Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T21:43:59.636Z Has data issue: false hasContentIssue false

1 - Remote Observations of the Main Belt

from Part I - Remote Observations and Exploration of Main Belt Asteroids

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

The study of the largest (D ≳100 km) Main Belt asteroids is not only important because of the clues it delivers regarding the formation and evolution of the Main Belt itself but also because many of these bodies are likely “primordial” remnants of the early Solar System, that is their internal structures have likely remained intact since their formation. Thus, many of these bodies offer, similarly to Ceres and Vesta detailed in the present book, invaluable constraints regarding the processes of planet formation over a wide range of heliocentric distances. Here, we review the current knowledge regarding these objects derived from Earth-based spectroscopic and imaging observations, with an emphasis on D >200 km bodies including Ceres and Vesta. Our motivation is to provide a meaningful context for the two largest main belt asteroids visited by the Dawn mission and to guide future in-situ investigations to the largest asteroids.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 3 - 25
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A’Hearn, M. F., & Feldman, P. D. (1992) Water vaporization on Ceres. Icarus, 98, 5460.Google Scholar
Allen, D. A. (1970) Infrared diameter of Vesta. Nature, 227, 158159.Google Scholar
Ammannito, E., DeSanctis, M. C., Ciarniello, M., et al. (2016) Distribution of phyllosilicates on the surface of Ceres. Science, 353.Google Scholar
Ammannito, E., DeSanctis, M. C., Palomba, E., et al. (2013) Olivine in an unexpected location on Vesta’s surface. Nature 504, 122125.Google Scholar
Barucci, M. A., Dotto, E., Brucato, J., et al. (2002) 10 Hygiea: ISO infrared observations. Icarus, 156, 202210.Google Scholar
Beauvalet, L., & Marchis, F. (2014) Multiple asteroid systems (45) Eugenia and (87) Sylvia: Sensitivity to external and internal perturbations. Icarus, 241, 1325.Google Scholar
Beck, P., Garenne, A., Quirico, E., et al. (2014) Transmission infrared spectra (2–25 μm) of carbonaceous chondrites (CI, CM, CV-CK, CR, C2 ungrouped): Mineralogy, water, and asteroidal processes. Icarus, 229, 263277.Google Scholar
Bell, J. F. (1988) A probable asteroidal parent body for the CV or CO chondrites (abstract). Meteoritics, 23, 256257.Google Scholar
Belton, M. J. S., Chapman, C. R., Thomas, P. C., et al. (1995) Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl. Nature, 374, 785788.Google Scholar
Binzel, R. P., DeMeo, F. E., Turtelboom, E. V., et al. (2019) Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus, 324, 4176.Google Scholar
Binzel, R. P., Gaffey, M. J., Thomas, P. C., et al. (1997) Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus, 128, 95103.CrossRefGoogle Scholar
Binzel, R. P., Rivkin, A. S., Stuart, J., et al. (2004) Observed spectral properties of near-Earth objects: Results for population distribution, source regions, and space weathering processes. Icarus, 170, 259294.Google Scholar
Binzel, R. P., & Xu, S. (1993) Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.Google Scholar
Blanco, C., & Catalano, S. (1979) UBV photometry of Vesta. Icarus, 40, 359363.Google Scholar
Bottke, W. F., Nesvorny, D., Grimm, R. E., Morbidelli, A., & O’Brien, D. P. (2006) Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.Google Scholar
Bowell, E., & Zellner, B. (1973) Polarizations of asteroids and satellites. In Gehrels, T. (ed.), Planets, Stars and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press, pp. 381403.Google Scholar
Bradley, J. P., Keller, L. P., Brownlee, D. E., & Thomas, K. L. (1996). Reflectance spectroscopy of interplanetary dust particles. Meteoritics and Planetary Science, 31, 394402.Google Scholar
Broz, M., Morbidelli, A., Bottke, W. F., et al. (2013) Constraining the cometary flux through the asteroid belt during the late heavy bombardment. Astronomy & Astrophysics, 551, A117.Google Scholar
