Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T22:15:21.781Z Has data issue: false hasContentIssue false

7 - Ceres’ Surface Composition

from Part II - Key Results from Dawn’s Exploration of Vesta and Ceres

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

Ceres’ composition has been a long-standing issue since the first ground-based observations because of its peculiar spectrum and lack of an established connection with meteorites. NASA’s Dawn mission acquired unprecedented measurements of the surface of the dwarf planet Ceres, bringing a breakthrough in the comprehension of the mineralogy of the surface. Ceres’ surface is a mixture of ultra-carbonaceous material, Mg-phyllosilicates, NH4-phyllosilicates, carbonates, organics, Fe-oxides, and volatiles, as determined by remote sensing instruments onboard Dawn: Visible and InfraRed imaging spectrometer (VIR), Gamma Ray and Neutron Detector (GRAND), and the Framing Camera (FC). The average mineralogy of Ceres reveals a possible past global aqueous alteration. Regional variations of such materials unveil possible processing acting on large scales, both endogenous and exogenous. Local areas of Ceres surface, on a spatial scale of a few kilometers, present significant spectral variations with respect to the measured average spectrum, and thus significant variation on the inferred mineralogy. Most imply recent or ongoing geological activity involving upwelling of subsurface carbonate-rich and salt-rich brines (Occator crater and Ahuna Mons), organic material (Ernutet crater), hydrated carbonates, and water ice (Oxo and Juling craters). Global aqueous alteration and recent hydrothermal activity place Ceres among the most interesting targets in astrobiology.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 105 - 120
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammannito, E., De Sanctis, M. C., Ciarniello, M., et al. (2016) Distribution of phyllosilicates on the surface of Ceres. Science, 353, aaf4279.Google Scholar
Beran, A. (2002) Infrared spectroscopy of micas. Reviews in Mineralogy and Geochemistry, 46, 351369.Google Scholar
Berg, B. L., Cloutis, E. A., Beck, P., et al. (2016) Reflectance spectroscopy (0.35–8 μm) of ammonium-bearing minerals and qualitative comparison to Ceres-like asteroids. Icarus, 265, 218237.Google Scholar
Binzel, R. P., & Xu, S. (1993) Chips off of Asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.Google Scholar
Bishop, J. L., Banin, A., Mancinelli, R. L., & Klovstad, M. R. (2002) Detection of soluble and fixed NH4+ in clay minerals by DTA and IR reflectance spectroscopy: A potential tool for planetary surface exploration. Planetary and Space Science, 50, 11.Google Scholar
Bishop, J. L., Lane, M. D., Dyar, M. D., & Brown, A. J. (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43, 3554.Google Scholar
Bowling, T. J., Ciesla, F. J., Davison, T. M., et al. (2019) Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus, 320, 110118.Google Scholar
Bowling, T. J., Johnson, B. C., Marchi, S., et al. (2020) An endogenic origin of cerean organics. Earth and Planetary Science Letters, 534, 116069.Google Scholar
Brown, M. E., & Rhoden, A. R. (2014) The 3 μm spectrum of Jupiter’s irregular satellite Himalia. The Astrophysical Journal, 793, L44.Google Scholar
Buczkowski, D. L., Schmidt, B. E., Williams, D. A., et al. (2016) The geomorphology of Ceres. Science, 353, aaf4332.Google Scholar
Bus, S. J., & Binzel, R. P. (2002a) Phase II of the small main-belt asteroid spectroscopic survey. The observations. Icarus, 158, 106.CrossRefGoogle Scholar
Bus, S. J., & Binzel, R. P. (2002b) Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus, 158, 146.Google Scholar
Campins, H., Hargrove, K., Pinilla-Alonso, N., et al. (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature, 464, 13201321.CrossRefGoogle ScholarPubMed
Carrozzo, F. G., De Sanctis, M. C., Raponi, A., et al. (2018) Nature, formation, and distribution of carbonates on Ceres. Science Advances, 4, e1701645.Google Scholar
Carrozzo, F. G., Raponi, A., De Sanctis, M. C., et al. (2016) Artifacts reduction in VIR/Dawn data. Review of Scientific Instruments, 87, 124501.Google Scholar
