Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T17:43:26.155Z Has data issue: false hasContentIssue false

3 - Congenital cardiovascular disease and velo-cardio-facial syndrome

Published online by Cambridge University Press:  11 August 2009

Bruno Marino
Affiliation:
Department of Pediatrics, University of Rome “La Sapienza”, Italy
Federica Mileto
Affiliation:
Department of Pediatrics, University of Rome “La Sapienza”, Italy
Maria Cristina Digilio
Affiliation:
Department of Clinical Genetics, Bambino Gesù Hospital, Rome, Italy
Adriano Carotti
Affiliation:
Department of Pediatic Cardiac Surgery, Bambino Gesù Hospital, Rome, Italy
Roberto Di Donato
Affiliation:
Department of Pediatic Cardiac Surgery, Bambino Gesù Hospital, Rome, Italy
Kieran C. Murphy
Affiliation:
Education and Research Centre, Royal College of Surgeons of Ireland
Peter J. Scambler
Affiliation:
Institute of Child Health, University College London
Get access

Summary

Cardiovascular defects (CVD) are an important feature in children with DiGeorge/velo-cardio-facial/conotruncal anomaly face syndrome (DGS/VCFS/CTAF) associated with a chromosome 22q11 deletion (del 22q11). In a landmark paper, Freedom et al. (1972) reported a series of ten patients with conotruncal anomalies and aortic arch anomalies associated with DiGeorge syndrome (Freedom et al., 1972). In the last 20 years, many papers have documented various types of congenital heart defects in this condition (Kinouchi et al., 1976; Young et al., 1980; Conley et al., 1979; Moerman et al., 1980; Marmon et al., 1984; Van Mierop & Kutsche, 1986; Goldmuntz et al., 1993, 1998; Takahashi et al., 1995; Lewin et al., 1996; Webber et al., 1996; Momma et al., 1996a; Marino et al., 1997a, 1999b, 2001; Mehraein et al., 1997; Fokstuen et al., 1998; Iserin et al., 1998; Borgmann et al., 1999; Young et al., 1999; Frohn-Mulder et al., 1999).

Cardiovascular defects affect 75% of VCFS individuals and are the major cause of mortality (about 90% of all deaths) in this syndrome (Ryan et al., 1997; Matsuoka et al., 1998). Thus, VCFS represents a very important syndrome in pediatric cardiology and, after Down syndrome, is the most frequent genetic condition associated with CVD (Goodship et al., 1998).

It is interesting to note that the first description of a congenital heart defect in a patient probably affected by a del 22q11 was made in 1671 by Nicolai Stensen.

Type
Chapter
Information
Velo-Cardio-Facial Syndrome
A Model for Understanding Microdeletion Disorders
, pp. 47 - 82
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, M. J., Wylam, M. E., Feldt, R. H.et al. (2001) Pulmonary atresia with ventricular septal defect and persistent airway hyperresponsiveness. J. Thorac. Cardiovasc. Surg. 122 (1), 169–77.Google Scholar
Agnoletti, G., Borghi, A. & Annecchino, F. (2001) A rare form of interrupted aortic arch. Ital. Heart J., 2 (3), 228–30.Google Scholar
Albanese, S. B., Carotti, A., D'Argenio, P. et al. (2000) Is 22q11 microdeletion a risk factor for perioperative fungal infections in patients operated on for PA-VSD-MAPCAs? Proceedings, Third International Meeting of the Therapy of Infectious Disease. Florence.