Brunetto, R., Borg, J., Dartois, E., et al. (2011) Mid-IR, Far-IR, Raman micro-spectroscopy, and FESEM-EDX study of IDP L2021C5: Clues to its origin. Icarus, 212, 896910.Google Scholar
Burbine, T. H. (2014) Asteroids. Planets, Asteriods, Comets and The Solar System, Volume 2 of Treatise on Geochemistry, 2nd ed., ed. Davis, Andrew M.. Amsterdam: Elsevier, pp. 365415.Google Scholar
Burbine, T. H. (2016) Advances in determining asteroid chemistries and mineralogies. Chemie der Erde – Geochemistry, 76, 181195.Google Scholar
Burbine, T. H., Binzel, R. P., Bus, S. J., & Clark, B. E. (2001). K asteroids and CO3/CV3 chondrites. Meteoritics & Planetary Science, 36, 245253.Google Scholar
Bus, S. J., & Binzel, R. P. (2002) Phase II of the small main-belt asteroid spectroscopic survey: A feature-based taxonomy. Icarus, 158, 146177.Google Scholar
Campins, H., Hargrove, K., Pinilla-Alonson, N., et al. (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature, 464, 13201321.CrossRefGoogle ScholarPubMed
Carry, B. (2012) Density of asteroids. Planetary and Space Science, 73, 98118.CrossRefGoogle Scholar
Carry, B., Dumas, C., Fulchignoni, M., et al. (2008) Near-infrared mapping and physical properties of the dwarf-planet Ceres. Astronomy and Astrophysics, 478, 235244.Google Scholar
Carry, B., Dumas, C., Kaasalainen, M., et al. (2010a) Physical properties of (2) Pallas. Icarus, 205, 460472.Google Scholar
Carry, B., Kaasalainen, M., Leyrat, C., et al. (2010b) Physical properties of the ESA Rosetta target asteroid (21) Lutetia. II. Shape and flyby geometry. Astronomy and Astrophysics, 523, A94.Google Scholar
Carry, B., Vachier, F., Berthier, J., et al. (2019) Homogeneous internal structure of CM-like asteroid (41) Daphne. Astronomy and Astrophysics, 623, A132.Google Scholar
Carry, B., Vernazza, P., Vachier, F., et al. (2021) Evidence of differentiation of the most primitive small bodies. Astronomy and Astrophysics, 630, A129.Google Scholar
Carry, B., Vernazza, P., Dumas, C., & Fulchignoni, M. (2010c) First disk-resolved spectroscopy of (4) Vesta. Icarus, 205, 473482.CrossRefGoogle Scholar
Chapman, C. R., McCord, T. B., & Johnson, T. V. (1973) Asteroid spectral reflectivities. The Astronomical Journal, 78, 126140.Google Scholar
Chapman, C. R., Morrison, D., Zellner, B. (1975) Surface properties of asteroids: A synthesis of polarimetry, radiometry, and spectrophotometry. Icarus, 24, 104130.Google Scholar
Chapman, C. R., Veverka, J., Thomas, P. C., et al. (1995) Discovery and physical properties of Dactyl, a satellite of asteroid 243 Ida. Nature, 374, 783785.Google Scholar
Clark, B. E., Ockert-Bell, M. E., Cloutis, E. A., et al. (2009) Spectroscopy of K-complex asteroids: Parent bodies of carbonaceous meteorites? Icarus, 202, 119133.Google Scholar
Clark, R. N. (2009) Detection of adsorbed water and hydroxyl on the moon. Science, 326, 562564.Google Scholar
Cloutis, E. A., Gaffey, M. J., Smith, D. G. W., & Lambert, R. St. J. (1990) Reflectance spectra of “featureless” materials and the surface mineralogies of M- and E-class asteroids. Journal of Geophysical Research, 95, 281293.Google Scholar
Cloutis, E. A., Hardensen, P. S., Bish, D. L., et al. (2010) Reflectance spectra of iron meteorites: Implications for spectral identification of their parent bodies. Meteoritics and Planetary Science, 45, 304332.Google Scholar
Cloutis, E. A., Hiroi, T., Gaffey, M. J., Alexander, C. M. O’D., & Mann, P. (2011) Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites. Icarus, 212, 180209.Google Scholar
Cloutis, E. A., Hudon, P., Hiroi, T., & Gaffey, M. J. (2012) Spectral reflectance properties of carbonaceous chondrites 4: Aqueously altered and thermally metamorphosed meteorites. Icarus, 220, 586617.Google Scholar
Cloutis, E. A., Izawa, M. R. M., Pompilio, L., et al. (2013). Spectral reflectance properties of HED meteorites + CM2 carbonaceous chondrites: Comparison to HED grain size and compositional variations and implications for the nature of low-albedo features on Asteroid 4 Vesta. Icarus, 223, 850877.Google Scholar
Combe, J.-Ph., McCord, T. B., Tosi, F., et al. (2016) Detection of local H2O exposed at the surface of Ceres. Science, 353, aaf3010.Google Scholar
Cruikshank, D. P., & Morrison, D. (1973). Radii and albedos of asteroids 1, 2, 3, 4, 6, 15, 51, 433, and 511. Icarus, 20, 477481.Google Scholar
Cruikshank, D. P., Tholen, D. J., Hartmann, W. K., Bell, J. F., & Brown, R. H. (1991) Three basaltic earth-approaching asteroids and the source of the basaltic meteorites. Icarus, 89, 113.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.Google Scholar
De Sanctis, M. C., Ammannito, E., McSween, H. Y., et al. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719722.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.CrossRefGoogle ScholarPubMed
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
De Sanctis, M. C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
Degewij, J., Tedesco, E. F., & Zellner, B. (1979) Albedo and color contrasts on asteroid surfaces. Icarus, 40, 364374.Google Scholar
DeMeo, F. E., Alexander, C. M. O., Walsh, K. J., Chapman, C. R., & Binzel, R. P. (2015) The compositional structure of the asteroid belt. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 1342.Google Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., & Bus, S. J. (2009) An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.Google Scholar
DeMeo, F. E., & Carry, B. (2013) The taxonomic distribution of asteroids from multi-filter all sky photometric surveys. Icarus, 226, 723741.Google Scholar
DeMeo, F. E., & Carry, B. (2014) Solar System evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.Google Scholar
DeMeo, F. E., Polihook, D., Carry, B., et al. (2019) Olivine-dominated A-type asteroids in the Main Belt: Distribution, abundance and relation to families. Icarus, 322, 1330.Google Scholar
Dotto, E., Müller, T. G., Barucci, M. A., et al. (2000) ISO results on bright Main Belt asteroids: PHT-S observations. Astronomy and Astrophysics, 358, 11331141.Google Scholar
Drake, M. J. (2001) The eucrite/Vesta story. Meteoritics & Planetary Science, 36, 501513.CrossRefGoogle Scholar
Emery, J. P., Cruikshank, D. P., & van Cleve, J. (2006) Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates. Icarus, 182, 496512.Google Scholar
Feierberg, M. A., & Drake, M. J. (1980) The meteorite–asteroid connection: The infrared spectra of Eucrites, Shergottites, and Vesta. Science, 209, 805807.Google Scholar
Feierberg, M. A., Larson, H. P., Fink, U., & Smith, H. A. (1980) Spectroscopic evidence for two achondrite parent bodies: asteroids 349 Dembowska and 4 Vesta. Geochimica et Cosmochimica Acta, 44, 513524.Google Scholar
Ferrais, M., Vernazza, P., Jorda, L., et al. (2020) Asteroid (16) Psyche’s primordial shape: A possible Jacobi ellipsoid, Astronomy & Astrophysics, 638, L15.Google Scholar
Fetick, R., Jorda, L., Vernazza, P., et al. (2019) Closing the gap between Earth-based and interplanetary mission observations: Vesta seen by VLT/SPHERE. Astronomy & Astrophysics, 623, A6.Google Scholar
Fulvio, D., Ieva, S., Perna, D., et al. (2018) Statistical analysis of the spectral properties of V-type asteroids: A review on what we known and what is still missing. Planetary and Space Science, 164, 3743.Google Scholar
Fusco, T., Mugnier, L. M., Conan, J.-M., et al. (2003) Deconvolution of astronomical images obtained from ground-based telescopes with adaptive optics. In Wizinowich, P. L., & Bonaccini, D. (eds.), Adaptive Optical System Technologies II. Proceedings of the SPIE 4839. Bellingham, WA: SPIE, pp. 10651075.Google Scholar
Gaffey, M. J. (1976) Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81, 905920.Google Scholar
Gaffey, M. J. (1997) Surface lithologic heterogeneity of asteroid 4 Vesta. Icarus, 127, 130157.Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature, 435, 466469.Google Scholar
Gradie, J., & Tedesco, E. (1982) Compositional structure of the asteroid belt. Science, 216, 14051407.Google Scholar
Greenwood, R. C., Burbine, T. H., & Franchi, I. A. (2020) Linking asteroids and meteorites to the primordial planetesimal population. Geochimica. Et Cosmochimica Acta, 27, 377406.CrossRefGoogle Scholar
Hanus, J., Marchis, F., Viikinkoski, M., et al. (2017a) Shape model of asteroid (130) Elektra from optical photometry and disk-resolved images from VLT/SPHERE and Nirc2/Keck. Astronomy & Astrophysics, 599, A36.Google Scholar
