Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T13:33:16.120Z Has data issue: false hasContentIssue false

10 - Understanding Unrest and Forecasting Eruptions

Published online by Cambridge University Press:  18 April 2020

Agust Gudmundsson
Affiliation:
Royal Holloway, University of London
Get access

Summary

One of the main aims of the science of volcanology, and that of volcanotectonics in particular, is to understand volcanic unrest periods. By ‘understanding’ I mean that the signals coming from the volcano during the unrest can be interpreted in terms of plausible physical and chemical processes occurring inside the volcano. By volcanic ‘unrest’ we mean an increase in various physical and chemical signals, suggesting that associated processes within the volcano operate at different rates, intensities, or both. By interpreting the unrest period in terms of correct physical processes, there is a chance of assessing the volcanic hazard, namely the probability that the unrest period results in an eruption. Furthermore, when the understanding of the processes giving rise to the signals is accurate, not only the location of the eruption site but also the likely size (volume) of the eruption can be forecasted.

Type
Chapter
Information
Volcanotectonics
Understanding the Structure, Deformation and Dynamics of Volcanoes
, pp. 472 - 559
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References and Suggested Reading

Agustsdottir, T., Woods, J., Greenfield, T., 2016. Strike-slip faulting during the 2014 Bardarbunga–Holuhraun dike intrusion, central Iceland. Geophysical Research Letters, 43, 14951503, doi:10.1002/2015GL067423.Google Scholar
Allmann, B. P., Shearer, P. M., 2009. Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research, 114, doi:10.1029/2008JB005821.CrossRefGoogle Scholar
Al Shehri, A., Gudmundsson, A., 2018. Modelling of surface stresses and fracturing during dyke emplacement: application to the 2009 episode at Harrat Lunayyir, Saudi Arabia. Journal of Volcanology and Geothermal Research, 356, 278303.Google Scholar
Anderson, T. L., 2005. Fracture Mechanics: Fundamentals and Applications, 3rd edn. London: Taylor & Francis.CrossRefGoogle Scholar
Arioldi, G., Muirhead, J. D., Zanella, E., White, J. D. L., 2012. Emplacement process of Ferrar Dolerite sheets at Allan Hills (South Victoria Land, Antarctica) inferred from magnetic fabric. Geophysical Journal International, 188, 10461060.CrossRefGoogle Scholar
Bachmann, C. E., Wiemer, S., Woessner, J., Hainzl, S., 2011. Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for enhanced geothermal systems. Geophysical Journal International, 186, 793807.CrossRefGoogle Scholar
Barton, C. A., Zoback, M. D., Moos, D., 2010. Fluid flow along potentially active faults in crystalline rock. Geology, 23, 683686.2.3.CO;2>CrossRefGoogle Scholar
Bazargan, M., Gudmundsson, A., 2019. Dike-induced stresses and displacements in layered volcanic zones. Journal of Volcanology and Geothermal Research, 384, 189205.Google Scholar
Becerril, L., Galindo, I., Gudmundsson, A., Morales, J. M., 2013. Depth of origin of magma in eruptions. Scientific Reports, 3, 2762, doi:10.1038/srep02762.CrossRefGoogle ScholarPubMed
Bedford, A., 1985. Hamilton’s Principle in Continuum Mechanics. London: Pitman Publishing.Google Scholar
Bergerat, F., Angelier, J., 1998. Fault systems and paleostresses in the Vestfirdir Peninsula. Relationship with the Tertiary paleo-rifts of Skagi and Snaefells (northwest Iceland). Geodinamica Acta, 11, 105118.Google Scholar
Bonaccorso, A., Aoki, Y., Rivalta, E., 2017. Dike propagation energy balance from deformation modeling and seismic release. Geophysical Research Letters, 44, 54865494.Google Scholar