Amati, F., Mari, A., Digilio, M. C.et al. (1995) 22q11 deletions in isolated and syndromic patients with tetralogy of Fallot. Hum. Genet., 95, 479–82.Google Scholar
Anaclerio, S., Marino, B., Carotti, A.et al. (2001) Pulmonary atresia with ventricular septal defect: prevalence of deletion 22q11 in the different anatomic patterns. Ital. Heart J., 2 (5), 384–7.Google Scholar
Anaclerio, S., Di Ciompo, V., Michielon, G.et al. (2004) Conotruncal heart defects: impact of genetic syndromes on immediate operative mortality. Ital. Heart J., 5 (8), 624–628.Google Scholar
Bennhagen, R. G. & Menahem, S. (1998) Holt–Oram syndrome and multiple ventricular septal defects: an association suggesting a possible genetic marker? Cardiol. Young. 8, 128–30.Google Scholar
Besson, W. T., Kirby, M. L., Mierop, L. H. S.et al. (1986) Effects of the size of lesions of the cardiac neural crest at various embryonic ages on incidence and type of cardiac defects. Circulation 73, 360–4.Google Scholar
Bonhoeffer, P., Fabbrocini, M., Lecompte, Y.et al. (1992) Infundibular septal defect with severe aortic regurgitation: a new surgical approach. Ann. Thorac. Surg., 53 (5), 851–3.Google Scholar
Bonnet, D., Fermont, L., Kachaner, J.et al. (1999) Tricuspid atresia and conotruncal malformations in five families. J. Med. Genet., 36, 349–50.Google Scholar
Borgmann, S., Luhmer, I., Arslan-Kirchner, M.et al. (1999) A search for chromosome 22q11.2 deletions in a series of 176 consecutively catheterized patients with congenital heart disease: no evidence for deletions in non-syndromic patients. Eur. J. Pediatr., 158, 958–63.Google Scholar
Boudjemline, Y., Fermont, L., Bidois, J.et al. (2000) Prenatal diagnosis of conotruncal heart diseases. Result in 337 cases. Arch. Mal. Coeur. Vaiss., 93 (5), 583–6.Google Scholar
Boudjemline, Y., Fermont, L., Bidois, J.et al. (2001) Prevalence of 22q11 deletion in fetuses with conotruncal cardiac defects: a 6-years prospective study. J. Pediatr., 138, 520–4.Google Scholar
Bove, E. L., Minich, L. L., Pridjian, A. K.et al. (1993) The management of severe subaortic stenosis, ventricular septal defect, and aortic arch obstruction in the neonate. J. Thorac. Cardiovasc. Surg., 105 (2), 289–96.Google Scholar
Braunlin, E., Peoples, W. M., Freedom, R. M.et al. (1982) Interruption of the aortic arch with aorticopulmonary septal defect. Ped. Cardiol., 3, 329–35.Google Scholar
Bristow, J. D. & Bernstein, H. S. (1998) Counseling families with chromosome 22q11 deletions: the catch in CATCH-22. J. Am. Coll. Cardiol. 32 (2), 499–501.Google Scholar
Brizard, C. P., Cochrane, A., Austin, C.et al. (1997) Management strategy and long-term outcome for truncus arteriosus. Eur. J. Cardiothorac. Surg. 11 (4), 687–96.Google Scholar
Carotti, A., Marino, B., Bevilacqua, M.et al. (1997) Primary repair of isolated ventricular septal defect in infancy guided by echocardiography. Am. J. Cardiol., 79, 1498–501.Google Scholar
Carotti, A., Di Donato, R. M., Squitieri, C.et al. (1998) Total repair of pulmonary atresia with ventricular septal defect and major aortopulmonary collaterals: an integrated approach. J. Thorac. Cardiovasc. Surg., 116 (6), 914–23.Google Scholar
Carotti, A., Marino, B. & Di Donato, R. M. (2003) Influence of chromosome 22q11.2 microdeletion on surgical outcome after treatment of tetralogy of Fallot with pulmonary atresia. J. Thorac. Cardiovasc. Surg., 126 (4), 1666–7.Google Scholar
Castaneda, A. R., Mayer, J. E. Jr., Jonas, R. A.et al. (1989) The neonate with critical congenital heart disease: repair – a surgical challenge. J. Thorac. Cardiovasc. Surg. 98 (5), 869–75.Google Scholar
Celoria, C. G. & Patton, R. B. (1959) Congenital absence of the aortic arch. Am. Heart J., 58, 407–13.Google Scholar
Chessa, M., Butera, G., Bonhoeffer, P.et al. (1998). Relation of genotype 22q11 deletion to phenotype of pulmonary vessels in tetralogy of Fallot and pulmonary atresia-ventricular septal defect. Heart, 79, 186–90.Google Scholar
Conley, M. E., Beckwith, J. B., Mancer, J. F. K.et al. (1979) The spectrum of the DiGeorge syndrome. J. Pediatr., 94, 883–90.Google Scholar
Consevage, M. W., Seip, J. R., Belchis, D. A.et al. (1996) Association of a mosaic chromosomal 22q11 deletion with hypoplastic left heart syndrome. Am. J. Cardiol., 77, 1023–5.Google Scholar
Conti, E., Grifone, N., Sarkozy, A.et al. (2003) DiGeorge subtypes of non syndromic conotruncal defects: evidence against a major role of TBX1 gene. Eur. J. Hum. Genet., 11, 349–51.Google Scholar
Conway, K., Gibson, R. L., Perkins, J.et al. (2002) Pulmonary agenesis: expansion of the VCFS phenotype. Am. J. Med. Genet., 113, 89–92.Google Scholar
Dallapiccola, B., Marino, B., Giannotti, A.et al. (1989) DiGeorge anomaly associated with partial deletion of chromosome 22. Report of a case with X/22 translocation and review of the literature. Ann. Genet., 32 (2), 92–6.Google Scholar
Cruz, M. V., Cayre, R., Angelici, P.et al. (1990) Coronary arteries in truncus arteriosus. Am. J. Cardiol., 66 (20), 1482–6.Google Scholar
Digilio, M. C., Marino, B., Giannotti, A.et al. (1996a) Search for 22q11 deletion in non-syndromic conotruncal cardiac defects. Eur. J. Pediatr., 155, 619–24.Google Scholar
Digilio, M. C., Marino, B., Grazioli, S.et al. (1996b) Comparison of occurrence of genetic syndromes in ventricular septal defect with pulmonic stenosis (classic tetralogy of Fallot) versus ventricular septal defect with pulmonic atresia. Am. J. Cardiol., 77, 1375–6.Google Scholar
Digilio, M. C., Marino, B., Giannotti, A.et al. (1997a) Conotruncal heart defects and chromosome 22q11 microdeletion. J. Pediatr., 130, 675–7.Google Scholar
Digilio, M. C., Marino, B., Giannotti, A.et al. (1997b) Familial deletions of chromosome 22q11. Am. J. Med. Genet., 73, 95–6.Google Scholar
Digilio, M. C., Marino, B., Ammirati, A.et al. (1999a) Cardiac malformations in patients with oral-facial-skeletal syndrome: clinical similarities with heterotaxia. Am. J. Genet., 84, 350–6.Google Scholar
Digilio, M. C., Marino, B., Giannotti, A.et al. (1999b). Guidelines for 22q11 deletion screening of patients with conotruncal defects. J. Am. Coll. Cardiol., 33 (6), 1746–7.Google Scholar
Digilio, M. C., Casey, B., Toscano, A.et al. (2001) Complete transposition of the great arteries. Patterns of congenital heart disease in familial precurrence. Circulation, 104, 2809–14.Google Scholar
Digilio, M. C., Angioni, A., Santis, M.et al. (2003a) Spectrum of clinical variability in familial deletion 22q11.2: from full manifestation to extremely mild clinical anomalies. Clin. Genet., 63, 1–6.Google Scholar
Digilio, M. C., Marino, B. & Dallapiccola, B. (2003b) Screening for celiac disease in patients with deletion 22q11.2 (DiGeorge/velo-cardio-facial syndrome). Am. J. Med. Genet., 121, 286–8.Google Scholar
Dodo, H., Alejos, J. C., Perlof, J. K.et al. (1995) Anomalous origin of the left main pulmonary artery from the ascending aorta associated with DiGeorge syndrome. Am. J. Cardiol., 75, 1294–5.Google Scholar
Ferencz, C., Loffredo, C. A. & Correa-Villasenor, A. (1997) Genetic and enviromental risk factors of major cardiovascular malformations: the Baltimore–Washington Infant Study 1981–1989. Armonk, Futura, New York.
Fokstuen, S., Arbenz, U., Artan, S.et al. (1998) 22q11.2 deletions in a series of patients with non-selective congenital heart defects: incidence, type of defects and parental origin. Clin. Genet., 53, 63–9.Google Scholar
Francalanci, P., Marino, B., Boldrini, R.et al. (1996) Morphology of the atrioventricular valve in asplenia syndrome: a peculiar type of atrioventricular canal defect. Cardiovasc. Pathol., 5, 145–51.Google Scholar
Franklin, R. C. G., Onuzo, O., Miller, P. A.et al. (1996) Transfusion associated graft-versus-host disease in DiGeorge syndrome – index case report with survey of screening procedures and use of irradiated blood components. Cardiol. Young., 6, 222–7.Google Scholar
Freedom, R. M., Rosen, F. S. & Nadas, A. S. (1972) Congenital cardiovascular disease and anomalies of the third and fourth pharyngeal pouch. Circulation, 46, 165–72.Google Scholar
Frohn-Mulder, I. M. E., Wesby, V., Swaay, E.et al. (1999) Chromosome 22q11 deletions in patients with selected outflow tract malformations. Genet. Counsel., 10 (1), 35–41.Google Scholar
Garg, V., Kathiriya, I. S., Barnes, R.et al. (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature, 424, 443–7.Google Scholar
Goldmuntz, E., Driscoll, D., Budarf, M. L.et al. (1993) Microdeletions of chromosomal region 22q11 in patients with congenital conotruncal cardiac defects. J. Med. Genet., 30, 807–12.Google Scholar
Goldmuntz, E., Clark, B. J., Mitchell, L. E.et al. (1998) Frequency of 22q11 deletions in patients with conotruncal defects. J. Am. Coll. Cardiol., 32 (2), 492–8.Google Scholar
Goodship, J., Gross, I., Scambler, P.et al. (1995). Monozygotic twins with chromosome 22q11 deletion and discordant phenotype. J. Med. Genet., 32, 746–8.Google Scholar
Goodship, J., Cross, I., LiLing, J.et al. (1998) A population study of chromosome 22q11 deletions in infancy. Arch. Dis. Child., 79, 348–51.Google Scholar
Hofbeck, M., Rauch, A., Buheitel, G.et al. (1998). Monosomy 22q11 in patients with pulmonary atresia, ventricular septal defect, and major aortopulmonary collateral arteries. Heart, 79 (2), 180–5.Google Scholar
Hokanson, J. S., Pierpont, M. E., Hirsch, B.et al. (2001) 22q11.2 microdeletions in adults with familial tetralogy of Fallot. Genet. Med., 3 (1), 61–4.Google Scholar
Hutha, J. C., Glasow, P., Murphy, D. J. Jr.et al. (1987) Surgery without catheterization for congenital heart defects: management of 100 patients. J. Am. Coll. Cardiol., 9, 823–9.Google Scholar
Iascone, M. R., Vittorini, S., Sacchelli, M.et al. (2002) Molecular characterization of 22q11 deletion in a three-generation family with maternal transmission. Am. J. Med. Genet., 108, 319–21.Google Scholar
Ilbawi, M. N., Fedorchik, J., Muster, A. J.et al. (1986) Surgical approach to severely symptomatic newborn infants with tetralogy of Fallot and absent pulmonary valve. J. Thorac. Cardiovasc. Surg., 91 (4), 584–9.Google Scholar
Iserin, L., Lonlay, P., Viot, G.et al. (1998) Prevalence of the microdeletion 22q11 in newborn infants with congenital conotruncal cardiac anomalies. Eur. J. Pediatr., 157, 881–4.Google Scholar
Iyer, K. S. & Mee, R. B. (1991) Staged repair of pulmonary atresia with ventricular septal defect and major systemic to pulmonary artery collaterals. Ann. Thorac. Surg., 51 (1), 65–72.Google Scholar
Jadele, K. B., Michels, V. V., Puga, F. J.et al. (1992) Velo-cardio-facial syndrome associated with ventricular septal defect, pulmonary atresia, and hypoplastic pulmonary arteries. Pediatrics, 89 (5), 915–19.Google Scholar
Johnson, M. C., Strauss, A. W., Dowton, S. B.et al. (1995a) Deletion within chromosome 22 is common in patients with absent pulmonary valve syndrome. Am. J. Cardiol., 76, 66–9.Google Scholar
Johnson, M. C., Watson, M. S., Strauss, A. W.et al. (1995b) Anomalous origin of the right pulmonary artery from the aorta and CATCH 22 syndrome. Ann. Thorac. Surg., 60, 681–3.Google Scholar
Johnson, M. C., Watson, M. S. & Strauss, A. W. (1996) Chromosome 22q11 monosomy and the genetic basis of congenital heart disease. J. Pediatr., 129 (1), 1–3.Google Scholar
Kazuma, N., Murakami, M., Suzuki, Y.et al. (1997). Cervical aortic arch associated with 22q11.2 deletion. Pediatr. Cardiol., 18 (2), 149–51.Google Scholar
Kieran, M., Thompson, P. W., Davies, S. J.et al. (1999) The prevalence of chromosome 22q11 deletions in an adult congenital heart disease population. J. Med. Genet., 36 (1), S59.Google Scholar
Kinouchi, A., Mori, K., Ando, M.et al. (1976) Facial appearance with conotruncal anomalies. Pediatr. Jpn., 17, 84–9.Google Scholar
Kumar, A., Sapire, D. W., Lockhart, L. H.et al. (1996) Atrioventricular septal defect with pulmonary atresia in DiGeorge anomaly: expansion of the cardiac phenotype. Am. J. Med. Genet., 61, 89–91.Google Scholar
Kumar, A., McCombs, J. L. & Sapire, D. W. (1997) Deletions in chromosome 22q11 region in cervical aortic arch. Am. J. Cardiol., 79, 388–90.Google Scholar
Leana-Cox, J., Pangkanon, S., Eanet, K. R.et al. (1996) Familial DiGeorge/velocardiofacial syndrome with deletions of chromosome area 22q11: report of five families with a review of the literature. Am. J. Med. Genet., 65, 309–16.Google Scholar
Lee, M. G., Chiu, I. S., Fang, W.et al. (1999) Isolated infundibuloarterial inversion and fifth aortic arch in an infant: a newly recognized cardiovascular phenotype with chromosome 22q11 deletion. Int. J. Cardiol., 71, 89–91.Google Scholar
Lee, M. L., Chaou, W. T., Wang, Y. M.et al. (2001) A new embryologic linkage between chromosome 22 deletion and a right ductus from a right aortic arch in a neonate with DiGeorge syndrome. Int. J. Cardiol., 79, 315–16.Google Scholar
Lewin, M. B., Lindsay, E. A. & Baldini, A. (1996) 22q11 deletions and cardiac disease. Progr. Pediatr. Cardiol., 6, 19–28.Google Scholar
Lewin, M. B., Lindsay, E. A., Jurecic, V.et al. (1997) A genetic etiology for interruption of the aortic arch type B. Am. J. Cardiol., 80, 493–7.Google Scholar
Lewis, D. A., Loffredo, C. A. and Correa-Villasenor, A. (1996) Descriptive epidemiology of perimembranous and muscular ventricular septal defect in the Baltimore-Washington Infant Study. Cardiol. Young., 6, 281–90.Google Scholar
Li, C., Chudley, A. E., Soni, R.et al. (2003) Pulmonary atresia with intact ventricular septum and major aortopulmonary collaterals: associations with deletion 22q11.2. Pediatr. Cardiol., 24, 585–7.Google Scholar
Lindsay, E. A., Botta, A., Jurecic, V.et al. (1999) