Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T22:09:57.851Z Has data issue: false hasContentIssue false

3 - Protoplanet Vesta and HED Meteorites

from Part II - Key Results from Dawn’s Exploration of Vesta and Ceres

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

The Dawn orbiter mission has revealed the mineralogical and chemical composition of Vesta’s surface materials and constraints on its interior structure. The surface is composed of breccias of basalt and ultramafic rocks, contaminated by exogenic carbonaceous chondrite.At the center of the asteroid is a metallic core about half the diameter of the body, and gravity data provide information on the thicknesses and densities of the mantle and crust.Huge, overlapping impact basins expose rocks of the lower crust and mantle. Howardite–eucrite–diogenite (HED) meteorites are samples of Vesta, mostly excavated by the giant impacts and delivered to Earth via an orbital resonance with Jupiter.Petrologic and geochemical studies of HEDs constrain interpretations of Dawn’s spectral and geochemical data, and offer otherwise unobtainable insights into the asteroid’s origin, bulk composition, global differentiation, impact history, and geochronology.Major unresolved questions include whether Vesta had an early magma ocean, as well as the source of “missing” olivine in mantle rocks, and a possible role for fluids. As the sole surviving rocky protoplanet, Vesta provides a unique perspective on the nebular raw materials that accreted to form the terrestrial planets.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 41 - 52
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. B. (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. Journal of Geophysical Research, 79, 48294836.Google Scholar
Ammannito, E., De Sanctis, M. C., Capaccioni, F., et al. (2013a) Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteoritics & Planetary Science, 48, 21852198.Google Scholar
Ammannito, E., De Sanctis, M. C., Palomba, E., et al. (2013b) Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122125.Google Scholar
Barrat, J.-A., & Yamaguchi, A. (2014) Comment on “The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma processes on Vesta” by B. E. Mandler and L. T. Elkins-Tanton. Meteoritics & Planetary Science, 49, 468472.Google Scholar
Barrat, J.-A., Yamaguchi, A., Bunch, T., et al. (2011) Possible fluid–rock interactions of differentiated asteroids recorded in eucritic meteorites. Geochimica et Cosmochimica Acta, 75, 38393852.CrossRefGoogle Scholar
Barrat, J.-A., Yamaguchi, A., Greenwood, R. C., et al. (2007) The Stannern trend eucrites: Contamination of main group eucritic magmas by crustal partial melts. Geochimica et Cosmochimica Acta, 71, 41084124.Google Scholar
Barrat, J.-A., Yamaguchi, A., Greenwood, R. C., et al. (2008) Geochemistry of diogenites: Still more diversity in their parental melts. Meteoritics & Planetary Science, 43, 17591775.Google Scholar
Bartels, K. S., & Grove, T. L. (1991) High-pressure experiments on magnesian eucrite compositions: Constraints on magmatic processes in the eucrite parent body. Proceedings of the Lunar & Planetary Science Conference, 21, 351365.Google Scholar
Beck, A. W., Lawrence, D. J., Peplowski, P. N., et al. (2015) Using HED meteorites to interpret neutron and gamma-ray data from asteroid 4 Vesta. Meteoritics & Planetary Science, 50, 13111337.Google Scholar
Beck, A. W., Lawrence, D. J., Peplowski, P. N., et al. (2017) Igneous lithologies on asteroid (4) Vesta mapped using gamma-ray and neutron data. Icarus, 286, 3545.Google Scholar
Beck, A. W., McCoy, T. J., Sunshine, J. M., et al. (2013) Challenges in detecting olivine on the surface of 4 Vesta. Meteoritics & Planetary Science, 48, 21552165.Google Scholar
Beck, A. W., & McSween, H. Y. (2010) Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteoritics & Planetary Science, 45, 850872.CrossRefGoogle Scholar
Beck, A. W., Mittlefehldt, D. W., McSween, H. Y., et al. (2011) MIL 03443, a dunite from asteroid 4 Vesta: Evidence for its classification and cumulate origin. Meteoritics & Planetary Science, 46, 11331151.Google Scholar