Castillo-Rogez, J. C., Neveu, M., McSween, H. Y., et al. (2018). Insights into Ceres’s evolution from surface composition. Meteoritics & Planetary Science, 53, 1820.Google Scholar
Castillo-Rogez, J. C., Neveu, M., Scully, J. E. C., et al. (2020) Ceres: Astrobiological target and possible ocean world. Astrobiology, 20, 269291.Google Scholar
Chapman, C. R., & Gaffey, M. J. (1979) Reflectance spectra for 277 asteroids. In Gehrels, T., & Matthews, M. S. (eds.), Asteroids. Tucson: University of Arizona Press, pp. 655687.Google Scholar
Chapman, C. R., McCord, T. B., & Johnson, T. V. (1973) Asteroid spectral reflectivities. The Astronomical Journal, 78, 126140.Google Scholar
Chapman, C. R., & Salisbury, J. W. (1973) Comparisons of meteorite and asteroid spectral reflectivities. Icarus, 19, 507522.Google Scholar
Ciarniello, M., De Sanctis, M. C., Ammannito, E., et al. (2017). Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astronomy and Astrophysics, 598, A130.Google Scholar
Clark, B. E., Hapke, B., Pieters, C., & Britt, D. (2002) Asteroid space weathering and regolith evolution. In Bottke, W. F. Jr., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III. Tucson: University of Arizona Press, pp. 585599.Google Scholar
Combe, J.-P., McCord, T. B., Tosi, F., et al. (2016) Detection of local H2O exposed at the surface of Ceres. Science, 353, aaf3010.Google Scholar
Combe, J.-P., Raponi, A., Tosi, F., et al. (2019) Exposed H2O-rich areas detected on Ceres with the dawn visible and infrared mapping spectrometer. Icarus, 318, 2241.Google Scholar
Cruikshank, D. P., Tholen, D. J., Hartmann, W. K., Bell, J. F., & Brown, R. H. (1991) Three basaltic earth-approaching asteroids and the source of the basaltic meteorites. Icarus, 89, 113.Google Scholar
De Angelis, S., Ferrari, M., De Sanctis, M. C., et al. (2021) High-temperature VIS-IR spectroscopy of NH4-phyllosilicates. Journal of Geophysical Research: Planets, 126, e2020JE006696Google Scholar
De Sanctis, M. C., Ammannito, E., Carrozzo, F. G., et al. (2018) Ceres’s global and localized mineralogical composition determined by Dawn’s Visible and Infrared Spectrometer (VIR). Meteoritics & Planetary Science, 53, 1844.Google Scholar
De Sanctis, M. C., Ammannito, E., McSween, H. Y., et al. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719722.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
De Sanctis, M. C., Coradini, A., Ammannito, E., et al. (2011) The VIR spectrometer. Space Science Reviews, 163, 329369.Google Scholar
De Sanctis, M. C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
De Sanctis, M. C., Vinogradoff, V., Raponi, A., et al. (2019) Characteristics of organic matter on Ceres from VIR/Dawn high spatial resolution spectra. Monthly Notices of the Royal Astronomical Society, 482, 24072421.Google Scholar
dos Santos, R., Patel, M., Cuadros, J., & Martins, Z. (2016) Influence of mineralogy on the preservation of amino acids under simulated Mars conditions. Icarus, 277, 342.Google Scholar
Ehlmann, B. L., Hodyss, R., Bristow, T. F., et al. (2018) Ambient and cold-temperature infrared spectra and XRD patterns of ammoniated phyllosilicates and carbonaceous chondrite meteorites relevant to Ceres and other Solar System bodies. Meteoritics & Planetary Science, 53, 1884.CrossRefGoogle Scholar
Farinella, P., Gonczi, R., Froeschle, C., & Froeschle, C. (1993) The injection of asteroid fragments into resonances. Icarus, 101, 174187.Google Scholar
Farmer, V. C. (1974) The layer silicates. In Farmer, V. C. (ed.), The Infrared Spectra of Minerals, Monograph 4. London: Mineralogical Society, pp. 331363.Google Scholar
Ferrari, M., De Angelis, S., De Sanctis, M. C., et al. (2019) Reflectance spectroscopy of ammonium-bearing phyllosilicates. Presented at EPSC-DPS Joint Meeting 2019, September 15–20, Geneva, id. EPSC-DPS2019–1864.Google Scholar
Formisano, M., Federico, C., De Sanctis, M. C., et al. (2018) Thermal stability of water ice in Ceres’ craters: The case of Juling crater. Journal of Geophysical Research (Planets), 123, 24452463.Google Scholar