Bonafede, M., Rivalta, E., 1999a. The tensile dislocation problem in a layered elastic medium. Geophysical Journal International, 136, 341356.Google Scholar
Bonafede, M., Rivalta, E., 1999b. On tensile cracks close to and across the interface between two welded elastic half-spaces. Geophysical Journal International, 138, 410434.Google Scholar
Bostrom, N., Cirkovic, M. M., 2008. Global Catastrophic Risk. Oxford: Oxford University Press.CrossRefGoogle Scholar
Boudreau, A., Simon, A., 2007. Crystallization and degassing in the basement sill, McMurdo DryValleys, Antarctica. Journal of Petrology, 48, 13691386.Google Scholar
Bradley, J., 1965. Intrusion of major dolerite sills. Transactions of the Royal Society of New Zealand, 3, 2755.Google Scholar
Cashman, K. V., Sparks, R. S. J., 2013. How volcanoes work: a 25 year perspective. Geological Society of America Bulletin, 125, 664690.Google Scholar
Cashman, K. V., Sparks, R. S. J., Blundy, J. D., 2017. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science, 355, 6331, doi:10.1126/science.aag3055.CrossRefGoogle ScholarPubMed
Cayol, V., Cornet, F. H., 1998. Three-dimensional modelling of the 1983–1984 eruption of Piton de la Fournaise volcano, Reunion Island. Journal of Geophysical Research, 103, 1802518037.CrossRefGoogle Scholar
Chaussard, E., Amelung, F., 2014. Regional controls on magma ascent and storage in volcanic arcs. Geochemistry, Geophysics, Geosystems, 15, doi:10.1002/2013GC005216.Google Scholar
Chesner, C. A., Rose, W. I., Deino, A., Drake, R., Westgate, J. A., 1991. Eruptive history of Earth’s largest Quaternary caldera (Toba, Indonesia) clarified. Geology, 19, 200203.Google Scholar
Chevallier, L., Woodford, A., 1999. Morpho-tectonics and mechanism of emplacement of the dolerite rings and sills of the western Karoo, South Africa. South African Journal of Geology, 102, 4354.Google Scholar
Crosweller, H. S., Arora, B., Brown, S. K, Cottrell, , et al., 2012. Global database on large magnitude explosive volcanic eruptions (LaMEVE). Journal of Applied Volcanology, 1, doi:10.1186/2191–5040-1–4.CrossRefGoogle Scholar
Davis, P. M., 1983. Surface deformation associated with a dipping hydrofracture. Journal of Geophysical Research, 88, 58265834.CrossRefGoogle Scholar
Davis, R. J., Mathias, S. A., Moss, J., Hustoft, S., Newport, L., 2012. Hydraulic fractures: how far can they go? Marine and Petroleum Geology, 37, 16.CrossRefGoogle Scholar
Davis, R. J., Foulger, G. R., Mathias, S., 2013. Reply: Davis et al. (2012). Hydraulic fractures: how far will they go? Marine and Petroleum Geology, 43, 519521.CrossRefGoogle Scholar
Dym, C. L., Shames, I. H., 2013. Solid Mechanics: A Variational Approach. Berlin: Springer Verlag.Google Scholar
Dzurisin, D., 2006. Volcano Deformation: New Geodetic Monitoring Techniques. Berlin: Springer Verlag.Google Scholar
Fedotov, S. A., 1985. Estimates of heat and pyroclast discharge by volcanic eruptions based upon the eruption cloud and steady plume observations. Journal of Geodynamics, 3, 275302.Google Scholar
Fedotov, S. A., Chirkov, A. M., Gusev, N. A., Kovalev, G. N., Slezin, Yu. B., 1980. The large fissure eruption in the region of Plosky Tolbachik Volcano in Kamchatka, 1975–1976. Bulletin of Volcanology, 43, 4760.Google Scholar
Fialko, Y., Khazan, Y., Simons, M., 2001. Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophysical Journal International, 146, 181190.Google Scholar
Fisher, K., 2014. Hydraulic fracture growth: real data. Presentation given at GTW-AAPG/STGS Eagle Ford plus Adjacent Plays and Extensions Workshop, San Antonio, Texas, February 24–26.Google Scholar
Fisher, K., Warpinski, N., 2011. Hydraulic fracture-height growth: real data. Society of Petroleum Engineers Annual Technical Conference and Exhibition, SPE 145949.Google Scholar
