Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T22:13:54.814Z Has data issue: false hasContentIssue false

13 - Formation of Main Belt Asteroids

from Part III - Implications for the Formation and Evolution of the Solar System

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

From the viewpoint of planet formation in the Solar System, Main Belt asteroids are the remnants of the so-called planetesimal population, the building bricks of planets that formed ubiquitously all over the Solar Nebula. Over the last years evidence has grown that planetesimals formed big from the gravitational collapse of a local accumulation of mm–cm sized so-called pebbles, rather than small, as models of collisional coagulation would suggest. The precise size distribution of original planetesimals remains a central question in planetology. An asteroid (and other small bodies) could be a fragment of a larger parent body or it could be an original planetesimal. Here, we outline observational and theoretical constraints on the formation of MBAs. We discuss the current state of research on the size–frequency distribution, the ages of asteroids, and the implications on the formation of asteroids. We review planetesimal formation theory, specifically focusing on the initial sizes of primordial planetesimals.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 199 - 211
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abod, C. P., Simon, J. B., Li, R., et al. (2019) The mass and size distribution of planetesimals formed by the streaming instability. II. The effect of the radial gas pressure gradient. The Astrophysical Journal, 883, 192.Google Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., & Ulyanov, A. A. (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 16781683.Google Scholar
Andrews, S. M., Huang, J., Pérez, L. M., et al. (2018) The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, sample, calibration, and overview. The Astrophysical Journal, 869, L41.Google Scholar
Bai, X.-N., & Stone, J. M. (2010) Dynamics of solids in the midplane of protoplanetary disks: Implications for planetesimal formation. The Astrophysical Journal, 722, 14371459.Google Scholar
Balbus, S. A., Hawley, J. F. (1991) A powerful local shear instability in weakly magnetized disks. I. Linear analysis. The Astrophysical Journal, 376, 214.CrossRefGoogle Scholar
Barge, P., & Sommeria, J. (1995) Did planet formation begin inside persistent gaseous vortices? Astronomy and Astrophysics, 295, L1L4.Google Scholar
Birnstiel, T., Klahr, H., & Ercolano, B. (2012) A simple model for the evolution of the dust population in protoplanetary disks. Astronomy and Astrophysics, 539, A148.CrossRefGoogle Scholar
Bolin, B. T., Delbo, M., Morbidelli, A., & Walsh, K. J. (2017). Yarkovsky V-shape identification of asteroid families. Icarus, 282, 290312.CrossRefGoogle Scholar
Bottke, W. F., Durda, D. D., Nesvorný, D., et al. (2005) The fossilized size distribution of the main asteroid belt. Icarus, 175, 111140.Google Scholar
Bottke, W. F., Vokrouhlický, D., Rubincam, D. P., & Nesvorný, D. (2006) The Yarkovsky and Yorp effects: Implications for asteroid dynamics. Annual Review of Earth and Planetary Sciences, 34, 157191.Google Scholar
Brasil, P. I. O., Roig, F., Nesvorný, D., et al. (2016) Dynamical dispersal of primordial asteroid families. Icarus, 266, 142151.Google Scholar
Brož, M., Morbidelli, A., Bottke, W. F., et al. (2013) Constraining the cometary flux through the asteroid belt during the late heavy bombardment. Astronomy and Astrophysics, 551, A117.Google Scholar
Carrera, D., Johansen, A., & Davies, M. B. (2015) How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astronomy and Astrophysics, 579, A43.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651.Google Scholar
Cuzzi, J. N., Hogan, R. C., Paque, J. M., & Dobrovolskis, A. R. (2001) Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. The Astrophysical Journal, 546, 496508.Google Scholar
Cuzzi, J. N., Hogan, R. C., & Shariff, K. (2008) Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. The Astrophysical Journal, 687, 14321447.Google Scholar
Davis, D. R., Chapman, C. R., Weidenschilling, S. J., & Greenberg, R. (1985) Collisional history of asteroids: Evidence from Vesta and the Hirayama families. Icarus, 62, 3053.CrossRefGoogle Scholar
