Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T22:05:58.697Z Has data issue: false hasContentIssue false

16 - Collisional Evolution of the Main Belt as Recorded by Vesta

from Part III - Implications for the Formation and Evolution of the Solar System

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

Vesta’s surface is dominated by two overlapping impact basins: the older ~400 km Veneneia basin and the younger ~500 km diameter Rheasilvia basin.Their age and nature, along with the ejecta they produced in the form of V-type asteroids, can help us probe Vesta’s evolution.By modeling the production of craters superposed on these basins or on features created by their formation, we predict Veneneia and Rheasilvia basins are 3.2–3.5 Ga and ~1 Ga, respectively. Numerical models indicate they were created by the impact of ~60–70 km projectiles. These impacts likely dredged up material formed at >50 km depths within Vesta. The evidence for the formation time of Veneneia and Rheasilvia in the eucrite and howardite meteorite record exists but is limited. The absence of an obvious spike of 40Ar/39Ar shock degassing ages may be a consequence of low Main Belt impact velocities (< 5 km/s). Most V-type asteroids in the inner main belt are ejecta from one of these two basins. The scattered and limited population of V-types in the central and outer main belt have no clear source. We postulate they are fragments from Vesta-like bodies that originally formed in the terrestrial planet region.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 250 - 261
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammannito, E., De Sanctis, M. E., Palomba, E., et al. (2013) Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122.Google Scholar
Asphaug, E. (1997) Impact origin of the Vesta family. Meteoritics & Planetary Science, 32, 965980.Google Scholar
Asphaug, E., Collins, G., & Jutzi, M. (2015) Global scale impacts. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 661677.Google Scholar
Barboni, M., Boehnke, P., Keller, B., et al. (2017) Early formation of the Moon 4.51 billion years ago. Science Advances, 3, e1602365.Google Scholar
Binzel, R. P., & Xu, S. (1993) Chips off of asteroid 4 Vesta – Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.Google Scholar
Blackburn, T., Alexander, C. M. O., Carlson, R., & Elkins-Tanton, L. T. (2017) The accretion and impact history of the ordinary chondrite parent bodies. Geochimica et Cosmochimica Acta, 200, 201.Google Scholar
Bogard, D. D. (1995) Impact ages of meteorites: A synthesis. Meteoritics, 30, 244268.Google Scholar
Bogard, D. D. (2011) K–Ar ages of meteorites: Clues to parent body thermal histories. Chemie der Erde, 71, 207226.CrossRefGoogle Scholar
Bogard, D. D., & Garrison, D. H. (2003) 39Ar/40Ar ages of eucrites and the thermal history of asteroid 4 Vesta. Meteoritics & Planetary Science, 38, 669710.Google Scholar
Bottke, W. F. (2014) On the origin and evolution of Vesta and the V-type asteroids. Vesta in the Light of Dawn: First Exploration of a Protoplanet in the Asteroid Belt, February 3–4, Houston, TX, 2024.Google Scholar
Bottke, W. F., Brož, M., O’Brien, D. P., et al. (2015a) The collisional evolution of the asteroid belt. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 701724.Google Scholar
Bottke, W. F., Durda, D. D., Nesvorny, D., et al. (2005) Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus, 179, 6394.Google Scholar
Bottke, W. F., Nesvorný, D., Grimm, R. E., Morbidelli, A., & O’Brien, D. P. (2006a) Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.Google Scholar
Bottke, W. F., Nolan, M. C., Greenberg, R., & Kolvoord, R. A. (1994) Velocity distributions among colliding asteroids. Icarus, 107, 255268.Google Scholar
Bottke, W. F., & Norman, M. (2017) The late heavy bombardment. Annual Review of Earth and Planetary Science, 45, 619647.Google Scholar
Bottke, W. F., Vokrouhlický, D., Ballouz, R.-L., et al. (2020) Interpreting the cratering histories of Bennu, Ryugu, and other spacecraft-explored asteroids. The Astronomical Journal, 160, 14.CrossRefGoogle Scholar
Bottke, W. F., Vokrouhlický, D., Marchi, S., et al. (2015b) Dating the Moon-forming impact event with asteroidal meteorites. Science, 348, 321323.Google Scholar
Bottke, W. F., Vokrouhlický, D., Rubincam, D. P., & Nesvorný, D. (2006b) The Yarkovsky and YORP effects: Implications for asteroid dynamics. Annual Review of Earth and Planetary Science, 34, 157191.Google Scholar
Bowling, T. J., Johnson, B. C., Melosh, H. J., et al. (2013) Antipodal terrains created by the Rheasilvia basin forming impact on asteroid 4 Vesta. Journal of Geophysical Research: Planets, 118, 18211834.Google Scholar
Brasil, P. I. O., Roig, F., Nesvorný, D., & Carruba, V. (2017) Scattering V-type asteroids during the giant planet instability: A step for Jupiter, a leap for basalt. Monthly Notices of the Royal Astronomical Society, 468, 1236.Google Scholar
Brož, M., Morbidelli, A., Bottke, W. F., et al. (2013) Constraining the cometary flux through the asteroid belt during the late heavy bombardment. Astronomy & Astrophysics, 551, A117.Google Scholar
Buczkowski, D. L., Wyrick, D. Y., Iyer, K. A., et al. (2012) Large-scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters, 39, L18205.Google Scholar
Clement, M. S., Kaib, N. A., Raymond, S. N., & Walsh, K. J. (2018) Mars’ growth stunted by an early giant planet instability. Icarus, 311, 340356.CrossRefGoogle Scholar
Clenet, H., Jutzi, M., Barrat, J.-A., et al. (2014) A deep crust-mantle boundary in the asteroid 4 Vesta. Nature, 511, 303306.Google Scholar
Consolmagno, G. J., Golabek, G. J., Turrini, D., et al. (2015) Is Vesta an intact and pristine protoplanet? Icarus, 254, 190201.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.CrossRefGoogle ScholarPubMed
Delbo, M., Gai, M., Lattanzi, M. G., et al. (2006) MIDI observations of 1459 Magnya: First attempt of interferometric observations of asteroids with the VLTI. Icarus, 181, 618.Google Scholar
DellaGiustina, D. N., Kaplan, H. H., Simon, A. A., et al. (2021) Exogenic basalt on asteroid (101955) Bennu. Nature Astronomy, 5, 18.Google Scholar
Emsenhuber, A., Jutzi, M., & Benz, W. (2018) SPH calculations of planet-scale collisions: The role of the Equation of State, material rheologies, and numerical effects. Icarus, 301, 247257.CrossRefGoogle Scholar
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. (2014) Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.Google Scholar
Holsapple, K. A., & Housen, K. R. (2007) A crater and its ejecta: An interpretation of deep impact. Icarus, 187, 345356.CrossRefGoogle Scholar
Hopkins, M. D., Mojzsis, S. J., Bottke, W. F., & Abramov, O. (2015) Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus, 245, 367378.Google Scholar
Ivanov, B. A., & Melosh, H. J. (2013) Two-dimensional numerical modeling of the Rheasilvia impact formation. Journal of Geophysical Research: Planets, 118, 15451557.Google Scholar
Jaumann, R. J., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Jourdan, F., Kennedy, T., Benedix, G. K., Eroglu, E., & Mayer, C. (2020) Timing of the magmatic activity and upper crustal cooling of differentiated asteroid 4 Vesta. Geochimica et Cosmochimica Acta, 273, 205.CrossRefGoogle Scholar
Jutzi, M., & Asphaug, E. (2011) Mega-ejecta on asteroid Vesta. Geophysical Research Letters, 38, 1102.Google Scholar
Jutzi, M., Asphaug, E., Gillet, P., Barrat, J.-A.,n & Benz, W. (2013) The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature, 494, 207210.Google Scholar
Jutzi, M., Michel, P., & Richardson, D. C. (2019) Fragment properties from large-scale asteroid collisions: I: Results from SPH/N-body simulations using porous parent bodies and improved material models. Icarus, 317, 215228Google Scholar
Kennedy, T., Jourdan, F., Eroglu, E., & Mayers, C. (2019) Bombardment history of asteroid 4 Vesta recorded by brecciated eucrites: Large impact event clusters at 4.50 Ga and discreet bombardment until 3.47 Ga. Geochimica et Cosmochimica Acta, 260, 99.Google Scholar
Knežević, Z., & Milani, A. (2003) Proper element catalogs and asteroid families. Astronomy & Astrophysics, 403, 11651173.Google Scholar
Le Corre, L., Reddy, V., Schmedemann, N., et al. (2013) Olivine or impact melt: Nature of the “Orange” material on Vesta from Dawn. Icarus, 226, 1568.Google Scholar
