Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T22:18:22.786Z Has data issue: false hasContentIssue false

4 - The Internal Evolution of Vesta

from Part II - Key Results from Dawn’s Exploration of Vesta and Ceres

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

Within the general framework of differentiation in the early solar system, the asteroid Vesta is a particularly interesting case study. First, its size is well constrained, simplifying modeling efforts that can concentrate on bodies of relevant size. Second, the rich diversity of HED meteorites provides constraints on bulk composition and a unique opportunity to confront predictions of numerical models with petrologic reality. Finally, the Dawn mission, in addition to confirming the link between Vesta and the HED’s, also provides critical constraints on the internal density structure and composition of the asteroid. In this chapter we begin by considering petrologic and geochemical constraints on the bulk composition and differentiation time-scales of Vesta, before presenting modeling efforts to understand its chemical and physical evolution. The modeling indicates accretion within the first million years of solar system history and complex thermal and chemical retroactions linked to the redistribution of 26Al during transport of melt toward the surface. Formation of a shallow magma ocean is predicted, leading to a vertically stratified mineralogical structure with olivine sequestered at depth and protracted cooling at depth. These features are consistent with the essential features of HED petrology and chronology and observations of the Dawn mission.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 53 - 66
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammannito, E., De Sanctis, M. C., Palomba, E., et al. (2013) Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122125.Google Scholar
Arzi, A. A. (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics, 44, 173184.Google Scholar
Bagdassarov, N., Golabek, G. J., Solferino, G., & Schmidt, M. W. (2009) Constraints on the Fe-S melt connectivity in mantle silicates from electrical impedance measurements. Physics of the Earth and Planetary Interiors, 177, 139146.Google Scholar
Barrat, J.-A., & Yamaguchi, A. (2014) Comment on “The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma processes on Vesta” by B. E. Mandler and L. T. Elkins-Tanton. Meteoritics & Planetary Science, 49, 468472.Google Scholar
Barrat, J.-A., Yamaguchi, A., Greenwood, R. C., et al. (2007) The Stannern trend eucrites: Contamination of main group eucritic magmas by crustal partial melts. Geochimica et Cosmochimica Acta, 71, 41084123.Google Scholar
Barrat, J.-A., Yamaguchi, A., Greenwood, R. C., et al. (2008) Geochemistry of diogenites: Still more diversity in their parental melts. Meteoritics & Planetary Science, 43, 17591775.Google Scholar
Barrat, J.-A., Yamaguchi, A., Zanda, B., Bollinger, C. & Bohn, M. (2010) Relative chronology of crust formation on asteroid 4-Vesta: Insights from the geochemistry of diogenites. Geochimica et Cosmochimica Acta, 74, 62186231.CrossRefGoogle Scholar
Best, M. G. (2002) Igneous and Metamorphic Petrology, 2nd ed. Hoboken, NJ: Wiley-Blackwell.Google Scholar
Bizzarro, M., Baker, J. A., & Haack, H. (2004) Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature, 431, 275278.Google Scholar
Boyet, M., Carlson, R. W., & Horan, M. (2010) Old Sm–Nd ages for cumulate eucrites and redetermination of the Solar System initial 146Sm/144Sm ratio. Earth and Planetary Science Letters, 291, 172181.Google Scholar
Brearley, A. J., & Jones, R. H. (1998) Chondritic meteorites. In Papike, J. J. (ed.), Planetary Materials. Reviews in Mineralogy, Vol. 36. Washington, DC: Mineralogical Society of America, pp. 339.Google Scholar
Britt, D. T., & Consolmagno, S. J. (2003) Stony meteorite porosities and densities: A review of the data through 2001. Meteoritics & Planetary Science, 38, 11611180.Google Scholar
