Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T21:58:06.820Z Has data issue: false hasContentIssue false

10 - Geomorphology of Ceres

from Part II - Key Results from Dawn’s Exploration of Vesta and Ceres

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

The dwarf planet Ceres has unique geomorphology, different from airless silicate objects like the Moon or asteroid Vesta, but also different from the icy outer planet satellites. All four primary planetary geologic processes [impact cratering, tectonism, volcanism, and gradation (weathering, erosion, and deposition of loose material)] are visible on Ceres’ surface.Ceres’ low albedo, heavily cratered surface displays craters <300 km in diameter, in which the lack of larger, multi-ring basins suggests resurfacing event(s) early in the dwarf planet’s history. Ejecta blankets in the youngest craters display bluish ejecta and rays, and lobate deposits in and around craters suggest impact slurries, ice-rich landslides, or cryovolcanic flows. Some landslides have exposed water ice, in less than a dozen locations on the surface. Tectonic features include impact-induced secondary crater chains and non-impact-related pit chains and fractures. Several impact craters have heavily fractured floors akin to those on the Moon. The distinctive mountain Ahuna Mons appears to be a cryovolcanic edifice, composed of a viscous, salt-rich, carbonate-bearing material. Ceres distinctive bright spots, Cerealia and Vinalia Faculae within Occator crater, are composed of salt-rich liquids containing carbonates, and were likely emplaced by some combination of deep brines extrusion and hydrothermal (shallow brines) processes.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 143 - 158
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammannito, E., De Sanctis, M. C., Ciarniello, M., et al. (2016) Distribution of phyllosilicates on the surface of Ceres. Science, 353, aaf4279.Google Scholar
Bland, M. T. (2013) Predicted crater morphologies on Ceres: Probing internal structure and evolution. Icarus, 226, 510521.Google Scholar
Bland, M. T., Raymond, C. A., Schenk, P. M., et al. (2016) Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nature Geoscience, 9, 538542.CrossRefGoogle Scholar
Bland, M. T., Sizemore, H. G., Buczkowski, D. L., et al. (2018) Why is Ceres lumpy? Surface deformation induced by solid-state subsurface flow. 49th Lunar and Planetary Science Conference, March, Houston, TX, Abstract #1627.Google Scholar
Bowling, T. J., Ciesla, F. J., Davison, T. M., et al. (2019) Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus, 320, 110118.Google Scholar
Boyce, J., Wilson, L., Mouginis-Mark, P. J., Hamilton, C. W., & Tornabene, L. L. (2012) Origin of small pits in martian impact craters. Icarus, 221, 262275.Google Scholar
Buczkowski, D. L., Schmidt, B. E., Williams, D. A., et al. (2016) The geomorphology of Ceres. Science, 353.Google Scholar
Buczkowski, D. L., Scully, J. E. C., Quick, L., et al. (2019) Tectonic analysis of fracturing associated with Occator crater. Icarus, 320, 4959.Google Scholar
Buczkowski, D. L., Sizemore, H. G., Bland, M. T., et al. (2018) Floor-fractured craters on Ceres and implications for interior processes. Journal of Geophysical Research, 123, 31883204.Google Scholar
Buczkowski, D. L., Williams, D. A., Scully, J. E. C., et al. (2017) The geology of the Occator quadrangle of dwarf planet Ceres: Floor-fractured craters and other geomorphic evidence of cryomagmatism, Icarus, 316, 128139.CrossRefGoogle Scholar
Castillo-Rogez, J. C., & McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Castillo-Rogez, J. C., Neveu, M., Scully, J. E. C., et al. (2020) Ceres: Astrobiological target and possible ocean world. Astrobiology, 20, 269291.Google Scholar
