerability to cavitation of some Mediterranean sclerophyllous trees
- 10 Relations between sap velocity and cavitation in broad-leaved trees
- 11 NMR and water transport in plants
- 12 The symplast radial-axial water transport in plants: a NMR approach
- 13 Reproductive adaptation by polyembryony of coniferous forest trees under climatic stress as revealed by the metabolism of tritiated water
- 14 A heat balance method for measuring sap flow in small trees
- 15 Heat pulse measurements on beech (Fagus sylvatica L.) in relation to weather conditions
- 16 Extremely fast changes of xylem water flow rate in tall trees caused by atmospheric, soil and mechanic factors
- 17 Water relations and water transport in coppice vs. single stem Quercus cerris L. trees
- 18 Environmental control of water flux through Maritime pine (Pinus pinaster Ait).
- 19 Evaluation of transpiration of apple trees and measurement of daily course of water flow within the main branches of walnut trees
- 20 Estimating citrus orchard canopy resistance from measurements of actual and potential transpiration
- 21 Stomatal conductance in tomato responds to air humidity
- 22 Water relations of Canarian laurel forest trees
- 23 Watering regime and photosynthetic performance of Gunnera tinctoria (Molina) Mirbel.
- 24 Water relations and ultrasound emissions in Douglas-fir seedlings infected with xylem pathogens
- 25 Diurnal fruit shrinkage: a model
- 26 Analysis of pressure-volume curves by non-linear regression
- 27 Determination of the amount of apoplastic water and other water relations parameters in conifer needles
- 28 The assessment of water status in chilled plants
- 29 An artificial osmotic cell: a model system for studying phenomena of negative pressure and for determining concentrations of solutes
- 30 Measurement of water and solute uptake into excised roots at positive and negative root pressures
- Index
27 - Determination of the amount of apoplastic water and other water relations parameters in conifer needles
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Global change and plant water relations
- 2 Cavitation. A review: past, present and future
- 3 Effect of cavitation on the status of water in plants
- 4 Stomatal control of xylem cavitation
- 5 Refilling of embolized xylem
- 6 Interpretation of the dynamics of plant water potential
- 7 A proposed mechanism of freezing and thawing in conifer xylem
- 8 Winter xylem embolism and spring recovery in Betula cordifolia, Fagus grandifolia, Abies balsamea and Picea rubens
- 9 Drought resistance strategies and vulnerability to cavitation of some Mediterranean sclerophyllous trees
- 10 Relations between sap velocity and cavitation in broad-leaved trees
- 11 NMR and water transport in plants
- 12 The symplast radial-axial water transport in plants: a NMR approach
- 13 Reproductive adaptation by polyembryony of coniferous forest trees under climatic stress as revealed by the metabolism of tritiated water
- 14 A heat balance method for measuring sap flow in small trees
- 15 Heat pulse measurements on beech (Fagus sylvatica L.) in relation to weather conditions
- 16 Extremely fast changes of xylem water flow rate in tall trees caused by atmospheric, soil and mechanic factors
- 17 Water relations and water transport in coppice vs. single stem Quercus cerris L. trees
- 18 Environmental control of water flux through Maritime pine (Pinus pinaster Ait).
- 19 Evaluation of transpiration of apple trees and measurement of daily course of water flow within the main branches of walnut trees
- 20 Estimating citrus orchard canopy resistance from measurements of actual and potential transpiration
- 21 Stomatal conductance in tomato responds to air humidity
- 22 Water relations of Canarian laurel forest trees
- 23 Watering regime and photosynthetic performance of Gunnera tinctoria (Molina) Mirbel.
- 24 Water relations and ultrasound emissions in Douglas-fir seedlings infected with xylem pathogens
- 25 Diurnal fruit shrinkage: a model
- 26 Analysis of pressure-volume curves by non-linear regression
- 27 Determination of the amount of apoplastic water and other water relations parameters in conifer needles
- 28 The assessment of water status in chilled plants
- 29 An artificial osmotic cell: a model system for studying phenomena of negative pressure and for determining concentrations of solutes
- 30 Measurement of water and solute uptake into excised roots at positive and negative root pressures
- Index
Summary
SUMMARY
A method for determining the amount of needle apoplastic water and bulk osmotic pressure in the symplast of spruce needles (Picea abies [L.] Karst.) is presented. The method is based upon a combined use of the pressure volume analysis of whole shoots and microcryoscopy of sap pressed from needles after being frozen in liquid nitrogen.
INTRODUCTION
Pressure-volume (PV) analysis (Tyree & Hammel, 1972) enables the determination of several plant water relations parameters. The measured values are “bulk tissue averages”, which characterize the plant tissues better when they are uniform {i.e. only leaves). In plant species with small leaves, for example conifers, PV analysis can only be performed on shoots which consist of leaves, wood and bark. The resultant water relation parameters then represent a complex tissue; this can be disadvantageous in studying the physiology of leaves or other plant parts.
Through the combined use of PV analysis of spruce shoots and capillary microcryoscopy of sap pressed from needles, determinations of the most important water relations parameters, needle apoplastic water content and bulk osmotic pressure in the needle symplast, were possible.
MATERIALS AND METHODS
Pressure-volume analysis
In late summer 1987, water potential isotherms from different sized shoots of a 25-year-old, 16 meter tall Norway Spruce {Picea abies [L.] Karst.) were generated (Gross & Koch, 1991a). The sample shoots were kept in a temperature regulated pressure chamber during the entire experiment (Gross & Pham-Nguyen, 1987) and were dehydrated through stepwise increases in pressure. From the water potential isotherms, the bulk osmotic pressure at full turgor (π0), and the bulk osmotic pressure when turgor initially reaches zero (πp), the amount of symplastic (Wo) and apoplastic (Wa) water was determined.
- Type
- Chapter
- Information
- Water Transport in Plants under Climatic Stress , pp. 274 - 281Publisher: Cambridge University PressPrint publication year: 1993