Frigeri, A., De Sanctis, M. C., Ammannito, E., et al. (2019) The spectral parameter maps of Ceres from NASA/DAWN VIR data. Icarus, 318, 1421.CrossRefGoogle Scholar
Gaffey, M. J. (1976) Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81, 905920.CrossRefGoogle Scholar
Greenberg, J. M., Li, A., Mendoza-Gomez, C. X., et al. (1995) Approaching the interstellar grain organic refractory component. The Astrophysical Journal, 455, L177.Google Scholar
Hapke, B. (1993) Theory of Reflectance and Emittance Spectroscopy. New York: Cambridge University Press.Google Scholar
Hapke, B. (2012) Theory of Reflectance and Emittance Spectroscopy, 2nd ed. New York: Cambridge University Press.Google Scholar
Hendrix, A. R., Vilas, F., & Li, J.-Y. (2016) Ceres: Sulfur deposits and graphitized carbon. Geophysical Research Letters, 43, 8920.Google Scholar
Holm, N. G., Oze, C., Mousis, O., Waite, J. H., & Guilbert-Lepoutre, A. (2015) Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology, 15, 587.Google Scholar
Hoyle, F., Wickramasinghe, N. C., Al-Mufti, S., Olavesen, A. H., & Wickramasinghe, D. T. (1982) Infrared spectroscopy over the 2.9–3.9 μm waveband in biochemistry and astronomy. Astrophysics and Space Science, 83, 405409.Google Scholar
Kaplan, H. H., Milliken, R. E., & Alexander, C. M. O’D. (2018) New constraints on the abundance and composition of organic matter on Ceres. Geophysical Research Letters, 45, 52745282.Google Scholar
King, T. V. V., & Clark, R. N. (1989) Spectral characteristics of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy. Journal of Geophysical Research, 94, 1399714008.Google Scholar
King, T. V. V., Clark, R. N., Calvin, W. M., Sherman, D. M., & Brown, R. H. (1992) Evidence for ammonium-bearing minerals on Ceres. Science, 255, 15511553.Google Scholar
Krohn, M. D. (1987) Near-infrared detection of ammonium minerals. Geophysics, 52, 924.Google Scholar
Landis, M. E., Byrne, S., Combe, J.-P., et al. (2019) Water vapor contribution to Ceres’ exosphere from observed surface ice and postulated ice-exposing impacts. Journal of Geophysical Research: Planets, 124, 6175.Google Scholar
Larson, H. P., Feierberg, M. A., Fink, U., & Smith, H. A. (1979) Remote spectroscopic identification of carbonaceous chondrite mineralogies: Applications to Ceres and Pallas. Icarus, 39, 257271.Google Scholar
Lazzaro, D., Ferraz-Mello, S., & Fernández, J. A. (eds.) (2006) Asteroids, Comets, Meteors, IAU Symposium. New York: Cambridge University Press.Google Scholar
Le Guillou, C., Bernard, S., Brearley, A. J., & Remusat, L. (2014) Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations. Geochimica et Cosmochimica Acta, 131, 368.Google Scholar
Lebofsky, L. A., Feierberg, M. A., Tokunaga, A. T., Larson, H. P., & Johnson, J. R. (1981) The 1.7- to 4.2-μm spectrum of asteroid 1 Ceres: Evidence for structural water in clay minerals. Icarus, 48, 453459.Google Scholar
Li, J.-Y., McFadden, L. A., Parker, J. W., et al. (2006) Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus, 182, 143160.Google Scholar
Li, J.-Y., Reddy, V., Nathues, A., et al. (2016) Surface albedo and spectral variability of Ceres. The Astrophysical Journal, 817, L22.Google Scholar
Li, J.-Y., Schröder, S. E., Mottola, S., et al. (2019) Spectrophotometric modeling and mapping of Ceres. Icarus, 322, 144167.Google Scholar
Licandro, J., Campins, H., Kelley, M., et al. (2011) (65) Cybele: Detection of small silicate grains, water-ice, and organics. Astronomy and Astrophysics, 525, A34.Google Scholar
Longobardo, A., Palomba, E., Carrozzo, F. G., et al. (2019a) Mineralogy of the Occator quadrangle. Icarus, 318, 205211.Google Scholar
Longobardo, A., Palomba, E., Galiano, A., et al. (2019b) Photometry of Ceres and Occator faculae as inferred from VIR/Dawn data. Icarus, 320, 97109.CrossRefGoogle Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
McCollom, T. M., & Seewald, J. S. (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chemical Reviews, 107, 382401.Google Scholar
McCord, T. B., & Castillo-Rogez, J. C. (2018) Ceres’s internal evolution: The view after Dawn. Meteoritics & Planetary Science, 53, 17781792.Google Scholar
McCord, T. B., & Zambon, F. (2019) The surface composition of Ceres from the Dawn mission. Icarus, 318, 2.Google Scholar