Fleming, T. H., Heimann, A., Foland, K. A., Elliot, D. H., 1997. 40Ar/39Ar geochronology of Ferrar Dolerite sills from the Transantarctic Mountains, Antarctica: implications for the age and origin of the Ferrar magmatic province. Geological Society of America Bulletin, 109, 533546.Google Scholar
Flewelling, S. A., Tymchak, M. P., Warpinski, N., 2013. Hydraulic fracture height limits and fault interactions in tight oil and gas formations. Geophysical Research Letters, 40, 36023606.CrossRefGoogle Scholar
Folch, A., Marti, J., 2004. Geometrical and mechanical constraints on the formation of ring-fault calderas. Earth and Planetary Science Letters, 221, 215255.Google Scholar
Francis, E. H., 1982. Magma and sediment – I: emplacement mechanism of late Carboniferous tholeiite sills in northern Britain. Journal of the Geological Society, 139, 120.Google Scholar
Fung, Y. C., Tong, P., 2001. Classical and Computational Solid Mechanics. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
Galindo, I., Gudmundsson, A., 2012. Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates. Natural Hazards and Earth System Sciences, 12, 36833700.Google Scholar
Galland, O., Scheibert, J., 2013. Analytical model of surface uplift above axisymmetric flat-lying magma intrusions: implications for sill emplacement and geodesy. Journal of Volcanology and Geothermal Research, 253, 114130.Google Scholar
Gautneb, H., Gudmundsson, A., 1992. Effect of local and regional stress fields on sheet emplacement in West Iceland. Journal of Volcanology and Geothermal Research, 51, 339356.Google Scholar
Gelman, S. E., Gutierrez, F. J., Bachmann, O., 2013. On the longevity of large upper crustal silicic magma reservoirs, Geology, 41, 759762, doi:10.1130/g34241.1.Google Scholar
Geshi, N., Neri, M., 2014. Dynamic feeder dyke systems in basaltic volcanoes: the exceptional example of the 1809 Etna eruption (Italy). Frontiers in Earth Science, 2, doi:10.3389/feart.2014.00013.Google Scholar
Geshi, N., Shimano, T., Chiba, T., Nakada, S., 2002. Caldera collapse during the 2000 eruption of Miyakejima volcano, Japan. Bulletin of Volcanology, 64, 5568.Google Scholar
Geshi, N., Kusumoto, S., Gudmundsson, A., 2010. Geometric difference between non-feeder and feeder dikes. Geology, 38, 195198.CrossRefGoogle Scholar
Geshi, N., Kusumoto, S., Gudmundsson, A., 2012. Effects of mechanical layering of host rocks on dike growth and arrest. Journal of Volcanology and Geothermal Research, 223–224, 7482.Google Scholar
Geyer, A., Marti, J., 2008. The new worldwide collapse caldera database (CCDB): a tool for studying and understanding caldera processes. Journal of Volcanology and Geothermal Research, 175, 334354.Google Scholar
Geyer, A., Marti, J., 2014. A short review of our current understanding of the development of ring faults during collapse caldera formation. Frontiers in Earth Science, 2, doi:10.3389/feart.2014.00022.Google Scholar
Goldstein, H., Poole, C. P., Safko, J. L., 2013. Classical Mechanics. New York, NY: Pearson.Google Scholar
Gonnermann, H. M., Manga, M., 2013. Dynamics of magma ascent in the volcanic conduit. In Fagents, S. A., Gregg, T. K. P., Lopes, R. M. C. (eds.), Modeling Volcanic Processes. Cambridge: Cambridge University Press, pp. 5584.Google Scholar
Greenland, L. P., Rose, W. I., Stokes, J. B., 1985. An estimate of gas emissions and magmatic gas content from Kilauea volcano. Geochimica et Cosmochimica Acta, 49, 125129.Google Scholar
Greenland, L. P., Okamura, A. T., Stokes, J. B., 1988. Constraints on the mechanics of the eruption. In Wolfe, E. W (ed.), The Puu Oo Eruption of Kilauea Volcano, Hawaii: Episodes through 20, January 3, 1983 through June 8, 1984. US Geological Survey Professional Paper, 1463. Denver, CO: US Geological Survey, pp. 155164.Google Scholar
Gretener, P. E., 1969. On the mechanics of the intrusion of sills. Canadian Journal of Earth Sciences, 6, 14151419.CrossRefGoogle Scholar