DeFelice, J. D., Friedrich, J. M., Ebel, D. S., Flores, K. E., & Weisberg, M. K. (2019) Analysis of the shapes of CAIs in CV chondrites using 2D and 3D petrography. Lunar and Planetary Science Conference, 2919.Google Scholar
Delbo, M., Avdellidou, C., & Morbidelli, A. (2019) Ancient and primordial collisional families as the main sources of X-type asteroids of the inner Main Belt. Astronomy and Astrophysics, 624, A69.Google Scholar
Delbo, M., Walsh, K., Bolin, B., Avdellidou, C., & Morbidelli, A. (2017) Identification of a primordial asteroid family constrains the original planetesimal population. Science, 357, 10261029.CrossRefGoogle ScholarPubMed
Dittrich, K., Klahr, H., & Johansen, A. (2013) Gravoturbulent planetesimal formation: The positive effect of long-lived zonal flows. The Astrophysical Journal, 763, 117.Google Scholar
Durda, D. D., Bottke, W. F., Nesvorný, D., et al. (2007) Size-frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families. Icarus, 186, 498516.CrossRefGoogle Scholar
Gail, H.-P., & Trieloff, M. (2019) Thermal history modelling of the L chondrite parent body. Astronomy and Astrophysics, 628, A77.Google Scholar
Gerbig, K., Lenz, C. T., & Klahr, H. (2019) Linking planetesimal and dust content in protoplanetary disks via a local toy model. Astronomy and Astrophysics, 629, A116.Google Scholar
Gerbig, K., Murray-Clay, R. A., Klahr, H., & Baehr, H. (2020) Requirements for gravitational collapse in planetesimal formation – The impact of scales set by Kelvin-Helmholtz and nonlinear streaming instability. The Astrophysical Journal, 895, 91.CrossRefGoogle Scholar
Goldreich, P., & Ward, W. R. (1973) The formation of planetesimals. The Astrophysical Journal, 183, 10511062.Google Scholar
Gole, D. A., Simon, J. B., Li, R., Youdin, A. N., & Armitage, P. J. (2020) Turbulence regulates the rate of planetesimal formation via gravitational collapse. The Astrophysical Journal, 904, 132.Google Scholar
Gómez, G. C., Ostriker, E. C. (2005) The effect of the coriolis force on Kelvin-Helmholtz-driven mixing in protoplanetary disks. The Astrophysical Journal, 630, 10931106.CrossRefGoogle Scholar
Haisch, K. E., Lada, E. A., & Lada, C. J. (2001) Disk frequencies and lifetimes in young clusters. The Astrophysical Journal, 553, L153L156.Google Scholar
Hayashi, C. (1981) Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Progress of Theoretical Physics Supplement, 70, 3553.CrossRefGoogle Scholar
Henke, S., Gail, H.-P., Trieloff, M., Schwarz, W. H., & Kleine, T. (2012) Thermal history modelling of the H chondrite parent body. Astronomy and Astrophysics, 545, A135.CrossRefGoogle Scholar
Johansen, A., Henning, T., & Klahr, H. (2006a) Dust sedimentation and self-sustained Kelvin-Helmholtz turbulence in protoplanetary disk midplanes. The Astrophysical Journal, 643, 12191232.Google Scholar
Johansen, A., Klahr, H., & Henning, T. (2006b) Gravoturbulent formation of planetesimals. The Astrophysical Journal, 636, 11211134.CrossRefGoogle Scholar
Johansen, A., Mac Low, M.-M., Lacerda, P., & Bizzarro, M. (2015) Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Science Advances, 1, 1500109.Google Scholar
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature, 448, 10221025.Google Scholar
Johansen, A., & Youdin, A. (2007) Protoplanetary disk turbulence driven by the streaming instability: Nonlinear saturation and particle concentration. The Astrophysical Journal, 662, 627641.Google Scholar
Johansen, A., Youdin, A. N., & Lithwick, Y. (2012) Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astronomy and Astrophysics, 537, A125.Google Scholar
Klahr, H., & Bodenheimer, P. (2006) Formation of giant planets by concurrent accretion of solids and gas inside an anticyclonic vortex. The Astrophysical Journal, 639, 432440.Google Scholar
Klahr, H. H., & Henning, T. (1997) Particle-trapping eddies in protoplanetary accretion disks. Icarus, 128, 213229.Google Scholar
Klahr, H., Pfeil, T., & Schreiber, A. (2018) Instabilities and flow structures in protoplanetary disks: Setting the stage for planetesimal formation. Handbook of Exoplanets, 138, 22512286.CrossRefGoogle Scholar
Klahr, H., & Schreiber, A. (2016) Linking the origin of asteroids to planetesimal formation in the solar nebula. Asteroids: New Observations, New Models, 318, 18.Google Scholar
Klahr, H., & Schreiber, A. (2020) Turbulence sets the length scale for planetesimal formation: Local 2D simulations of streaming instability and planetesimal formation. The Astrophysical Journal, 901, 54.Google Scholar
Kokubo, E., & Ida, S. (2012) Dynamics and accretion of planetesimals. Progress of Theoretical and Experimental Physics, 2012, 01A308.CrossRefGoogle Scholar
Kruijer, T. S., Burkhardt, C., Budde, G., & Kleine, T. (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Science (USA), 114, 67126716.Google Scholar
Kruijer, T. S., Kleine, T., & Borg, L. E. (2020) The great isotopic dichotomy of the early Solar System. Nature Astronomy, 4, 3240.Google Scholar
Kruijer, T. S., Touboul, M., Fischer-Gödde, M., et al. (2014) Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.Google Scholar
Lenz, C. T., Klahr, H., & Birnstiel, T. (2019) Planetesimal population synthesis: Pebble flux-regulated planetesimal formation. The Astrophysical Journal, 874, 36.Google Scholar
Lenz, C. T., Klahr, H., Birnstiel, T., Kretke, K., & Stammler, S. (2020) Constraining the parameter space for the solar nebula. The effect of disk properties on planetesimal formation. Astronomy and Astrophysics, 640, A61.Google Scholar
Li, R., Youdin, A. N., & Simon, J. B. (2018) On the numerical robustness of the streaming instability: Particle concentration and gas dynamics in protoplanetary disks. The Astrophysical Journal, 862, 14.Google Scholar
Li, R., Youdin, A. N., & Simon, J. B. (2019) Demographics of planetesimals formed by the streaming instability. The Astrophysical Journal, 885, 69.Google Scholar
Liu, B., Ormel, C. W., & Johansen, A. (2019) Growth after the streaming instability. From planetesimal accretion to pebble accretion. Astronomy and Astrophysics, 624, A114.CrossRefGoogle Scholar
Mac Low, M.-M., & Klessen, R. S. (2004) Control of star formation by supersonic turbulence. Reviews of Modern Physics, 76, 125194.Google Scholar
Manger, N., & Klahr, H. (2018) Vortex formation and survival in protoplanetary discs subject to vertical shear instability. Monthly Notices of the Royal Astronomical Society, 480, 21252136.CrossRefGoogle Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012) The violent collisional history of asteroid 4 Vesta. Science, 336, 690.Google Scholar
Michel, P., Benz, W., Tanga, P., & Richardson, D. C. (2001) Collisions and gravitational reaccumulation: Forming asteroid families and satellites. Science, 294, 16961700.Google Scholar
Michel, P., & Richardson, D. C. (2013) Collision and gravitational reaccumulation: Possible formation mechanism of the asteroid Itokawa. Astronomy and Astrophysics, 554, L1.Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorný, D., & Levison, H. F. (2009) Asteroids were born big. Icarus, 204, 558573.CrossRefGoogle Scholar
Morbidelli, A., Libourel, G., Palme, H., Jacobson, S. A., & Rubie, D. C. (2020) Subsolar Al/Si and Mg/Si ratios of non-carbonaceous chondrites reveal planetesimal formation during early condensation in the protoplanetary disk. Earth and Planetary Science Letters, 538, 116220.Google Scholar
Nakagawa, Y., Sekiya, M., & Hayashi, C. (1986) Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus, 67, 375390.Google Scholar
Nesvorný, D., Bottke, W. F., Levison, H. F., & Dones, L. (2003) Recent origin of the Solar System dust bands. The Astrophysical Journal, 591, 486497.Google Scholar
Nesvorný, D., Brož, M., & Carruba, V. (2015) Identification and dynamical properties of asteroid families. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 297321.Google Scholar
Nesvorný, D., Li, R., Youdin, A. N., Simon, J. B., & Grundy, W. M. (2019) Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nature Astronomy, 3, 808812.Google Scholar
Nesvorný, D., Vokrouhlický, D., Bottke, W. F., & Levison, H. F. (2018) Evidence for very early migration of the Solar System planets from the Patroclus-Menoetius binary Jupiter Trojan. Nature Astronomy, 2, 878882.Google Scholar
Ormel, C. W., & Klahr, H. H. (2010) The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astronomy and Astrophysics, 520, A43.Google Scholar
Oszkiewicz, D., Kankiewicz, P., Włodarczyk, I., & Kryszczyńska, A. (2015) Differentiation signatures in the Flora region. Astronomy and Astrophysics, 584, A18.Google Scholar
Raettig, N., Klahr, H., & Lyra, W. (2015) Particle trapping and streaming instability in vortices in protoplanetary disks. The Astrophysical Journal, 804, 35.CrossRefGoogle Scholar
Safronov, V. S. (1969) Evoliutsiia doplanetnogo oblaka. Evolution of the protoplanetary cloud and formation of the earth and planets. Translated from Russian. Jerusalem: Israel Program for Scientific Translations, Keter Publishing House, 212 p.Google Scholar
Schreiber, A., & Klahr, H. (2018) Azimuthal and vertical streaming instability at high dust-to-gas ratios and on the scales of planetesimal formation. The Astrophysical Journal, 861, 47.Google Scholar
Sekiya, M., & Ishitsu, N. (2000) Shear instabilities in the dust layer of the solar nebula I. The linear analysis of a non-gravitating one-fluid model without the Coriolis and the solar tidal forces. Earth, Planets, and Space, 52, 517526.Google Scholar
Sekiya, M., & Onishi, I. K. (2018) Two key parameters controlling particle clumping caused by streaming instability in the dead-zone dust layer of a protoplanetary disk. The Astrophysical Journal, 860, 140.Google Scholar
Shakura, N. I., & Sunyaev, R. A. (1973) Black holes in binary systems. Observational appearance. Astronomy and Astrophysics, 500, 3351.Google Scholar
Simon, J. B., Armitage, P. J., Li, R., & Youdin, A. N. (2016) The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. The Astrophysical Journal, 822, 55.Google Scholar
Spoto, F., Milani, A., & Knežević, Z. (2015) Asteroid family ages. Icarus, 257, 275289.Google Scholar
Squire, J., & Hopkins, P. F. (2018) Resonant drag instabilities in protoplanetary discs: The streaming instability and new, faster growing instabilities. Monthly Notices of the Royal Astronomical Society, 477, 50115040.Google Scholar
Sugiura, N., & Fujiya, W. (2014) Correlated accretion ages and ∊54Cr of meteorite parent bodies and the evolution of the solar nebula. Meteoritics and Planetary Science, 49, 772787.Google Scholar
Throop, H. B., & Bally, J. (2005) Can photoevaporation trigger planetesimal formation? The Astrophysical Journal, 623, L149L152.Google Scholar
Toomre, A. (1964) On the gravitational stability of a disk of stars. The Astrophysical Journal, 139, 12171238.Google Scholar
Tsirvoulis, G., Morbidelli, A., Delbo, M., & Tsiganis, K. (2018) Reconstructing the size distribution of the primordial Main Belt. Icarus, 304, 1423.Google Scholar
Umurhan, O. M., Estrada, P. R., & Cuzzi, J. N. (2020) Streaming instability in turbulent protoplanetary disks. The Astrophysical Journal, 895, 4.Google Scholar
Urpin, V., & Brandenburg, A. (1998) Magnetic and vertical shear instabilities in accretion discs. Monthly Notices of the Royal Astronomical Society, 294, 399406.Google Scholar
Vokrouhlický, D., Bottke, W. F., Chesley, S. R., Scheeres, D. J., & Statler, T. S. (2015) The Yarkovsky and YORP effects. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 509531.Google Scholar
Walsh, K. J., Delbó, M., Bottke, W. F., Vokrouhlický, D., & Lauretta, D. S. (2013) Introducing the Eulalia and new Polana asteroid families: Re-assessing primitive asteroid families in the inner Main Belt. Icarus, 225, 283297.CrossRefGoogle Scholar
Windmark, F., Birnstiel, T., Güttler, C., et al. (2012) Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. Astronomy and Astrophysics, 540, A73.Google Scholar
Yang, C.-C., Johansen, A., & Carrera, D. (2017) Concentrating small particles in protoplanetary disks through the streaming instability. Astronomy and Astrophysics, 606, A80.Google Scholar
Youdin, A. N., & Goodman, J. (2005) Streaming instabilities in protoplanetary disks. The Astrophysical Journal, 620, 459469.Google Scholar
Youdin, A. N., & Lithwick, Y. (2007) Particle stirring in turbulent gas disks: Including orbital oscillations. Icarus, 192, 588604.Google Scholar
Youdin, A. N., & Shu, F. H. (2002) Planetesimal formation by gravitational instability. The Astrophysical Journal, 580, 494505.Google Scholar
Zappala, V., Cellino, A., Farinella, P., & Knezevic, Z. (1990) Asteroid families. I. Identification by hierarchical clustering and reliability assessment. The Astronomical Journal, 100, 2030.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×