Beck, A. W., Welten, K. C., McSween, H. Y., Viviano, C. E., & Caffee, M. W. (2012) Petrologic and textural diversity among the PCA 02 howardite group, one of the largest pieces of the Vestan surface. Meteoritics & Planetary Science, 47, 947969.Google Scholar
Benedix, G. K., Haack, H., & McCoy, T. J. (2014) Iron and stony-iron meteorites. In Davis, A. M. (ed.), Treatise on Geochemistry, 2nd ed., Vol. 1. Oxford: Elsevier, pp. 267285.Google Scholar
Binzel, R. P. (2012) A golden spike for planetary science. Science, 338, 203204.Google Scholar
Binzel, R. P., Gaffey, M. J., Thomas, P., et al. (1997) Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus, 128, 95103.Google Scholar
Binzel, R. P., & Xu, S. (1993) Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.Google Scholar
Bobrovnikoff, N. T. (1929) The spectra of minor planets. Lick Observatirt Bulletin, 14 (No. 407), 1827.Google Scholar
Bogard, D. D. (2011) K-Ar ages of meteorites: Clues to parent-body thermal histories. Chemie der Erde Geochemistry, 71, 207226.Google Scholar
Bogard, D. D., & Garrison, D. H. (2010) 39Ar-40Ar ages of eucrites and the thermal history of asteroid 4 Vesta. Meteoritics & Planetary Science, 38, 669710.Google Scholar
Buczkowski, D. L., Wyrick, D. Y., Toplis, M., et al. (2012) Large-scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters, 39, L18205.Google Scholar
Cartwright, J. A., Ott, U., & Mittlefehldt, D. W. (2014) The quest for regolithic howardites. Part 2: Surface origins highlighted by noble gases. Geochimica et Cosmochimica Acta, 140, 488508.Google Scholar
Cartwright, J. A., Ott, U., Mittlefehldt, D. W., et al. (2013) The quest for regolithic howardites. Part 1: Two trends uncovered using noble gases. Geochimica et Cosmochimica Acta, 105, 395421.Google Scholar
Clenet, H., Jutzi, M., Barrat, J.-A., et al. (2014) A deep crust–mantle boundary in the asteroid 4 Vesta. Nature, 511, 303306.CrossRefGoogle ScholarPubMed
Cohen, B. (2013) The Vestan cataclysm: Impact-melt clasts in howardites and the bombardment history of 4 Vesta. Meteoritics & Planetary Science, 48, 771785.Google Scholar
Combe, J.-P., McCord, T. B., McFadden, L. A., et al. (2015) Composition of the northern regions of Vesta analyzed by the Dawn mission. Icarus, 259, 5371.CrossRefGoogle Scholar
Consolmagno, J. G., & Drake, M. J. (1977) Composition and evolution of eucrite parent body – Evidence from rare earth elements. Geochimica et Cosmochimica Acta, 41, 12711282.Google Scholar
Consolmagno, J. G., Golabek, G. J., Turrini, D., et al. (2015) Is Vesta an intact and pristine protoplanet? Icarus, 254, 190201.Google Scholar
Cruikshank, D. P., Tholen, D. J., Hartmann, W. K., Bell, J. F., & Brown, R. H. (1991) Three basaltic Earth-approaching asteroids and the source of basaltic meteorites. Icarus, 89, 113.Google Scholar
Cunningham, C. J. (2014) The First Four Asteroids: A History of Their Impact on English Astronomy in the Early Nineteenth Century. PhD thesis, University of Southern Queensland.Google Scholar
Day, J. M. D., Walker, R. J., Qin, L., & Rumble, D. (2012) Late accretion as a natural consequence of planetary growth. Nature Geoscience, 5, 614617.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012a) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.CrossRefGoogle ScholarPubMed
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2013) Vesta’s mineralogical composition as revealed by VIR on Dawn. Meteoritics & Planetary Science, 48, 21662184.Google Scholar
De Sanctis, M. C., Combe, J.-P., Ammannito, E., et al. (2012b) Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission. Astrophysical Journal, 758, L36.Google Scholar
Denevi, B. W., Blewett, D. T., Buczkowski, D. L., et al. (2012) Pitted terrain on Vesta and implications for the presence of volatiles. Science, 338, 246249.Google Scholar
Drake, M. J. (2001) The eucrite/Vesta story. Meteoritics & Planetary Science, 36, 501513.Google Scholar
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. (2014) Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.Google Scholar