Gudmundsson, A., 1983. Form and dimensions of dykes in eastern Iceland. Tectonophysics, 95, 295307.CrossRefGoogle Scholar
Gudmundsson, A., 1986. Formation of dykes, feeder-dykes and the intrusion of dykes from magma chambers. Bulletin of Volcanology, 47, 537550.Google Scholar
Gudmundsson, A., 1988. Effect of tensile-stress concentration around magma chambers on intrusion and extrusion frequencies. Journal of Volcanology and Geothermal Research, 35, 179194.Google Scholar
Gudmundsson, A., 2002. Emplacement and arrest of sheets and dykes in central volcanoes. Journal of Volcanology and Geothermal Research, 116, 279298.Google Scholar
Gudmundsson, A., 2003. Surface stresses associated with arrested dykes in rift zones. Bulletin of Volcanology, 65, 606619.CrossRefGoogle Scholar
Gudmundsson, A., 2006. How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth-Science Reviews, 79, 131.Google Scholar
Gudmundsson, A., 2009. Toughness and failure of volcanic edifices. Tectonophysics, 471, 2735.CrossRefGoogle Scholar
Gudmundsson, A., 2011a. Rock Fractures in Geological Processes. Cambridge: Cambridge University Press.Google Scholar
Gudmundsson, A., 2011b. Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics, 500, 5064.Google Scholar
Gudmundsson, A., 2012. Strengths and strain energies of volcanic edifices: implications for eruptions, collapse calderas, and landslides. Natural Hazards and Earth System Sciences, 12, 22412258.Google Scholar
Gudmundsson, A., 2014. Energy release in great earthquakes and eruptions. Frontiers in Earth Science, 2, doi:10.3389/feart.2014.00010.CrossRefGoogle Scholar
Gudmundsson, A., 2016. The mechanics of large volcanic eruptions. Earth-Science Reviews, 163, 7293.CrossRefGoogle Scholar
Gudmundsson, A., 2017. The Glorious Geology of Iceland’s Golden Circle. Berlin: Springer Verlag.Google Scholar
Gudmundsson, A., Brenner, S. L., 2001. How hydrofractures become arrested. Terra Nova, 13, 456462.Google Scholar
Gudmundsson, A., Brenner, S. L., 2004. How mechanical layering affects local stresses, unrests, and eruptions of volcanoes. Geophysical Research Letters, 31, doi:10.1029/2004GL020083.Google Scholar
Gudmundsson, A., Homberg, C., 1999. Evolution of stress fields and faulting in seismic zones. Pure and Applied Geophysics, 154, 257280.CrossRefGoogle Scholar
Gudmundsson, A., Loetveit, I. F., 2005. Dyke emplacement in layered and faulted rift zone. Journal of Volcanology and Geothermal Research, 144, 311327.Google Scholar
Gudmundsson, A., Philipp, S. L., 2006. How local stress fields prevent volcanic eruptions. Journal of Volcanology and Geothermal Research, 158, 257268.Google Scholar
Gudmundsson, A., Bergerat, F., Angelier, J., Villemin, T. 1992. Extensional tectonics of Southwest Iceland. Bulletin of the Geological Society of France, 163, 561570.Google Scholar
Gudmundsson, A., Friese, N., Galindo, I., Philipp, S. L., 2008. Dike-induced reverse faulting in a graben. Geology, 36, 123126.Google Scholar
Gupta, A. B., 2015. Classical Mechanics and Properties of Matter. Kolkata: Books & Allied.Google Scholar
Hamill, P., 2014. A Student’s Guide to Lagrangians and Hamiltonians. Cambridge: Cambridge University Press.Google Scholar
Holmes, A., 1965. Principles of Physical Geology. London: Thomas Nelson.Google Scholar
Isida, M., 1955. On the tension of a semi-infinite plate with an elliptic hole. Scientific Papers of the Faculty of Engineering, Tokushima University, 5, 7595.Google Scholar
Jaeger, J. C., 1961. The cooling of irregularly shaped igneous bodies. American Journal of Science, 259, 721734.Google Scholar
Janssen, V., 2008. GPS-Based Volcano Deformation. Saarbrücken: VDM Verlag.Google Scholar
Kanamori, H., Anderson, D.L., 1975. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65, 10741095.Google Scholar