Buczkowski, D. L., Wyrick, D. Y., Toplis, M. J., et al. (2014) The unique geomorphology and physical properties of the Vestalia Terra plateau. Icarus, 244, 89103.Google Scholar
Cameron, A. G. W. (1993) Nucleosynthesis and star formation. In Levy, E. H., & Lunine, J. I. (eds.), Protostars and Planets III. Tucson: University of Arizona Press, p. 47.Google Scholar
Castillo-Rogez, J., Johnson, T. V., Lee, M. H., et al. (2009) 26Al decay: Heat production and a revised age for Iapetus. Icarus, 204, 658662.Google Scholar
Consolmagno, G. J., Golabek, G. J., Turrini, D., et al. (2015). Is Vesta an intact and pristine protoplanet? Icarus, 254, 190201.Google Scholar
Dodson, M. H. (1973) Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259274.Google Scholar
Drake, M. J. (2001) The eucrite/Vesta story. Meteoritics & Planetary Science, 36, 501513.Google Scholar
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. (2014) Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.Google Scholar
Formisano, M., Federico, C., DeAngelis, S., DeSantis, M. C., & Magni, G. (2016) A core dynamo in Vesta? Monthly Notices of the Royal Astronomical Society, 458, 695707.Google Scholar
Formisano, M., Federico, C., Turrini, D., et al. (2013) The heating history of Vesta and the differentiation of Vesta. Meteoritics & Planetary Science, 48, 23162332.Google Scholar
Fu, R. R., Hager, B. H., Ermakov, A. I., & Zuber, M. T. (2014) Efficient early global relaxation of asteroid Vesta. Icarus, 240, 133145.Google Scholar
Fu, R. R., Weiss, B. P., Schuster, D. L., et al. (2012) An ancient core dynamo in asteroid Vesta. Science, 338, 238241.Google Scholar
Ganguly, J., Ito, M., & Zhang, X. (2007) Cr diffusion in orthopyroxene: Experimental determination, 53Mn–53Cr thermochronology, and planetary applications. Geochimica et Cosmochimica Acta, 71, 39153925.Google Scholar
Ghosh, A., & McSween, H. Y. Jr. (1988) A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187206.Google Scholar
Gupta, G., & Sahijpal, S. (2010) Differentiation of Vesta and the parent bodies of other achondrites. Journal of Geophysical Research, 115, E08001.Google Scholar
Güttler, C., Krause, M., Geretshauser, R., Speith, R., & Blum, J. (2009) The physics of protoplanetesimal dust agglomerates. IV. Towards a dynamical collision model. The Astrophysical Journal, 701, 130141.Google Scholar
Henke, S., Gail, H.-P., Trieloff, M., Schwarz, W. H., & Kleine, T. (2012) Thermal history modelling of the h chondrite parent body. Astronomy and Astrophysics, 545, A135.Google Scholar
Hevey, P. J., & Sanders, I. S. (2006) A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.CrossRefGoogle Scholar
Hublet, G., Debaille, V., Wimpenny, J., & Yin, Q. (2017) Differentiation and magmatic activity in Vesta evidenced by 26Al-26Mg dating in eucrites and diogenites. Geochimica et Cosmochimica Acta 218, 7397.Google Scholar
Iizuka, T., Jourdan, F., Yamaguchi, A., et al. (2019) The geologic history of Vesta inferred from combined 207Pb/206Pb and 40Ar/39Ar chronology of basaltic eucrites. Geochimica et Cosmochimica Acta, 267, 275299.Google Scholar
Iizuka, T., Yamaguchi, A., Haba, M. K., et al. (2015) Timing of global crustal metamorphism on Vesta as revealed by high-precision U-Pb dating and trace element chemistry. Earth and Planetary Science Letters, 409, 182192.Google Scholar
Jones, J. H. (1984) The composition of the mantle of the eucrite parent body and the origin of eucrites. Geochimica et Cosmochimica Acta, 48, 641648.CrossRefGoogle Scholar
Jourdan, F., Kennedy, T., Benedix, G. K., Eroglu, E., & Mayer, C. (2020) Timing of the magmatic activity and upper crustal cooling of differentiated asteroid 4 Vesta. Geochimica et Cosmochimica Acta, 273, 205225.Google Scholar
Jutzi, M., Asphaug, E., Gillet, P., Barrat, J. A., & Benz, W. (2013) The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature, 494, 207210.Google Scholar