Formisano, M., Federico, C., Turrini, D., et al. (2013) The heating history of Vesta and the onset of differentiation. Meteoritics & Planetary Science, 48, 23162332.Google Scholar
Fu, R. R., Weiss, B. P., Shuster, D. L., et al. (2012) An ancient core dynamo in asteroid Vesta. Science, 338, 239241.Google Scholar
Gaffey, M. J. (1976) Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81, 905920.CrossRefGoogle Scholar
Gaffey, M. J. (1993) Forging an asteroid–meteorite link. Science, 260, 167168.Google Scholar
Gaffey, M. J. (1997) Surface lithologic heterogeneity of asteroid 4 Vesta. Icarus, 127, 130157.Google Scholar
Ghosh, A., & McSween, H. Y. (1998) A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187206.Google Scholar
Greenwood, R. C., Barrat, J.-A., Yamaguchi, A., et al. (2014) The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth & Planetary Science Letters, 390, 165174.Google Scholar
Gupta, G., & Sahijpal, S. (2010) Differentiation of Vesta and the parent bodies of other achondrites. Journal of Geophysical Research, 115, E08001.Google Scholar
Haba, M. K., Wotzlaw, J.-W., Lai, Y.-J., et al. (2019) Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision. Nature Geoscience, 12, 510515.Google Scholar
Hahn, T. M., Lunning, N. G., McSween, H. Y., et al. (2018) Mg-rich harzburgites from Vesta: Mantle residua or cumulates from planetary differentiation? Meteoritics & Planetary Science, 53, 514546.Google Scholar
Herzog, G. F. (2007) Cosmic-ray exposure ages of meteorites. In Holland, H. D., & Turekian, K. I. (eds.), Treatise on Geochemistry, Vol. 1. Oxford: Pergamon Press, pp. 711746.Google Scholar
Jaumann, R. J., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Jutzi, M., Asphaug, E., Gillet, P., et al. (2013) The structure of asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature, 494, 207210.Google Scholar
Keil, K. (2002) Geological history of asteroid 4 Vesta: the “smallest terrestrial planet”. In Bottke, W., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III. Tucson: University of Arizona Press, pp. 573584.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.CrossRefGoogle Scholar
Konopliv, A. S., Asmar, S. W., Park, R. S., et al. (2014) The Vesta gravity field, spin pole and rotation period, landmark positions and ephemeris from the Dawn tracking and optical data. Icarus, 240, 103117.Google Scholar
Kruijer, T. S., Burkhardt, C., Budde, G., et al. (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences (USA), 114, 67126716.Google Scholar
Lazzaro, D., Michtchenco, T., Carvano, J. M., et al. (2000) Discovery of a basaltic asteroid in the outer Main Belt. Science, 288, 20332035.Google Scholar
Lorenz, K., Nazarov, M., Kurat, G., et al. (2007) Foreign meteoritic material of howardites and polymict eucrites. Petrology, 15, 109125.Google Scholar
Lunning, N. G., McSween, H. Y., Tenner, H. Y., et al. (2015) Olivine and pyroxene from the mantle of asteroid 4 Vesta. Earth & Planetary Science Letters, 418, 126135.Google Scholar
Lunning, N. G., Welten, K. C., McSween, H. Y., et al. (2016) Grosvenor Mountains 95 howardite pairing group: Insights into the surface regolith of asteroid 4 Vesta. Meteoritics & Planetary Science, 51, 167194.Google Scholar
Mandler, B. E., & Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B. A., et al. (2013) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 6, 303307.Google Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012) The violent collisional history of asteroid 4 Vesta. Science, 336, 690694.Google Scholar
Masiero, J. R., Mainzer, A. K., Bauer, J. M., et al. (2013) Asteroid family identification using the hierarchical clustering method and WISE/NEOWISE physical properties. Astrophysical Journal, 770, 7.Google Scholar
Mayne, R. G., McSween, H. Y., McCoy, T. J., et al. (2009) Petrology of the unbrecciated eucrites. Geochimica et Cosmochimica Acta, 73, 794819.Google Scholar
McCord, T. B., Adams, J. B., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McSween, H. Y., Ammannito, E., Reddy, V., et al. (2013a) Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research, 118, 335346.Google Scholar