Mennella, V., Baratta, G. A., Esposito, A., Ferini, G., & Pendleton, Y. J. (2003) The effects of ion irradiation on the evolution of the carrier of the 3.4 micron interstellar absorption band. The Astrophysical Journal, 587, 727.Google Scholar
Milliken, R. E., & Rivkin, A. S. (2009) Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2, 258261.Google Scholar
Moroz, L. V., Arnold, G., Korochantsev, A. V., & Wäsch, R. (1998) Natural solid bitumens as possible analogs for cometary and asteroid organics: 1. Reflectance spectroscopy of pure bitumens. Icarus, 134, 253268.Google Scholar
Nathues, A., Platz, T., Thangjam, G., et al. (2017). Evolution of Occator crater on (1) Ceres. The Astronomical Journal, 153, 112.Google Scholar
Nathues, A., Platz, T., Thangjam, G., et al. (2019) Occator crater in color at highest spatial resolution. Icarus, 320, 2438.Google Scholar
Neesemann, A., van Gasselt, S., Schmedemann, N., et al. (2019) The various ages of Occator crater, Ceres: Results of a comprehensive synthesis approach. Icarus, 320, 6082.Google Scholar
Orthous-Daunay, F.-R., Quirico, E., Beck, P., et al. (2013) Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites. Icarus, 223, 534543.Google Scholar
Palomba, E., Longobardo, A., De Sanctis, M. C., et al. (2019) Compositional differences among bright spots on the Ceres surface. Icarus, 320, 202212.Google Scholar
Parker, J. W., Stern, S. A., Thomas, P. C., et al. (2002) Analysis of the first disk-resolved images of Ceres from ultraviolet observations with the Hubble Space Telescope. The Astronomical Journal, 123, 549.Google Scholar
Pearson, V. K., Sephton, M. A., Kearsley, A. T., et al. (2002) Clay mineral-organic matter relationships in the early Solar System. Meteoritics & Planetary Science, 37, 18291833.Google Scholar
Pendleton, Y. J., & Allamandola, L. J. (2002) The organic refractory material in the diffuse interstellar medium: Mid-infrared spectroscopic constraints. The Astrophysical Journal Supplement Series, 138, 7598.CrossRefGoogle Scholar
Pieters, C. M., Nathues, A., Thangjam, G., et al. (2018) Geologic constraints on the origin of red organic-rich material on Ceres. Meteoritics & Planetary Science, 53, 19831998.Google Scholar
Pieters, C. M., & Noble, S. K. (2016) Space weathering on airless bodies. Journal of Geophysical Research (Planets), 121, 1865.Google Scholar
Poch, O., Istiqomah, I., Quirico, E., et al. (2020) Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science, 367, aaw7462.Google Scholar
Poch, O., Jaber, M., Stalport, F., et al. (2015) Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions. Astrobiology, 15, 221.Google Scholar
Postberg, F., Kempf, S., Schmidt, J., et al. (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 459, 10981101.Google Scholar
Postberg, F., Schmidt, J., Hillier, J., Kempf, S., & Srama, R. (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 474, 620622.Google Scholar
Prettyman, T. H., Feldman, W. C., McSween, H. Y., et al. (2011) Dawn’s gamma ray and neutron detector. Space Science Reviews, 163, 371459.CrossRefGoogle Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Quick, L. C., Buczkowski, D. L., Ruesch, O., et al. (2019) A possible brine reservoir beneath Occator crater: Thermal and compositional evolution and formation of the Cerealia dome and Vinalia Faculae. Icarus, 320, 119135.Google Scholar
Raponi, A., Carrozzo, F. G., Zambon, F., et al. (2019a) Mineralogical mapping of Coniraya quadrangle of the dwarf planet Ceres. Icarus, 318, 99110.Google Scholar
Raponi, A., Ciarniello, M., Capaccioni, F., et al. (2020) Infrared detection of aliphatic organics on a cometary nucleus. Nature Astronomy, 4, 500.Google Scholar
Raponi, A., De Sanctis, M. C., Carrozzo, F. G., et al. (2019b) Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus, 320, 8396.Google Scholar
Raponi, A., De Sanctis, M. C., Frigeri, A., et al. (2018) Variations in the amount of water ice on Ceres’ surface suggest a seasonal water cycle. Science Advances, 4, eaao3757.Google Scholar
Raymond, C. A., Ermakov, A. I., Castillo-Rogez, J. C., et al. (2020). Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747.Google Scholar