Licandro, J., Popescu, M., Morate, D., & de Leon, J. (2017) V-type candidates and Vesta family asteroids in the Moving Objects VISTA (MOVIS) catalogue. Astronomy & Astrophysics, 600, A126.Google Scholar
Lindsay, F. N., Delaney, J. S., Herzog, G. F., et al. (2015) Rheasilvia provenance of the Kapoeta howardite inferred from 1 Ga 40Ar/39Ar feldspar ages. Earth and Planetary Science Letters, 413, 208.Google Scholar
Mandler, B. E., & Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.CrossRefGoogle Scholar
Mansour, J.-A., Popescu, M., de Leon, J., & Licandro, J. (2020) Distribution and spectrophotometric classification of basaltic asteroids. Monthly Notices of the Royal Astronomical Society, 491, 5966.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B. A., et al. (2013a) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geosciences, 6, 303307.Google Scholar
Marchi, S., Bottke, W. F., O’Brien, D. P., et al. (2013b) Small crater populations on Vesta. Planetary and Space Science, 103, 96103.Google Scholar
Marchi, S., Chapman, C. R., Barnouin, O. S., Richardson, J. E., & Vincent, J.-B. (2015) Cratering on asteroids. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 725744.Google Scholar
Marchi, S., Ermakov, A. I., Raymond, C. A., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, eid. 12257.CrossRefGoogle ScholarPubMed
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012) The violent collisional history of asteroid 4 Vesta. Science, 336, 690693.Google Scholar
Masiero, J. R., DeMeo, F. E., Kasuga, T., & Parker, A. H. (2015) Asteroid family physical properties. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 323340.Google Scholar
Masiero, J. R., Mainzer, A. K., Grav, T., et al. (2012) Preliminary analysis of WISE/NEOWISE 3-band cryogenic and post-cryogenic observations of Main Belt asteroids. The Astrophysical Journal Letters, 759, 5.Google Scholar
McSween, H. J., Ammannito, E., Reddy, V., et al. (2013) Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research, 118, 335346.CrossRefGoogle Scholar
McSween, H. Y., Raymond, C. A., Stolper, E. M., et al. (2019) Differentiation and magmatic history of Vesta: Constraints from HED meteorites and Dawn spacecraft data. Chemie der Erde – Geochemistry, 79, 125526.Google Scholar
Michel, P., Benz, W., & Richardson, D. C. (2003) Disruption of fragmented parent bodies as the origin of asteroid families. Nature, 421, 608.CrossRefGoogle ScholarPubMed
Michel, P., Benz, W. Tanga, P., & Richardson, D. C. (2001) Collisions and gravitational reaccumulation: Forming asteroid families and satellites. Science, 294, 1696.Google Scholar
Mizzon, H., Monnereau, M., Toplis, M. J., et al. (2015) A numerical model of the physical and chemical evolution of Vesta based on compaction equations and the olivine-anorthite-silica ternary diagram. Lunar and Planetary Science Conference, 46, 1832.Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorný, D., & Levison, H. (2009). Asteroids were born big. Icarus, 204, 558573.Google Scholar
Morbidelli, A., Walsh, K. J., O’Brien, D. P., Minton, D. A., & Bottke, W. F. (2015) The dynamical evolution of the asteroid belt. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 493508.Google Scholar
Moskovitz, N. A., Jedicke, R., Gaidos, E., et al. (2008) The distribution of basaltic asteroids in the Main Belt. Icarus, 198, 77.Google Scholar
Nesvorný, D., Brož, M., & Carruba, V. (2015) Identification and dynamical properties of asteroid families. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 297321.Google Scholar
Nesvorný, D., Roig, F., & Bottke, W. F. (2017) Modeling the historical flux of planetary impactors. The Astronomical Journal, 153, 103.Google Scholar
Nesvorný, D., Roig, F., Gladman, B., et al. (2008) Fugitives from the Vesta family. Icarus, 193, 85.Google Scholar
Nesvorný, D., Vokrouhlický, D., Bottke, W. F., & Levison, H. F. (2018) Evidence for very early migration of the Solar System planets from the Patroclus-Menoetius binary Jupiter Trojan. Nature Astronomy, 2, 878882.Google Scholar
Neumann, W., Breuer, D., & Spohn, T. (2014) Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Otto, K. A., Jaumann, R., Krohn, K., et al. (2016) The Coriolis effect on mass wasting during the Rheasilvia impact on asteroid Vesta. Geophysical Research Letters, 43, 1234012347.Google Scholar
Park, J., Turrin, B. D., Herzog, G. F., et al. (2015) 40Ar/39Ar age of material returned from asteroid 25143 Itokawa. Meteoritics & Planetary Science, 50, 20872098.CrossRefGoogle Scholar
Parker, A. H., Ivezić, Ž., Jurić, M., et al. (2008) The size distributions of asteroid families in the SDSS Moving Object Catalog 4. Icarus, 198, 138155.Google Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. Jr. (2017) Dawn at Vesta: Paradigms and Paradoxes. In Linda, B. P. W., & Elkins-Tanton, T. (eds.), Planetisimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 321339.Google Scholar
Raymond, S. N., & Izidoro, A. (2017) The empty primordial asteroid belt. Science Advances, 3, e1701138.Google Scholar
Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., & Min, K. (2011) Response to the comment by W. H. Schwarz et al. on the “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P. R. Renne et al. (2010). Geochimica et Cosmochimica Acta, 75, 50975100.Google Scholar
Renne, P. R., Mundil, R., Balco, G., et al. (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta, 74, 53495367.CrossRefGoogle Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, S., et al. (2012) The geologically recent giant impact basins at Vestas South Pole. Science, 336, 694697.CrossRefGoogle Scholar
Schwarz, W. H., Kossert, K., Trieloff, M., & Hopp, J. (2011) Comment on the “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by Paul R. Renne et al. (2010). Geochimica et Cosmochimica Acta, 75, 50945096.Google Scholar
Scott, E. R. D., and Bottke, W. F. (2011) Impact histories of angrites, eucrites, and their parent bodies. Meteoritics & Planetary Science, 46, 18781887.Google Scholar
Scott, E. R. D., Keil, K., Goldstein, J. I., et al. (2015) Early impact history and dynamical origin of differentiated meteorites and asteroids. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 573596.Google Scholar
Solontoi, M. R., Hammergren, M., Gyuk, G., Puckett, A. 2012. AVAST survey 0.4–1.0 μm spectroscopy of igneous asteroids in the inner and middle Main Belt. Icarus, 220, 577.Google Scholar
Spoto, F., Milani, A., & Knežević, Z. (2015) Asteroid family ages. Icarus, 257, 275289.Google Scholar
Steiger, R. H., & Jäger, E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359362.Google Scholar
Stickle, A. M., Schultz, P. H., and Crawford, D. A. (2015) Subsurface failure in spherical bodies: A formation scenario for linear troughs on Vesta’s surface. Icarus, 247, 1834.CrossRefGoogle Scholar
Swindle, T. D., Kring, D. A., & Wierich, J. R. (2013) 40Ar/39Ar ages of impacts involving ordinary chondrite meteorites. In Advances in 40Ar/39Ar Dating: from Archeaology to Planetary Sciences. Geological Society of London, Special Publications, 378, 333347.Google Scholar
Trieloff, M., Jessberger, E. K., Herrwerth, I., et al. (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 422, 502506.CrossRefGoogle ScholarPubMed
Vernazza, P., Jorda, L., Ševeček, P., et al. (2020) A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea. Nature Astronomy, 4, 136141.CrossRefGoogle Scholar
Vokrouhlický, D., Bottke, W. F., Chesley, S. R., Scheeres, D. J., & Statler, T. S. (2015) The Yarkovsky and YORP effects. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 509532.Google Scholar
Vokrouhlický, D., Bottke, W. F., & Nesvorný, D. (2016) Capture of trans-Neptunian planetesimals in the main asteroid belt. The Astronomical Journal, 152, 39.Google Scholar
Vokrouhlický, D., Bottke, W. F., & Nesvorný, D. (2017) Forming the Flora family: Implications for the near-Earth asteroid population and large terrestrial planet impactors. The Astronomical Journal, 153, 172.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Yingst, R. A., Mest, S. C., Berman, D. C., et al. (2014) Geologic mapping of Vesta. Planetary and Space Science, 103, 2.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×