McSween, H. Y., Binzel, R. P., De Sanctis, M. C., et al. (2013b) Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902014.Google Scholar
McSween, H. Y., Mittlefehldt, D. W., Beck, A. W., et al. (2011) HED meteorites and their relationship to the geology of Vesta and the Dawn mission. Space Science Reviews, 163, 141174.Google Scholar
McSween, H. Y., Raymond, C. A., Stolper, E. M., et al. (2019) Differentiation and magmatic history of Vesta: Constraints from HED meteorites and Dawn spacecraft data. Geochemistry, 79, 125526.Google Scholar
Mittlefehldt, D. W. (1994) The genesis of diogenites and HED parent body petrogenesis. Geochimica et Cosmochimica Acta, 58, 15371552.Google Scholar
Mittlefehldt, D. W. (2015) Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chemie der Erde Geochemistry, 75, 155183.CrossRefGoogle Scholar
Mittlefehldt, D. W., Beck, A. W., Lee, C.-T. A., et al. (2012) Compositional constraints on the genesis of diogenites. Meteoritics & Planetary Science, 47, 7298.Google Scholar
Mittlefehldt, D. W., Herrin, J. S., Quinn, J. E., et al. (2013) Composition and petrology of HED polymict breccias: the regolith of (4) Vesta. Meteoritics & Planetary Science, 48, 21052134.Google Scholar
Mittlefehldt, D. W., & Lindstrom, M. M. (2003) Geochemistry of eucrites: Genesis of basaltic eucrites, and Hf and Ta as petrogenetic indicators for altered Antarctic eucrites. Geochimica et Cosmochimica Acta, 67, 19111935.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., et al. (1998) Non-chondritic meteorites from asteroidal bodies. In Papike, J. J. (ed.), Planetary Materials: Mineralogy & Petrology of Extraterrestrial Materials. Washington, DC: Mineralogical Society of America, pp. 4-1–4-195.Google Scholar
Neumann, W., Breuer, D., & Spohn, T. (2014) Differentiation of Vesta: Implications for a shallow magma ocean. Earth & Planetary Science Letters, 395, 267280.Google Scholar
Newsom, H. E., & Drake, M. J. (1982) The metal content of the eucrite parent body: Constraints from the partitioning behavior of tungsten. Geochimica et Cosmochimica Acta, 46, 24832489.Google Scholar
O’Brien, D. P., Marchi, S., Morbidell, A., et al. (2015) Constraining the cratering chronology of Vesta. Planetary & Space Science, 103, 131142.Google Scholar
Papike, J. J., Karner, J. M., & Shearer, C. K. (2003) Determination of planetary basalt parentage: A simple technique using the electron microprobe. American Mineralogist, 88, 469472.Google Scholar
Park, R. S., Konopliv, A. S., Asmar, S. W., et al. (2014) Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus, 240, 118132.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science, 48, 22112236.Google Scholar
Prettyman, T. H., Yamashita, N., Ammannito, E., et al. (2019) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.Google Scholar
Prettyman, T. H., Yamashita, N., Reedy, R. C., et al. (2015) Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 259, 3952.Google Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. (2017) Dawn at Vesta: Paradigms and paradoxes. In Elkins-Tanton, L., & Weiss, B. (eds.), Planetesimals. New York: Cambridge University Press, pp. 321340.Google Scholar
Reddy, V., Le Corre, L., O’Brien, D. P., et al. (2012) Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.Google Scholar
Righter, K., & Drake, M. J. (1997) A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.Google Scholar
Roig, F., & Nesvorny, D. (2020) Modeling the chronologies and size distributions of Ceres and Vesta. The Astronomical Journal, 160, 110.Google Scholar
Ruesch, O., Hiesinger, H., De Sanctis, M. C., et al. (2014) Detections and geologic context of local enrichments of olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research, 119, 20782108.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Ruzicka, A., Snyder, G. A., & Taylor, L. A. (1997) Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science, 32, 825840.Google Scholar
Sarafian, A. R., Roden, M. F., & Patino-Douce, A. E. (2013) The volatile content of Vesta: Clues from apatite in eucrites. Meteoritics & Planetary Science, 48, 21352154.Google Scholar
Schiller, M., Baker, J., Creech, J., et al. (2011) Rapid timescales for magma ocean crystallization on the howardite-eucrite-diogenite parent body. Astrophysical Journal Letters, 740, L22.Google Scholar
Schmedemann, N., Kneissl, T., Ivanov, B. A., et al. (2015) The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and ages of HED meteorites. Planetary & Space Science, 103, 104130.Google Scholar
Scott, E. R. D., Greenwood, R. C., Franchi, I. A., & Sanders, I. S. (2009) Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica et Cosmochimica Acta, 73, 58355853.Google Scholar
Scott, E. R. D., Krot, A. N., & Sanders, I. S. (2018) Isotopic dichotomy among meteorites and its bearing on the protoplanetary disk. Astrophysical Journal, 854, 164.Google Scholar
Scully, J. E. C., Russell, C. T., Yin, A., et al. (2015) Geomorphological evidence for transient water flow on Vesta. Earth & Planetary Science Letters, 411, 151163.Google Scholar
Shearer, C. K., Fowler, G. W., & Papike, J. J. (1997) Petrogenetic models for magmatism on the eucrite parent body: Evidence from orthopyroxene in diogenties. Meteoritics & Planetary Science, 32, 877889.Google Scholar
Stolper, E. M. (1977) Experimental petrology of eucritic meteorites. Geochimica et Cosmochimica Acta, 41, 587681.Google Scholar
Takeda, H., & Graham, A. L. (1991) Degree of equilibration of eucritic pyroxenes and thermal metamorphism of the earliest planetary crust. Meteoritics, 26, 129134.Google Scholar
Thangjam, G., Reddy, V., Le Corre, L., et al. (2013) Lithologic mapping of HED terrains on Vesta using Dawn Framing Camera color data. Meteoritics & Planetary Science, 48, 21992210.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997) Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science, 277, 14921495.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Treiman, A. H. (1997) The parent magmas of cumulate eucrites: A mass balance approach. Meteoritics & Planetary Science, 32, 138146.Google Scholar
Trinquier, A., Birck, J. L., Allegre, C. J., et al. (2008) 53Mn–53Cr systematics of the early solar system revisited. Geochimica et Cosmochimica Acta, 72, 51465163.Google Scholar
Unsulan, O., Jenniskens, P., Yin, Q.-Z., et al. (2019) The Saricicek howardite fall in Turkey: Source crater of HED meteorites on Vesta and impact risk of vestoids. Meteoritics & Planetary Science, 54, 9531008.Google Scholar
Warren, P. H., Kallemeyn, G. W., Huber, H., et al. (2009) Siderophile and other geochemical constraints on mixing relationships among HED-meteoritic breccias. Geochimica et Cosmochimica Acta, 73, 59185943.Google Scholar
Wasson, J. T. (2013) Vesta and extensively melted asteroids: Why HED meteorites are probably not from Vesta. Earth & Planetary Science Letters, 381, 138146.Google Scholar
Welten, K. C., Lindner, L., Van Der Borg, K., et al. (1997) Cosmic-ray exposure ages of diogenites and the recent collisional history of the howardite, eucrite and diogenite parent body/bodies. Meteoritics & Planetary Science, 32, 891902.Google Scholar
Wetherill, G. W. (1987) Dynamical relations between asteroids, meteorites and Apollo-Amor objects. Philosophical Transactions of the Royal Society of London, Series A, 323, 323336.Google Scholar
Williams, D. A., Jaumann, R., McSween, H. Y., et al. (2014) The chronostratigraphy of protoplanet Vesta. Icarus, 244, 158165.CrossRefGoogle Scholar
Wilson, L., & Keil, K. (2012) Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde, 72, 289321.Google Scholar
Wisdom, J. (1985) Meteorites may follow a chaotic route to Earth. Nature, 315, 731733.Google Scholar
Zellner, B., Storrs, A. W., Wells, E., et al. (1997). Hubble Space Telescope images of asteroid 4 Vesta. Icarus, 128, 8387.Google Scholar
Zellner, B., Tholen, D. J., & Tedesco, E. F. (1985) The eight-color asteroid survey: Results for 589 minor planets. Icarus, 61, 355416.Google Scholar
Zolensky, M. E., Weisberg, M. K., Buchanan, P. C., et al. (1996) Mineralogy of carbonaceous chondrite clasts in HED meteorites. Meteoritics & Planetary Science, 31, 518537.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×