Rivkin, A. S., & Emery, J. P. (2010) Detection of ice and organics on an asteroidal surface. Nature, 464, 1322.Google Scholar
Rivkin, A. S., Li, J.-Y., Milliken, R. E., et al. (2011) The surface composition of Ceres. Space Science Reviews, 163, 95116.Google Scholar
Rivkin, A. S., Volquardsen, E. L., & Clark, B. E. (2006) The surface composition of Ceres: Discovery of carbonates and iron-rich clays. Icarus, 185, 563567.Google Scholar
Roatsch, T., Kersten, E., Matz, K.-D., et al. (2016) Ceres survey atlas derived from Dawn Framing Camera images. Planetary and Space Science, 121, 115120.Google Scholar
Roettger, E. E., & Buratti, B. J. (1994) Ultraviolet spectra and geometric albedos of 45 asteroids. Icarus, 112, 496.Google Scholar
Rousseau, B., De Sanctis, M. C., Raponi, A., et al. (2020) Correction of the VIR-visible dataset from the Dawn mission at Vesta. Review of Scientific Instruments, 91, 123102.Google Scholar
Ruesch, O., Platz, T., Schenk, P., et al. (2016) Cryovolcanism on Ceres. Science, 353, aaf4286.Google Scholar
Schröder, S. E., Mottola, S., Carsenty, U., et al. (2017) Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images. Icarus, 288, 201225.Google Scholar
Schulte, M., & Shock, E. (2004) Coupled organic synthesis and mineral alteration on meteorite parent bodies. Meteoritics & Planetary Science, 39, 15771590.Google Scholar
Scully, J. E. C., Schenk, P. M., Castillo-Rogez, J. C., et al. (2020) The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion. Nature Communications, 11, 3680.Google Scholar
Sierks, H., Keller, H. U., Jaumann, R., et al. (2011) The Dawn Framing Camera. Space Science Reviews, 163, 263327.Google Scholar
Stein, N. T., Ehlmann, B. L., Palomba, E., et al. (2019) The formation and evolution of bright spots on Ceres. Icarus, 320, 188201.Google Scholar
Takir, D., & Emery, J. P. (2012) Outer Main Belt asteroids: Identification and distribution of four 3-μm spectral groups. Icarus, 219, 641654.Google Scholar
Takir, D., Emery, J. P., McSween, H. Y., et al. (2013) Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites. Meteoritics & Planetary Science, 48, 16181637.Google Scholar
Tosi, F., Carrozzo, F. G., Zambon, F., et al. (2019) Mineralogical analysis of the Ac-H-6 Haulani quadrangle of the dwarf planet Ceres. Icarus, 318, 170187.Google Scholar
Vernazza, P., Mothé-Diniz, T., Barucci, M. A., et al. (2005) Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission. Astronomy and Astrophysics, 436, 11131121.Google Scholar
Vinogradoff, V., Bernard, S., Le Guillou, C., & Remusat, L. (2018) Evolution of interstellar organic compounds under asteroidal hydrothermal conditions. Icarus, 305, 358370.Google Scholar
Vinogradoff, V., Le Guillou, C., Bernard, S., et al. (2017) Paris vs. Murchison: Impact of hydrothermal alteration on organic matter in CM chondrites. Geochimica et Cosmochimica Acta, 212, 234.Google Scholar
Vu, T. H., Hodyss, R., Johnson, P. V., & Choukroun, M. (2017) Preferential formation of sodium salts from frozen sodium-ammonium-chloride-carbonate brines – Implications for Ceres’ bright spots. Planetary and Space Science, 141, 7377.Google Scholar
Waite, Jr., J. H., Lewis, W. S., Magee, B. A., et al. (2009) Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 460, 487490.Google Scholar
Williams, D. A., Buczkowski, D. L., Mest, S. C., et al. (2018) Introduction: The geologic mapping of Ceres. Icarus, 316, 113.CrossRefGoogle Scholar
Williams, L. B., Canfield, B., Voglesonger, K. M., & Holloway, J. R. (2005) Organic molecules formed in a “primordial womb”. Geology, 33, 913916.Google Scholar
Zambon, F., Raponi, A., Tosi, F., et al. (2017) Spectral analysis of Ahuna Mons from Dawn mission’s visible-infrared spectrometer. Geophysical Research Letters, 44, 97104.Google Scholar
Zolotov, M. Y. (2007) An oceanic composition on early and today’s Enceladus. Geophysical Research Letters, 34, L23203.Google Scholar
Zolotov, M. Y., & Shock, E. L. (2001) Composition and stability of salts on the surface of Europa and their oceanic origin. Journal of Geophysical Research, 106, 3281532827.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×