Hanus, J., Marsset, M., Vernazza, P., et al. (2019) The shape of (7) Iris as evidence of an ancient large impact ? Astronomy & Astrophysics, 624, A121.Google Scholar
Hanus, J., Vernazza, P., Viikinkoski, M., et al. (2020) (704) Interamnia: A transitional object between a dwarf planet and a typical irregular-shaped minor body. Astronomy & Astrophysics, 633, A65.Google Scholar
Hanus, J., Viikinkoski, M., Marchis, F., et al. (2017b) Volumes and bulk densities of forty asteroids from ADAM shape modeling. Astronomy & Astrophysics, 601, A114.Google Scholar
Hardersen, P., Cloutis, E., Reddy, V., et al. (2011) The M-/X-asteroid menagerie: Results of an NIR spectral survey of 45 main-belt asteroids. Meteoritics & Planetary Science, 46, 19101938.Google Scholar
Hardersen, P., Gaffey, M. J., & Abel, P. A. (2004) Mineralogy of Asteroid 1459 Magnya and implications for its origin. Icarus, 167, 170177.Google Scholar
Hardersen, P., Reddy, V., Cloutis, E., et al. (2018) Basalt or not? Near-infrared spectra, surface mineralogical estimates, and meteorite analogs for 33 Vp-type asteroid. The Astronomical Journal, 156, 11.Google Scholar
Hardersen, P., Reddy, V., & Roberts, R. (2015) Vestoids, part II: The Basaltic nature and HED meteorite analogs for eight Vp-type asteroids and their associations with (4) Vesta. The Astrophysical Journal Supplement Series, 221, 19.Google Scholar
Hardersen, P., Reddy, V., Roberts, R., & Mainzer, A. (2014) More chips off of asteroid (4) Vesta: Characterization of eight Vestoids and their HED meteorite analogs. Icarus, 242, 269282.Google Scholar
Hargrove, K. D., Emery, J. P., Campins, H., & Kelley, M. S. (2015) Asteroid (90) antiope: Another icy member of the Themis family? Icarus, 254, 150156.Google Scholar
Hargrove, K. D., Kelley, M. S., Campins, H., et al. (2012) Asteroids (65) cybele, (107) Camilla and (121) Hermione: Infrared spectral diversity among the cybeles. Icarus, 221, 453455.CrossRefGoogle Scholar
Hasegawa, S., Kuroda, D., Yanagisawa, K., & Usui, F. (2017) Follow-up observations for the asteroid catalog using AKARI spectroscopic observations. Publications of the Astronomical Society of Japan, 69, 99.Google Scholar
Hasegawa, S., Miyasaka, S., Tokimasa, N., et al. (2014) The opposition effect of the asteroid 4 Vesta. Publications of the Astronomical Society of Japan, 66, 89.Google Scholar
Hasegawa, S., Murakawa, K., Ishiguro, M., et al. (2003) Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta. Geophysical Research Letters, 30, 2123.Google Scholar
Heras, A. M., Morris, P. W., Vandenbussche, B., & Müller, T. G. (2000) Asteroid 4 Vesta as seen with the ISO short wavelength spectrometer. In Sitko, M. L., Sprague, A. L., & Lynch, O. K. (eds.), Thermal Emission Spectroscopy and Analysis of Dust, Disks and Regoliths, Astronomical Society of the Pacific Conference Series, 196. San Francisco, CA: ASP, pp. 205213.Google Scholar
Hiroi, T., Pieters, C. M., & Takeda, H. (1994) Grain size of the surface regolith asteroid 4 Vesta estimated from its reflectance spectrum in comparison with HED meteorites. Meteoritics, 29, 394396.Google Scholar
Hiroi, T., Pieters, C. M., Zolensky, M. E., & Lipschutz, M. E. (1993) Evidence of thermal metamorphism on the C, G, B, and F asteroids. Science, 261, 10161018.Google Scholar
Hsieh, H. H., & Jewitt, D. A. (2006) Population of comets in the main asteroid belt. Science, 312, 561563.Google Scholar
Huss, G. R., Rubin, A. E., & Grossman, J. N. (2006) Thermal metamorphism in chondrites. In Lauretta, D. S., & McSween, H. Y. Jr. (eds.), Meteorites and the Early Solar System II. Tucson: University of Arizona Press, pp. 567586.Google Scholar
Jaumann, R., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Jewitt, D. (2012). The active asteroids. The Astronomical Journal, 143, 66.Google Scholar
Jewitt, D., Hsieh, H. H., & Agaral, J. (2015) The active asteroids. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 221242.Google Scholar
Johnson, T. V., & Fanale, F. P. (1973) Optical properties of carbonaceous chondrites and their relationship to asteroids. Journal of Geophysical Research, 78, 85078518.Google Scholar
Johnson, T. V., Matson, D. L., Veeder, G. J., & Loer, S. J. (1975) Asteroids: Infrared photometry at 1.25, 1.65, and 2.2 microns. Astrophysical Journal, 197, 527531.Google Scholar
Jorda, L., Gaskell, R., Capanna, C., et al. (2016) The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus, 277, 257278.Google Scholar
King, T. V. V., Clark, R. N., Calvin, W. M., Sherman, D. M., & Brown, R. H. (1992) Evidence for ammonium-bearing minerals on Ceres. Science, 255, 15511553.Google Scholar
Konopliv, A. S., Asmar, S. W., Folkner, W. M., et al. (2011) Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus, 211, 401428.Google Scholar
Larson, H. P., & Fink, U. (1975) Infrared spectral observations of asteroid 4 Vesta. Icarus, 26, 420427.Google Scholar
Lazzaro, D., Angeli, C. A., Carvano, J. M., et al. (2004) S3OS2: The visible spectroscopic survey of 820 asteroids. Icarus, 172, 179220.Google Scholar
Lazzaro, D., Michtchenko, T., Carvano, J. M., et al. (2000) Discovery of a basaltic asteroid in the outer Main Belt. Science, 288, 20332035.Google Scholar
Lebofsky, L. A. (1978) Asteroid 1 Ceres: Evidence for water of hydration. Monthly Notices of the Royal Astronomical Society, 182, 1721.Google Scholar
Lebofsky, L. A., Feierberg, M. A., Tokunaga, A. T., et al. (1981) The 1.7 to 4.2 µm spectrum of asteroid 1 Ceres: Evidence for structural water in clay minerals. Icarus, 48, 453459.CrossRefGoogle Scholar
Levison, H. F., Bottke, W. F., Gounelle, M., et al. (2009) Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature, 460, 364366.Google Scholar
Li, J.-Y., McFadden, L., Parker, J., et al. (2006) Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus, 182, 143160.Google Scholar
Licandro, J., Campins, H., Kelley, M., et al. (2011) (65) Cybele: Detection of small silicate grains, water-ice, and organics. Astronomy and Astrophysics, 525, id.A34.Google Scholar
Licandro, J., Hargrove, K., Kelley, M., et al. (2012) 5–14 µm Spitzer spectra of Themis family asteroids. Astronomy and Astrophysics, 537, A73.Google Scholar
Marchi, S., Ermakov, A. I., Raymond, C. A., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, 12257.Google Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012) The violent collisional history of asteroid 4 Vesta. Science, 336, 690694.Google Scholar
Marchis, F., Descamps, P., Hestroffer, D., & Berthier, J. (2005) Discovery of the triple asteroidal system 87 Sylvia. Nature, 436, 822824.Google Scholar
Marchis, F., Enriquez, J. E., Emery, J. P., et al. (2012) Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations. Icarus, 221, 11301161.Google Scholar
Margot, J.-L., Pravec, P., Taylor, P., et al. (2015) Asteroid systems: Binaries, triples, and pairs. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 355374.Google Scholar
Marsset, M., Broz, M., Vernazza, P., et al. (2020) The violent collisional history of aqueously evolved (2) Pallas. Nature Astronomy, 4, 569576.Google Scholar
Marsset, M., Carry, B., Dumas, C., et al. (2017) 3D shape of asteroid (6) Hebe from VLT/SPHERE imaging: Implications for the origin of ordinary H chondrites. Astronomy & Astrophysics, 604, A64.Google Scholar
Marsset, M., Vernazza, P., Birlan, M., et al. (2016) Compositional characterisation of the Themis family. Astronomy & Astrophysics, 586, A15.Google Scholar
Masiero, J. R., Grav, T., Mainzer, A. K., et al. (2014) Main-belt asteroids with WISE/NEOWISE: Near-infrared albedos. The Astrophysical Journal, 791, 121.Google Scholar
Masiero, J. R., Mainzer, A. K., Grav, T., et al. (2011) Main Belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters. The Astrophysical Journal, 741, 68.Google Scholar
Matson, D. L. (1971) Infrared Emission from Asteroids at Wavelengths of 8.5, 10.5 and 11.6 Millimicron. PhD thesis, California Institute of Technology.Google Scholar
McCord, T., Adams, J., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McFadden, L. A., McCord, T. B., & Pieters, C. (1977) Vesta: The first pyroxene band from new spectroscopic measurements. Icarus, 31, 439446.Google Scholar
Merline, W. J., Weidenshilling, S. J., Durda, D. D., et al. (2002) Asteroids do have satellites. In Bottke, W. F. Jr., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III, Tucson: University of Arizona Press, pp. 289312.Google Scholar
Merouane, S., Djouadi, Z., & Le Sergeant d’Hendecourt, L. (2014) Relations between aliphatics and silicate components in 12 stratospheric particles deduced from vibrational spectroscopy. The Astrophysical Journal, 780, 174.Google Scholar
Milliken, R. E., & Rivkin, A. S. (2009) Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2, 258261.Google Scholar
Monnereau, M., Toplis, M. J., Baratoux, D., & Guignard, J. (2013) Thermal history of the H-chondrite parent body: Implications for metamorphic grade and accretionary time-scale. Geochimica et Cosmochimica Acta, 119, 302321.Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorny, D., & Levison, H. F. (2009) Asteroids were born big. Icarus, 204, 558573.Google Scholar
Morbidelli, A., Levison, H. F., Tsiganis, K., & Gomes, R. (2005) Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature, 435, 462465.Google Scholar
Moskovitz, M., Jedicke, R., Gaidos, E., et al. (2008) The distribution of basaltic asteroids in the Main Belt. Icarus, 198, 7790.Google Scholar
Nesvorny, D. (2015) Nesvorny HCM Asteroid Families V3.0. EAR-A-VARGBDET-5-NESVORNYFAM-V3.0. NASA Planetary Data System.Google Scholar
Neveu, M., & Vernazza, P. (2019) IDP-like asteroids formed later than 5 Myr after Ca-Al rich inclusions. The Astrophysical Journal, 875, 30.Google Scholar
Nolan, M. C., Magri, C., Howell, E. S., et al. (2013) Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations. Icarus, 226, 629640.Google Scholar
Ockert-Bell, M. E., Clark, B. E., Shepard, M. K., et al. (2010) The composition of M-type asteroids: Synthesis of spectroscopic and radar observations. Icarus, 210, 674692.Google Scholar
Pajuelo, M., Carry, B., Vachier, F., et al. (2018) Physical, spectral, and dynamical properties of asteroid (107) Camilla and its satellites. Icarus, 309, 134161.Google Scholar
Park, R. S., Konopliv, A. S., Bills, B. G., et al. (2016) A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature, 537, 515517.Google Scholar
Park, R. S., Vaughan, A. T., Konopliv, A. S., et al. (2019) High-resolution shape model of Ceres from stereophotoclinometry using Dawn imaging data. Icarus, 319, 812827.Google Scholar
Pinilla-Alonso, N., De Leon, J., Walsh, K. J., et al. (2016) Portrait of the Polana-Eulalia family complex: Surface homogeneity revealed from near-infrared spectroscopy. Icarus, 274, 231248.Google Scholar
Raymond, S. N., & Izidoro, A. (2017) The empty primordial asteroid belt. Science Advances, 3, e1701138.Google Scholar
Reddy, V., Dunn, T. L., Thomas, C. A., Moskovitz, N. A., & Burbine, T. H. (2015) Mineralogy and surface composition of asteroids. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 4364.Google Scholar
Rivkin, A. S. (2012) The fraction of hydrated C-complex asteroids in the asteroid belt from SDSS data. Icarus, 221, 744752.Google Scholar
Rivkin, A. S., Campins, H., Emery, J. P., et al. (2015) Astronomical observations of volatiles on asteroids. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 6587.Google Scholar
Rivkin, A. S., & Emery, J. P. (2010) Detection of ice and organics on an asteroidal surface. Nature, 464, 13221323.Google Scholar
Rivkin, A. S., Howell, E. S., & Emery, J. P. (2019) Infrared spectroscopy of large, low-albedo asteroids: Are Ceres and Themis archetypes or outliers? Journal of Geophysical Research: Planets, 124, 13931409.Google Scholar
Rivkin, A. S., Howell, E. S., Vilas, F., & Lebofsky, L. A. (2002) Hydrated minerals on asteroids: The astronomical record. In Bottke, W. F. Jr., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III. Tucson: University of Arizona Press, pp. 235253.Google Scholar
Rivkin, A. S., Li, J.-Y., Milliken, R. E., et al. (2011) The surface composition of Ceres. Space Science Reviews, 163, 95116.Google Scholar
Rivkin, A. S., McFadden, L., Binzel, R. P., & Sykes, M. (2006a) Rotationally-resolved spectroscopy of Vesta I: 2 4 μm region. Icarus, 180, 464472.Google Scholar
Rivkin, A. S., Volquardsen, E. L., & Clark, B. E. (2006b) The surface composition of Ceres: Discovery of carbonates and iron-rich clays. Icarus, 185, 563567.Google Scholar
Roig, F., & Gil-Hutton, R. (2006) Selecting candidate V-type asteroids from the analysis of the Sloan Digital Sky Survey colors. Icarus, 183, 411419.Google Scholar
Roig, F., Nesvorný, D., Gil-Hutton, R., & Lazzaro, D. (2008) V-type asteroids in the middle Main Belt. Icarus, 194, 125136.Google Scholar
Rubincam, D. P. (2000) Radiative spin-up and spin-down of small asteroids. Icarus, 148, 211.Google Scholar
Russell, C. T., Raymond, C. A., Ammannito, E., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 10081010.CrossRefGoogle ScholarPubMed
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Ryan, E. L., & Woodward, C. E. 2010. Rectified asteroid albedos and diameters from IRAS and MSX photometry catalogs. The Astronomical Journal, 140, 933943.Google Scholar
Scheeres, D. J., Britt, D., Carry, B., & Holsapple, K. A. (2015) Asteroid interiors and morphology. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 745766.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, S., et al. (2012) The geologically recent giant impact basins at Vesta’s south pole. Science, 336, 694.Google Scholar
Schmidt, B. E., Thomas, P. C., Bauer, J. M., et al. (2009) The shape and surface variation of 2 Pallas from the Hubble space telescope. Science, 326, 275278.Google Scholar
Schröder, S. E., Mottola, S., Carsenty, U., et al. (2017) Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images. Icarus, 288, 201225.Google Scholar
Schröder, S. E., Mottola, S., Keller, H. U., et al. (2014) Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images. Planetary and Space Science, 103, 6681.Google Scholar
Shepard, M. K., Taylor, P. A., Nolan, M. C., et al. (2015) A radar survey of M- and X-class asteroids. III. Insights into their composition, hydration state, and structure. Icarus, 245, 3855.Google Scholar
Sunshine, J. M., Bus, S. J., Corrigan, C. M., McCoy, T. J., & Burbine, T. H. (2007) Olivine-dominated asteroids and meteorites: Distinguishing nebular and igneous histories. Meteoritics & Planetary Science, 42, 155170.CrossRefGoogle Scholar
Sunshine, J. M., Connolly, H. C., McCoy, T. J., et al. (2008) Ancient asteroids enriched in refractory inclusions. Science, 320, 514516.Google Scholar
Takir, D., & Emery, J. P. (2012) Outer Main Belt asteroids: Identification and distribution of four 3-mum spectral groups. Icarus, 219, 641654.Google Scholar
Takir, D., Emery, J. P., & McSween, H. Y. (2015) Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt. Icarus, 257, 185193.Google Scholar
Tedesco, E. F., Noah, P. V., Noah, M., & Price, S. D. (2002) The supplemental IRAS minor planet survey. The Astronomical Journal, 123, 10561085.Google Scholar
Tholen, D. J., & Barucci, M. A. (1989) Asteroid taxonomy. In Binzel, R. P., T. Gehrels, , & Matthews, M. S. (eds.), Asteroids II. Tucson: University of Arizona Press, pp. 298315.Google Scholar
Thomas, C. A., Emery, J. P., Trilling, D. E., et al. (2014) Physical characterization of warm Spitzer-observed near-Earth objects. Icarus, 228, 217246.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997a) Impact excavation on asteroid 4 Vesta: Hubble space telescope results. Science, 277, 14921495.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997b) Vesta: Spin pole, size, and shape from HST images. Icarus, 128, 8894.Google Scholar
Thomas, P. C., Parker, J. Wm., McFadden, L., et al. (2005) Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224226.Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. (2005) Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435, 459461.Google Scholar
Usui, F., Hasegawa, S., Ootsubo, T., & Onaka, T. (2019) AKARI/IRC near-infrared asteroid spectroscopic survey: AcuA-spec. Publications of the Astronomical Society of Japan, 71, 1.Google Scholar
Usui, F., Kuroda, D. Müller, T. G., et al. (2011) Asteroid catalog using AKARI: AKARI/IRC mid-infrared asteroid survey. Publications of the Astronomical Society of Japan, 63, 11171138.Google Scholar
Vernazza, P., & Beck, P. (2017) Composition of Solar System small bodies. In Elkins-Tanton, L. T., & Weiss, B. P. (eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 269297.Google Scholar
Vernazza, P., Broz, M., Drouard, D., et al. (2018) The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astronomy & Astrophysics, 618, A154.Google Scholar
Vernazza, P., Brunetto, R., Binzel, R. P., et al. (2009) Plausible parent bodies for enstatite chondrites and mesosiderites: Implications for Lutetia’s fly-by. Icarus, 202, 477486.CrossRefGoogle Scholar
Vernazza, P., Carry, B., Vachier, F., et al. (2019) New satellite around (31) Euphrosyne. IAU circular 4627.Google Scholar
Vernazza, P., Castillo-Rogez, J., Beck, P., et al. (2017) Different origins or different evolutions? Decoding the spectral diversity among C-type asteroids. The Astrophysical Journal, 153, 72.Google Scholar
Vernazza, P., Ferrais, M., Jorda, L., et al. VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. A&A 654, A56, 2021.Google Scholar
Vernazza, P., Fulvio, D., Brunetto, R., et al. (2013) Paucity of Tagish Lake-like parent bodies in the asteroid belt and among Jupiter trojans. Icarus, 225, 517525.Google Scholar
Vernazza, P., Jorda, L., Sevecek, P., et al. (2020) A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea. Nature Astronomy , 4, 136141.Google Scholar
Vernazza, P., Lamy, P., Groussin, O., et al. (2011) Asteroid (21) Lutetia as a remnant of Earth’s precursor planetesimals. Icarus, 216, 650659.Google Scholar
Vernazza, P., Marsset, B., Beck, P., et al. (2015a) Interplanetary dust particles as samples of icy asteroids. The Astrophysical Journal, 806, 204.Google Scholar
Vernazza, P., Marsset, B., Beck, P., et al. (2016) Compositional homogeneity of CM parent bodies. The Astrophysical Journal, 152, 54.Google Scholar
Vernazza, P., Mothé-Diniz, T., Barucci, M. A., et al. (2005) Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission. Astronomy & Astrophysics, 436, 11131121.Google Scholar
Vernazza, P., Zanda, B., Binzel, R. P., et al. (2014) Multiple and fast: The accretion of ordinary chondrite parent bodies. Astrophysical Journal, 791, 120.Google Scholar
Vernazza, P., Zanda, B., Nakamura, T., et al. (2015b) The formation and evolution of ordinary chondrite parent bodies. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 617634.Google Scholar
Veverka, J. F. (1970) Photometric and Polarimetric Studies of Minor Planets and Satellites. PhD thesis, Harvard University.Google Scholar
Viikinkoski, M., Kaasalainen, M., & Durech, J. (2015a) ADAM: A general method for using various data types in asteroid reconstruction. Astronomy & Astrophysics, 576, A8.Google Scholar
Viikinkoski, M., Kaasalainen, M., Durech, J., et al. (2015b) VLT/SPHERE- and ALMA-based shape reconstruction of asteroid (3) Juno. Astronomy & Astrophysics, 581, L3.Google Scholar
Viikinkoski, M., Vernazza, P., Hanus, J., et al. (2018) (16) Psyche: A mesosiderite-like asteroid? Astronomy & Astrophysics, 619, L3.Google Scholar
Vilas, F., & Gaffey, M. J. (1989) Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra. Science, 246, 790792.Google Scholar
Vokrouhlický, D., Nesvorný, D., & Bottke, W. F. (2003) The vector alignments of asteroid spins by thermal torques. Nature, 425, 147151.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Watanabe, S., HiraBayashi, M., Hirata, N., et al. (2019) Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu – A spinning top-shaped rubble pile. Science, 364, 268272.Google Scholar
Williams, J. G. (1979) Proper elements and family memberships of the asteroids. In Gehrels, T. (ed.), Asteroids. Tucson: University of Arizona Press, pp. 10401063.Google Scholar
Yang, B., Hanus, J, Carry, B., et al. (2020) Binary asteroid (31) Euphrosyne: Ice-rich and nearly spherical. Astronomy & Astrophysics, 641, A80.Google Scholar
Yang, B., & Jewitt, D. (2010) Identification of magnetite in B-type asteroids. The Astronomical Journal, 140, 692698.Google Scholar
Zappalà, V., Cellino, A., Farinella, P., & Knežević, Z. (1990) Asteroid families. I. Identification by hierarchical clustering and reliability assessment. The Astronomical Journal, 100, 20302046.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×