Chamberlain, M. A., Sykes, M. V., & Esquerdo, G. A. (2007) Ceres lightcurve analysis – Period determination. Icarus, 188, 451456.Google Scholar
Chilton, H. T., Schmidt, B. E., Duarte, K., et al. (2019) Landslides on Ceres: Inferences into ice content and layering in the upper crust. Journal of Geophysical Research, 124, 15121524.CrossRefGoogle Scholar
Combe, J.-Ph., McCord, T. B., Tosi, F., et al. (2016) Detection of local H2O exposed at the surface of Ceres. Science, 353, aaf3010.Google Scholar
Combe, J.-Ph., Raponi, A., Zambon, F., et al. (2019) Exposed H2O-rich areas detected on Ceres with the Dawn visible and infrared mapping spectrometer. Icarus, 318, 2241.CrossRefGoogle Scholar
Crown, D. A., Sizemore, H. G., Yingst, R. A., et al. (2018) Geologic mapping of the Urvara and Yalode Qudrangles of Ceres. Icarus, 316, 167190.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.Google Scholar
De Sanctis, M. C., Ammannito, E., Carrozzo, F. G., et al. (2018) Ceres’ global and localized mineralogical composition determined by Dawn’s Visible and Infrared Spectrometer (VIR). Meteoritic & Planetary Science, 53, 18441865.Google Scholar
De Sanctis, M. C., Ammannito, E., McSween, H., et al. (2017) Localized aliphatic organic material on the Surface of Ceres. Science, 355, 719722.CrossRefGoogle ScholarPubMed
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
De Sanctis, M. C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
Denevi, B. W., Blewett, D. T., Buczkowski, D. L., et al. (2012) Pitted terrain on Vesta and implications for the presence of volatiles. Science, 338, 246249.Google Scholar
Duarte, K., Schmidt, B. E., Chilton, H., et al. (2019) Landslides on Ceres: Diversity and geologic context. Journal of Geophysical Research, 124, 33293343.Google Scholar
Frigeri, A., Schmedemann, N., Williams, D. A., et al. (2018) The geology of the Nawish quadrangle of Ceres: The rim of an ancient basin. Icarus, 316, 114127.CrossRefGoogle Scholar
Greeley, R. (2013) Introduction to Planetary Geomorphology. New York: Cambridge University Press.Google Scholar
Hendrix, A. R., Hurford, T. A., Barge, L. M., et al. (2019) The NASA roadmap to ocean worlds. Astrobiology, 19, 1.Google Scholar
Hesse, M. A., & Castillo-Rogez, J. C. (2018) Thermal evolution of the impact-induced cryomagma chamber beneath Occator crater on Ceres. Geophysical Research Letters, 46, 12131221.Google Scholar
Hiesinger, H., Marchi, S., Schmedemann, N., et al. (2016) Cratering on Ceres: Implications for its crust and evolution. Science, 353, 4759.Google Scholar
Hughson, K., Russell, C. T., Schmidt, B. E., et al. (2019) Fluidized appearing ejecta on Ceres: Implications for the mechanical properties, frictional properties, and composition of its shallow subsurface. Journal of Geophysical Research, 124, 18191839.Google Scholar
Hughson, K., Russell, C. T., Williams, D. A., et al. (2018) The Ac-H-5 (Fejokoo) quadrangle of Ceres: Geologic map and geomorphological evidence for ground ice mediated surface processes. Icarus, 316, 6383.Google Scholar
Jaumann, R., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Jaumann, R., Preusker, F., Krohn, K., et al. (2017) Topography and geomorphology of the interior of Occator crater on Ceres. 48th Lunar and Planetary Science Conference, March, Houston, TX, Abstract #1440.Google Scholar
Jones, K.B., Head, J., Pappalardo, R. T., & Moore, J. M. (2003) Morphology and origin of palimpsests on Ganymede from Galileo observations. Icarus, 164, 197212.Google Scholar
Krohn, K., Jaumann, R., Otto, K. A., et al. (2018) The unique geomorphology and structural geology of the Haulani crater of dwarf planet Ceres as revealed by geological mapping of equatorial quadrangle Ac-6 Haulani. Icarus, 316, 8498.Google Scholar
Krohn, K., Jaumann, R., Stephan, K., et al. (2016) Cryogenic flow features on Ceres: Implications for crater-related cryovolcanism on dwarf planet Ceres. Geophysical Research Letters, 43, 1199412003.Google Scholar
Lebofsky, L. A., Sykes, M. V., Tedesco, E. F., et al. (1986) A refined ‘standard’ thermal model for asteroids based on observations of 1 Ceres and 2 Pallas. Icarus, 68, 239251.Google Scholar
Li, J.-Y., Mcfadden, L. A., Parker, J. W., et al. (2006) Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus, 182, 143160.Google Scholar
Marchi, S., Ermakov, A., Raymond, C. A., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, 12257.CrossRefGoogle ScholarPubMed
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012) The violent collisional history of asteroid 4 Vesta. Science, 336, 690693.CrossRefGoogle ScholarPubMed
McCord, T. B., Adams, J. B., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McCord, T. B., Castillo-Rogez, J. C., & Rivkin, A. (2011) Ceres: Its origin, evolution and structure and Dawn’s potential contribution. Space Science Reviews, 163, 6376.Google Scholar
McCord, T. B., & Sotin, C. (2005) Ceres: Evolution and current state. Journal of Geophysical Research, 110, E05009.Google Scholar
Mest, S. C., Crown, D. A., Berman, D. C., et al. (2018) The HAMO-based global geologic map and chronostratigraphy of Ceres. 49th Lunar and Planetary Science Conference, March, Houston, TX, Abstract #2730.Google Scholar
Michalak, G. (2000) Determination of asteroid masses – I. (1) Ceres, (2) Pallas and (4) Vesta. Astronomy & Astrophysics, 360, 363374.Google Scholar
Millis, R. L., Wasserman, L. H., Franz, O. G., et al. (1987) The size, shape, density, and albedo of Ceres from its occultation of BD+8°471. Icarus, 72, 507518.Google Scholar
Mitchell, D. L., Ostro, S. J., Hudson, R. S., et al. (1996) Radar observations of asteroids 1 Ceres, 2 Pallas, and 4 Vesta. Icarus, 124, 113133.Google Scholar
Nathues, A., Hoffmann, M., Platz, T., et al. (2016) FC color images of dwarf planet Ceres reveal a complicated geological history. Planetary and Space Science, 134, 122127.Google Scholar
Nathues, A., Platz, T., Hoffmann, M., et al. (2017a) Oxo crater on (1) Ceres: Geological history and the role of water-ice. Astronomical Journal, 154, 8496.Google Scholar
Nathues, A., Platz, T., Thangjam, G., et al. (2017b) Evolution of Occator crater on (1) Ceres. Astronomical Journal, 153,112123.Google Scholar
Nathues, A., Platz, T., Thangjam, G., et al. (2019) Occator crater in color at highest spatial resolution. Icarus, 320, 2438.Google Scholar
Nathues, A., Schmedemann, N., Thangjam, G., et al. (2020) Recent cryovolcanic activity at Occator crater on Ceres. Nature Astronomy, 4, 794801.Google Scholar
Neesemann, A., van Gesselt, S., Schmedemann, N., et al. (2019) The various ages of Occator crater, Ceres: Results of a comprehensive synthesis approach. Icarus, 320, 6082.Google Scholar
Ostro, S. J., Pettengill, G. H., Shapiro, I. I., Campbell, D. B., & Green, R. R. (1979) Radar observations of asteroid 1 Ceres. Icarus, 40, 355358.CrossRefGoogle Scholar
Otto, K. A., Marchi, S., Trowbridge, A., Melosh, H. J., & Sizemore, H. G. (2019) Ceres crater degradation inferred from concentric fracturing. Journal of Geophysical Research: Planets, 124, 11881203.Google Scholar
Park, R. S., Vaughan, A. T., Konopliv, A. S., et al. (2019) High-resolution shape model of Ceres from stereophotoclinometry using Dawn imaging data. Icarus, 319, 812827.Google Scholar
Pasckert, J. H., Hiesinger, H., Ruesch, O., et al. (2018) Geologic mapping of the Ac-2 Coniraya Quadrangle of Ceres from NASA’s Dawn Mission: Implications for a heterogeneously composed crust. Icarus, 316, 2845.Google Scholar
Pitjeva, E. V., & Standish, E. M. (2009) Proposals for the masses of the three largest asteroids, the Moon–Earth mass ratio and the astronomical unit. Celestial Mechanics & Dynamical Astronomy, 103, 365372.Google Scholar
Platz, T., Natheus, A., Sizemore, H. G., et al. (2018) Geological mapping of the Ac-10 Rongo Quadrangle of Ceres. Icarus, 316, 140153.Google Scholar
Preusker, F., Scholten, F., Matz, K.-D., et al. (2016) Dawn at Ceres – Shape model and rotational state. 47th Lunar and Planetary Science Conference, March, Houston, TX, Abstract #1954.Google Scholar
Quick, L. C., Buczkowski, D. L., Ruesch, O., et al. (2019) A possible brine reservoir beneath Occator crater: Thermal and compositional evolution and formation of the Cerealia dome and Vinalia Faculae. Icarus, 320, 119135.Google Scholar
Raponi, A., De Sanctis, M. C., Carrozzo, F. G., et al. (2019) Mineralogy of Occator crater on Ceres and insight into evolution from the properties carbonates, phyllosilicates, and chlorides. Icarus, 320, 8396.CrossRefGoogle Scholar
Raponi, A., De Sanctis, M. C., Frigeri, A., et al. (2018) Variations in the amount of water ice on Ceres’ surface suggest a seasonal water cycle. Science Advances, 4, eaao3757.Google Scholar
Raymond, C. A., Ermakov, A. I., Castillo-Rogez, J. C., et al. (2020) Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747,CrossRefGoogle Scholar
Rivkin, A. S., Li, J.-Y., Milliken, R. E., et al. (2011) The surface composition of Ceres. Space Science Reviews, 163, 95116.Google Scholar
Ruesch, O., Platz, T., Schenk, P., et al. (2016) Cryovolcanism on Ceres. Science, Volume 353.Google Scholar
Ruesch, O., Quick, L., Landis, M. E., et al. (2019) Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus, 320, 3948.Google Scholar
Ruiz, J., Jiménez-Díaz, A., Mansilla, F., et al. (2019) Evidence of thrust faulting and widespread contraction of Ceres. Nature Astronomy, 3, 916921.Google Scholar
Russell, C. T., & Raymond, C. A. (2011) The Dawn mission to Vesta and Ceres. Space Science Reviews, 163, 323.Google Scholar
Russell, C. T., Raymond, C. A., Ammannito, C. A., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 10081010.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanet paradigm. Science, 336, 684686.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, S., et al. (2012) The geologically recent giant impact basins at Vesta’s south pole. Science, 336, 694697.Google Scholar
Schenk, P., Scully, J., Buczkowski, D., et al. (2020) Impact-driven brine-melt, volatile distribution, and brine effusion in crater floor deposits on a transitional ice-salt-silicate-rich dwarf planet at Occator crater, Ceres. Nature Commications, 11, 3679.Google Scholar
Schenk, P., Sizemore, H. G., Schmidt, B., et al. (2019) The central pit and dome at Cerealia Facula bright deposit and floor deposits in Occator crater, Ceres: Morphology, comparisons and formation. Icarus, 320, 159187.CrossRefGoogle Scholar
Schmedemann, N., Kneissl, T., Neesemann, A., et al. (2016) Timing of optical maturation of recently exposed material on Ceres. Geophysical Research Letters, 43, 1198711993.Google Scholar
Schmidt, B. E., Hughson, K. H. G., Chilton, H. T., et al. (2017) Geomorphological evidence for ground ice on dwarf planet Ceres. Nature Geoscience, 10, 338343.CrossRefGoogle Scholar
Schmidt, B. E., Sizemore, H. G., Hughson, K. H. G., et al. (2020) Post-impact cryo-hydrologic formation of small mounds and hills in Ceres’ Occator crater. Nature Geoscience, 13, 605610.Google Scholar
Schröder, S. E., Mottola, S., Carsenty, U., et al. (2017) Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images. Icarus, 288, 201225.CrossRefGoogle Scholar
Scully, J. E. C., Bowling, T., Bu, , C., et al. (2019a) Synthesis of the special issue: The formation and evolution of Occator crater. Icarus, 320, 213225.Google Scholar
Scully, J. E. C., Buczkowski, D. L., Raymond, C. A., et al. (2019b) Ceres’ Occator crater and its faculae explored through geologic mapping. Icarus, 320, 723.Google Scholar
Scully, J. E. C., Buczkowski, D. L., Schmedemann, N., et al. (2017) Evidence for the interior evolution of Ceres from geologic analysis of fractures. Geophysical Research Letters, 44, 95649572.Google Scholar
Scully, J. E. C., Schenk, P. M., Castillo-Rogez, J. C., et al. (2020) The varied sources of faculae-forming brines in Ceres’ Occator crater, emplaced via hydrothermal brine effusion. Nature Communications, 11, 3680.Google Scholar
Sierks, H., Keller, H. U., Jaumann, R., et al. (2011) The Dawn Framing Camera. Space Science Reviews, 163, 263328.CrossRefGoogle Scholar
Sizemore, H. G., Platz, T., Prettyman, T. H., et al. (2017) Pitted terrain on dwarf planet Ceres: Morphological evidence for shallow volatiles at low and mid latitudes. Geophysical Research Letters, 44, 65706578.Google Scholar
Sizemore, H. G., Schmidt, B. E., Buczkowski, D. A., et al. (2019) A global inventory of ice-related morphological features on dwarf planet Ceres: Implications for the evolution and current state of the cryosphere. Journal of Geophysical Research, 124, 16501689.Google Scholar
Sori, M. M., Byrne, S., Bland, M. T., et al. (2017) The vanishing cryovolcanoes of Ceres. Geophysical Research Letters, 44, 12431250,Google Scholar
Spencer, J. R., Lebofsky, L. A., & Sykes, M. V. (1989) Systematic biases in radiometric diameter determinations. Icarus, 78, 337354.Google Scholar
Stein, N. T., Ehlmann, B. L., Palomba, E., et al. (2019) The formation and evolution of bright spots on Ceres. Icarus, 320, 188201.Google Scholar
Stephan, K., Jaumann, R., Krohn, K., et al. (2017) An investigation of the bluish material on Ceres. Geophysical Research Letters, 44, 16601668.Google Scholar
Stephan, K., Jaumann, R., Wagner, R., et al. (2018) Dantu’s mineralogical properties – A view into the composition of Ceres’ crust. Meteoritics & Planetary Science, 53, 18661883.Google Scholar
Stephan, K., Jaumann, R., Zambon, F., et al. (2019) Ceres’ craters – relationships between surface composition and geology. Icarus, 318, 5674.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997a) Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science, 277, 14921495.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997b) Vesta: Spin pole, size and shape from HST images, Icarus, 128, 8894.Google Scholar
Thomas, P. C., Parker, J. W., McFadden, L. A., et al. (2005) Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224226.Google Scholar
Tornabene, L., Osinski, G. R., McEwen, A. S., et al. (2012) Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process. Icarus, 220, 348368.Google Scholar
Viateau, B., & Rapport, N. (2001) Mass and density of asteroids (4) Vesta and (11) Parthenope. Astronomy & Astrophysics, 370, 602609.Google Scholar
Williams, D. A., Buczkowski, D. L., Mest, S. C., et al. (2018a) Introduction: The geological mapping of Ceres. Icarus, 316, 113.Google Scholar
Williams, D. A., Kneissl, T., Neesemann, A., et al. (2018b) The geology of the Kerwan quadrangle of dwarf planet Ceres: Investigating Ceres’ oldest impact basin. Icarus, 316, 99113.Google Scholar
Zolotov, M. Y. (2009) On the composition and differentiation of Ceres. Icarus, 204, 183193.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×