Karson, J. A., 2017. The Iceland plate boundary zone: propagating rifts, migrating transforms, and rift-parallel strike-slip faults. Geochemistry, Geophysics, Geosystems, 18, 40434054.Google Scholar
Kavanagh, J. L., Sparks, R. S. J., 2011. Insights of dyke emplacement mechanics from detailed 3D dyke thickness datasets. Journal of the Geological Society of London, 168, 965978.Google Scholar
Kavanagh, J., Menand, T., Sparks, R. S. J., 2006. An experimental investigation of sill formation and propagation in layered elastic media. Earth and Planetary Science Letters, 245, 799813.Google Scholar
Kavanagh, J., Boutelier, D., Cruden, A. R., 2015. The mechanics of sill inception, propagation and growth: experimental evidence for rapid reduction in magmatic overpressure. Earth and Planetary Science Letters, 421, 117128.Google Scholar
Kumagai, H., Ohminato, T., Nakano, M., et al., 2001. Very-long-period seismic signals and caldera formation at Miyake Island, Japan. Science, 293, 687690.CrossRefGoogle ScholarPubMed
Kusumoto, S., Gudmundsson, A., 2014. Displacement and stress fields around rock fractures opened by irregular overpressure variations. Frontiers in Earth Science, 2, doi:10.3389/feart.2014.00007.Google Scholar
Kusumoto, S., Geshi, N., Gudmundsson, A., 2013. Inverse modeling for estimating fluid-overpressure distributions and stress intensity factors from arbitrary open-fracture geometry. Journal of Structural Geology, 46, 9298.Google Scholar
Lacazette, A., Geiser, P., 2013. Comment on Davis et al., 2012 – Hydraulic fractures: how far will they go? Marine and Petroleum Geology, 43, 517519.Google Scholar
Lauthold, J., Muntener, O., Baumgartener, L. P., et al., 2014. A detailed geochemical study of a shallow arc-related laccolith: the Torres del Paine Mafic Complex (Patagonia). Journal of Petrology, 54, 273303.CrossRefGoogle Scholar
Lu, Z., Dzurisin, D., 2014. InSAR Imaging of Aleutian Volcanoes: Monitoring a Volcanic Arc from Space. Berlin: Springer Verlag.Google Scholar
Manconi, A., Walter, T R., Amelung, F., 2007. Effects of mechanical layering on volcano deformation. Geophysical Journal International, 170, 952958.Google Scholar
Marinoni, L. B., Gudmundsson, A., 1999. Geometry, emplacement, and arrest of dykes. Annales Tectonicæ, 13, 7192.Google Scholar
Marti, J., Geyer, A., Folch, A., Gottsmann, J., 2008. A review on collapse caldera modelling. In Gottsmann, J., Marti, J. (eds.), Caldera Volcanism: Analysis, Modelling and Response. Amsterdam: Elsevier, pp. 233283.Google Scholar
Marti, J., Villasenor, A., Geyer, A., Lopez, C., Tryggvason, A., 2017. Stress barriers controlling lateral migration of magma revealed by seismic tomography. Scientific Reports, 7, doi:10.1038/srep40757.Google Scholar
Mason, B. G., Pyle, D. M., Oppenheimer, C., 2004. The size and frequency of the largest explosive eruptions on Earth. Bulletin of Volcanology, 66, 735748, doi:10.1007/s00445-004-0355-9.Google Scholar
Masterlark, T., 2007. Magma intrusion and deformation predictions: sensitivities to the Mogi assumptions. Journal of Geophysical Research, 112, doi:10.1029/2006JB004860.Google Scholar
Meirovitch, L., 2003. Methods of Analytical Dynamics. New York, NY: Dover.Google Scholar
Menand, T., Daniels, K. A., Benghiat, P., 2010. Dyke propagation and sill formation in a compressive tectonic environment. Journal of Geophysical Research, 115, doi:10.1029/2009JB006791.Google Scholar
Michel, J., Baumgartner, L., Putlitz, B., Schaltegger, U., Ovtcharova, M., 2008. Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology, 36, 459462, doi:10.1130/G24546A.1.Google Scholar
Mindlin, R. D., 1936. Force at a point in the interior of a semi-infinite solid. Physics, 7, 195202.Google Scholar
Mogi, K., 1958. Relations between eruptions of various volcanoes and the deformations of the ground surfaces around them. Bulletin of the Earthquake Research Institute University of Tokyo, 36, 99134.Google Scholar
Murase, T., McBirney, A. R., 1973. Properties of some common igneous rocks and their melts at high temperatures. Geological Society of America Bulletin, 84, 35633592.Google Scholar
Newhall, C. G., Dzurisin, D., 1988. Historical Unrest of Large Calderas of the World. Reston, VA: US Geological Survey.Google Scholar
Newhall, C. G., Self, S., 1982. The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research, 87, 12311238.Google Scholar
Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 11351154.Google Scholar
Okada, Y., 1992. Internal deformation due to shear and tensile faults in half space. Bulletin of the Seismological Society of America, 82, 10181040.Google Scholar
Passarelli, L., Rivalta, E., Cesca, S., Aoki, Y., 2015. Stress changes, focal mechanisms, and earthquake scaling laws for the 2000 dike at Miyakejima (Japan). Journal of Geophysical Research, 120, 41304145.Google Scholar
Paterson, M. S., Wong, T. W., 2005. Experimental Rock Deformation: The Brittle Field, 2nd edn. Berlin: Springer Verlag.Google Scholar
Philipp, S., Philipp, S. L., Afsar, F., Gudmundsson, A., 2013. Effects of mechanical layering on the emplacement of hydrofractures and fluid transport in reservoirs. Frontiers of Earth Science, 1, doi:10.3389/feart.2013.00004.Google Scholar
Pollard, D. D., Delaney, P. T., Duffield, W. A., Endo, E. T., Okamura, A. T., 1983. Surface deformation in volcanic rift zones. Tectonophysics, 94, 541584.Google Scholar
Pyle, D. M., 2000. Sizes of volcanic eruptions. In Sigurdsson, H. (ed.), Encyclopedia of Volcanoes. New York, NY: Academic Press, pp. 263269.Google Scholar
Reddy, J. N., 2002. Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Hoboken, New Jersey: Wiley.Google Scholar
Richards, T. H., 1977. Energy Methods in Stress Analysis. Chichester: Ellis Horwood.Google Scholar
Rivalta, E., Taisne, B., Bunger, A. P., Katz, R. F., 2015. A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics, 638, 142.Google Scholar
Roth, F., 1993. Deformations in a layered crust due to a system of cracks: modeling the effect of dike injections or dilatancy. Journal of Geophysical Research, 98, 45434551.Google Scholar
Rougier, J., Sparks, S., Cashman, K., Brown, S., 2018. The global magnitude–frequency relationship for large explosive eruptions. Earth and Planetary Science Letters, 482, 621629.Google Scholar
Rubin, A. M., 1995. Propagation of magma-filled cracks. Annual Reviews of Earth and Planetary Sciences, 23, 287336.Google Scholar
Rubin, A. M., Pollard, D. D., 1988. Dike-induced faulting in rift zones of Iceland and Afar. Geology, 16, 413417.Google Scholar
Ryan, M. P., 1993. Neutral buoyancy and the structure of mid-ocean ridge magma reservoirs. Journal of Geophysical Research, 98, 2232122338.Google Scholar
Sanford, R. J., 2003. Principles of Fracture Mechanics. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Scholz, C. H., 1990. The Mechanics of Earthquakes and Faulting. Cambridge: Cambridge University Press.Google Scholar
Segall, P., 2010. Earthquake and Volcano Deformation. Princeton, NJ: Princeton University Press.Google Scholar
Segall, P., Llenos, A. L., Yun, S. H., Bradley, A. M., Syracuse, E. M., 2013. Time-dependent dike propagation from joint inversion of seismicity and deformation data. Journal of Geophysical Research, 118, doi:10.1002/2013JB010251.Google Scholar
Self, S., 2006. The effects and consequences of very large explosive volcanic eruptions. Philosophical Transactions of the Royal Society A, 364, 20732097.CrossRefGoogle ScholarPubMed
Shapiro, S. A., 2018. Fluid-Induced Seismicity. Cambridge: Cambridge University Press.Google Scholar
Sigmundsson, F., Hreinsdottir, S., Hooper, A., et al., 2010. Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature, 468, 426430.Google Scholar
Sobradelo, R., Bartolini, S., Martí, J., 2013. HASSET: a probability event tree tool to evaluate future volcanic scenarios using Bayesian inference. Bulletin of Volcanology, 76, 115.Google Scholar
Sobradelo, R., Martí, J., Kilburn, C., López, C., 2015. Probabilistic approach to decision-making under uncertainty during volcanic crises: retrospective application to the El Hierro (Spain) 2011 volcanic crisis. Natural Hazards, 76, 979998.Google Scholar
Sparks, R. S. J., Aspinall, W. P., Crosweller, H. S., Hincks, T. K., 2013. Risk and uncertainty assessment of volcanic hazards. In Rougier, J., Sparks, R. S. J., Hill, L (eds.), Risk and Uncertainty Assessment for Natural Hazards. Cambridge: Cambridge University Press, pp. 365397.Google Scholar
Spera, F. J., 2000. Physical properties of magmas. In Sigurdsson, H. (ed.), Encyclopedia of Volcanoes. New York, NY: Academic Press, pp. 171190.Google Scholar
Steketee, J. A., 1958. On Volterra’s dislocations in a semi-infinite elastic medium. Canadian Journal of Physics, 36, 192205.Google Scholar
Sun, R. J. 1969. Theoretical size of hydraulically induced horizontal fractures and corresponding surface uplift in an idealized medium. Journal of Geophysical Research, 74, 59956011.Google Scholar
Tauchert, T. R., 1981. Energy Principles in Structural Mechanics. Malabar, FL: Krieger.Google Scholar
Tibaldi, A., 2015. Structure of volcano plumbing systems: a review of multi-parametric effects. Journal of Volcanology and Geothermal Research, 298, 85135.CrossRefGoogle Scholar
Townsend, M., Pollard, D. D., Smith, R., 2017. Mechanical models for dikes: a third school of thought. Tectonophysics, 703–704, 98118.Google Scholar
Tsuchida, E., Nakahara, I., 1970. Three-dimensional stress concentration around a spherical cavity in a semi-infinite elastic body. Japan Society of Mechanical Engineers Bulletin, 13, 499508.Google Scholar
Valko, P., Economides, M. J., 1995. Hydraulic Fracture Mechanics. New York, NY: Wiley.Google Scholar
Villemin, T., Bergerat, F., Angelier, J., Lacasse, C., 1994. Brittle deformation and fracture patterns on oceanic rift shoulders: the Esja peninsula, SW Iceland. Journal of Structural Geology, 16, 16411654.Google Scholar
Volterra, V., 1907. On the equilibrium of multiply-connected elastic bodies. Annales scientifiques de l’École Normale Supérieure, 24, 401517 (in French; English translation).Google Scholar
Wadge, G., 1981. The variation of magma discharge during basaltic eruptions. Journal of Volcanology and Geothermal Research, 11, 139168.Google Scholar
Wallerstein, D. V., 2002. A Variational Approach to Structural Analysis. New York, NY: Wiley.Google Scholar
Washizu, K., 1975. Variational Methods in Elasticity and Plasticity. Amsterdam: Elsevier.Google Scholar
Woods, A. W., Huppert, H. E., 2003. On magma chamber evolution during slow effusive eruptions. Journal of Geophysical Research, 108, 2403, doi:10.1029/2002JB002019.Google Scholar
Wu, Y. S. (ed.), 2017. Hydraulic Fracture Modeling. Houston, TX: Gulf Publishing.Google Scholar
Yew, C. H., Weng, X., 2014. Mechanics of Hydraulic Fracturing, 2nd edn. Houston, TX: Gulf Publishing.Google Scholar
Yokoyama, I., 1957. Energies in active volcanoes. Bulletin of the Earthquake Research Institute Tokyo, 35, 7597.Google Scholar
Zang, A., Stephansson, O., 2010. Stress Field of the Earth’s Crust. Berlin: Springer Verlag.Google Scholar
Zoback, M. D., Harjes, H. P., 1997. Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. Journal of Geophysical Research, 102, 1847718491.Google Scholar
Zobin, V. M., 2003. Introduction to Volcanic Seismology. Amsterdam: Elsevier.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×