Kennedy, A. K., Lofgren, G. E., & Wasserburg, G. J. (1993) An experimental study of trace element partitioning between olivine, orthopyroxene, and melt in chondrules: equilibrium values and kinetic effects. Earth and Planetary Science Letters, 115, 177195.Google Scholar
Kleine, T., Mezger, K., Münker, C., Palme, H., & Bischoff, A. (2004) 182Hf–182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars. Geochimica et Cosmochimica Acta, 68, 29352946.Google Scholar
Laporte, D., & Provost, A. (2000) The grain-scale distribution of silicate, carbonate and metallosulfide partial melts: A review of theory and experiments. In Bagdassarov, N., Laporte, D., & Thompson, A. B. (eds.), Physics and Chemistry of Partially Molten Rocks. Dordrecht: Springer, pp. 93140.Google Scholar
Lee, T., Papanastassiou, D. A., & Wasserburg, G. J. (1976) Demonstration of 25Mg excess in Allende and evidence for 26Al. Geophysical Research Letters, 3, 4144.Google Scholar
Lejeune, A.-M., & Richet, P. (1995) Rheology of crystal bearing silicate melts: An experiment study at high viscosities. Journal of Geophysical Research, 100, 42154229.Google Scholar
Lichtenberg, T., Keller, T., Katz, R. F., Golabek, G. J., & Gerya, T. V. (2019) Magma ascent in planetesimals: Control by grain size. Earth and Planetary Science Letters, 507, 154165.Google Scholar
Lugmair, G. W., & Shukolyukov, A. (1998) Early Solar System timescales according to 53Mn-53Cr systematics. Geochimica et Cosmochimica Acta, 62, 28632886.Google Scholar
MacPherson, G. J., Davis, A. M., & Zinner, E. K. (1995) The distribution of aluminium-26 in the early Solar System – A reappraisal. Meteoritics, 30, 365386.Google Scholar
Mandler, B. E., & Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B. A., et al. (2013) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 6, 303307.Google Scholar
Marsh, C. A., Della-Giustina, D. N., Giacalone, J., & Lauretta, D. S. (2006) Experimental tests of the induction heating hypothesis for planetesimals. 37th Annual Lunar and Planetary Science Conference, March 13–17, Houston, TX, 2078 (abstract).Google Scholar
McCoy, T. J., Keil, K., Muenow, D. W., & Wilson, L. (1997) Partial melting and melt migration in the acapulcoite-lodranite parent body. Geochimica and Cosmochimica Acta, 61, 639650.Google Scholar
McSween, H. Y., Ammannito, E., Reddy, V., et al. (2013) Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research: Planets, 118, 335346.Google Scholar
McSween, H. Y., Mittlefehldt, D. W., Beck, A. W., Mayne, R. G., & McCoy, T. J. (2010) HED meteorites and their relationship to the geology of Vesta and the Dawn mission. Space Science Reviews, 163, 141174.Google Scholar
Mittlefehldt, D. W. (1994) The genesis of diogenites and HED parent body petrogenesis. Geochimica et Cosmochimica Acta, 58, 15371552.Google Scholar
Mizzon, H. (2015) The Magmatic Crust of Vesta. PhD thesis, Universite Toulouse III Paul Sabatier.Google Scholar
Montmerle, T., Augereau, J.-C., Chaussidon, M., et al. (2006) From suns to life: A chronological approach to the history of life on Earth 3. Solar System formation and early evolution: The first 100 million years. Earth Moon and Planets, 98, 3995.Google Scholar
Morse, S. A. (1980) Basalts and Phase Diagrams: An Introduction to the Quantitative Use of Phase Diagrams in Igneous Petrology. New York: Springer-Verlag.Google Scholar
Moskovitz, N., & Gaidos, E. (2011) Differentiation of planetesimals and the thermal consequences of melt migration. Meteoritics & Planetary Science, 46, 903918.Google Scholar
Moskovitz, N. A. (2009) Spectroscopic and Theoretical Constraints on the Differentiation of Planetesimals. PhD thesis, University of Hawaii.Google Scholar
Mostefaoui, S., Lugmair, G. W., & Hoppe, P. (2005) 60Fe: A heat source for planetary differentiation from a nearby supernova explosion. The Astrophysical Journal, 625, 271277.Google Scholar
Neri, A., Guignard, J., Monnereau, M., Toplis, M. J., & Quitté, G. (2019) Melt segregation in planetesimals: Constraints from experimentally constrained interfacial energies. Earth and Planetary Science Letters, 518, 4052.Google Scholar
Neumann, W., Breuer, D., & Spohn, T. (2012) Differentiation and core formation in accreting planetesimals. Astronomy & Astrophysics, 543, 121.Google Scholar
Neumann, W., Breuer, D., & Spohn, T. (2014) Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Nyquist, L. E., Takeda, H., Bansal, B. M., et al. (1986) Rb-Sr and Sm-Nd internal isochron ages of a subophitic basalt clast and matrix sample from the Y75011 eucrite. Journal of Geophysical Research, 91, 81378150.Google Scholar
Ogliore, R. C., Huss, G. R., & Nagashima, K. (2011) Ratio estimation in SIMS analysis. Nuclear Instruments and Methods, Physics Research B: Beam Interactions with Materials and Atoms, 269, 19101918.Google Scholar
Pack, A., & Palme, H. (2003) Partitioning of Ca and Al between forsterite and silicate melt in dynamic systems with implications for the origin of Ca, Al-rich forsterites in primitive meteorites. Meteoritics & Planetary Science, 38, 12631281.Google Scholar
Park, R. S., Konopliv, A. S., Asmar, S. W., Bills, B. G., & Gaskell, R. W. (2014) Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus, 240, 118132.Google Scholar
Quitté, G., Markowski, A., Latkoczy, C., Gabriel, A., & Pack, A. (2010) Iron-60 heterogeneity and incomplete isotope mixing in the early Solar System. The Astrophysical Journal, 720, 12151224.Google Scholar
Rao, A. S., & Chaklader, A. C. D. (1972) Plastic flow during hot-pressing. Journal of the American Ceramic Society, 55, 596601.Google Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. (2016) Dawn at Vesta: Paradigms and paradoxes. In Elkins-Tanton, L., & Weiss, B. (eds.), Planetesimals. Cambridge: Cambridge University Press, pp. 321340.Google Scholar
Righter, K., & Drake, M. J. (1997). A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.Google Scholar
Russell, C. T., & Raymond, C. A. (2012) The Dawn mission to Vesta and Ceres. Space Science Reviews, 163, 323.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Ruzicka, A., Snyder, G. A., & Taylor, L. A. (1997) Vesta as the howardite, eucrite, and diogenite parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science, 32, 825840.Google Scholar
Sahijpal, S., Soni, P., & Gupta, G. (2007) Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources. Meteoritics & Planetary Science, 42, 15291548.Google Scholar
Schiller, M., Baker, J., Creech, J., et al. (2011). Rapid timescales for magma ocean crystallization on the Howardites–Eucrite–Diogenite parent body. The Astrophysical Journal, 740, L22.Google Scholar
Scott, T., & Kohlstedt, D. L. (2006) The effect of large melt fraction on the deformation behavior of peridotite. Earth and Planetary Science Letters, 246, 177187.Google Scholar
Shearer, C. K., Fowler, G. W., & Papike, J. J. (1997) Petrogenetic models for magmatism on the eucrite parent body: Evidence from orthopyroxene in diogenites. Meteoritics & Planetary Science, 32, 877889.Google Scholar
Shukolyukov, A., & Lugmair, G. W. (1993) Fe-60 in eucrites. Earth and Planetary Science Letters, 119, 159166.CrossRefGoogle Scholar
Smoliar, M. I. (1993) A survey of Rb-Sr systematics of eucrites. Meteoritics, 28, 105113.Google Scholar
Sonnett, C. P., Colburn, D. S., & Schwartz, K. (1968) Electrical heating of meteorite parent bodies and planets by dynamo induction from a premain sequence t tauri solar wind. Nature, 219, 924926.Google Scholar
Šrámek, O., Milelli, L., Ricard, Y., & Labrosse, S. (2012) Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 217, 339354.Google Scholar
Srinivasan, G., Goswami, J. N., & Bhandari, N. (1999) Al-26 in eucrite Piplia Kalan: Plausible heat source and formation chronology. Science, 284, 13481350.Google Scholar
Stolper, E. M. (1975) Petrogenesis of eucrite, howardite and diogenite meteorites. Nature, 258, 220222.Google Scholar
Tachibana, S., & Huss, G. R. (2003) The initial abundance of 60Fe in the Solar System. The Astrophysical Journal Letters, 588, L41L44.Google Scholar
Takahashi, E. (1983) Melting of a Yamato L3 chondrite (Y-74191) up to 30 kbar. National Institute of Polar Research, Memoirs, Special Issue (ISSN 0386-0744), no. 30.Google Scholar
Takahashi, K., & Masudat, A. (1990) Young ages of two diogenites and their genetic implications. Nature, 343, 540542.Google Scholar
Taylor, G. J. (1992) Core formation in asteroids. Journal of Geophysical Research, 97, 1471714726.Google Scholar
Taylor, G. J., Keil, K., McCoy, T. J., Haack, H., & Scott, E. R. D. (1993) Asteroid differentiation: Pyroclastic volcanism to magma oceans. Meteoritics, 28, 3452.Google Scholar
Telus, M., Huss, G. R., Ogliore, R. C., Nagashima, K., & Tachibana, S. (2012) Recalculation of data for short-lived radionuclide systems using less-biased ratio estimation. Meteoritics & Planetary Science, 47, 20132030.Google Scholar
Terasaki, H., Frost, D. J., Rubie, D. C., & Langenhorst, F. (2008) Percolative core formation in planetesimals. Earth and Planetary Science Letters, 273, 132137.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Touboul, M., Sprung, P., Aciego, S. M., Bourdon, B., & Kleine, T. (2015) Hf–W chronology of the eucrite parent body. Geochimica et Cosmochimica Acta, 156, 106121.Google Scholar
Trinquier, A., Birck, J. L., Allegre, C. J., Göpel, C., & Ulfbeck, D. (2008) (53)Mn-(53)Cr systematics of the early Solar System revisited. Geochimica et Cosmochimica Acta, 72, 51465163.Google Scholar
Turcotte, D. L., & Phipps Morgan, J. (1992) The physics of magma migration and mantle flow beneath a mid-ocean ridge. Mantle flow and melt migration beneath oceanic ridges: Models derived from observations in ophiolites. In: Phipps Morgan, J., Blackman, D. K., & Sinton, J. M. (eds.), Mantle Flow and Melt Generation at Mid-Ocean Ridges, vol. 71, Geophysical Monograph. Washington, DC: American Geophysical Union, pp. 155182.Google Scholar
Urey, H. C. (1955) The cosmic abundances of potassium, uranium, and thorium and the heat balance of the earth, the moon, and mars. Proceedings of the National Academy of Sciences (USA), 41, 127144.Google Scholar
Villeneuve, J., Chaussidon, M., & Libourel, G. (2009) Homogeneous distribution of 26Al in the Solar System from the Mg isotopic composition of chondrules. Science, 325, 985988.Google Scholar
von Bargen, N., & Waff, H. S. (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. Journal of Geophysical Research, 91, 92619276.Google Scholar
Waff, H. S., & Bulau, J. R. (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. Journal of Geophysical Research, 84, 61096114.Google Scholar
Walker, D., & Agee, C. B. (1988) Ureilite compaction. Meteoritics, 23, 8191.Google Scholar
Wark, D. A., Williams, C. A., Watson, E. B., & Price, J. D. (2003). Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle. Journal of Geophysical Research, 108, 2050.Google Scholar
Wasson, J. T., & Kallemeyn, G. W. (1990) Compositions of chondrites. Philosophical Transactions of the Royal Society of London, 325, 535544.Google Scholar
Wiggins, C., & Spiegelman, M. (1995) Magma migration and magmatic solitary waves in 3D. Geophysical Research Letter, 22, 12891292.Google Scholar
Wilson, L., & Keil, K. (2012) Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde – Geochemistry, 72, 289321.Google Scholar
Yamaguchi, A., Barrat, J.-A., Greenwood, R. C., et al. (2009) Crustal partial melting on Vesta: Evidence from highly metamorphosed eucrites. Geochimica et Cosmochimica Acta, 73, 71627182.Google Scholar
Yamaguchi, A., Taylor, G. J., & Keil, K. (1996) Global crustal metamorphism of the eucrite parent body. Icarus, 124, 97112.Google Scholar
Yomogida, K., & Matsui, T. (1984) Multiple parent bodies of ordinary chondrites. Earth and Planetary Science Letters, 68, 3442.Google Scholar
Zhou, Q., Yin, Q.-Z., Young, E. D., et al. (2013) SIMS Pb–Pb and U-Pb age determination of eucrite zircons at < 5 µm scale and the first 50 Ma of the thermal history of Vesta. Geochimica et Cosmochimica Acta, 110, 152175.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×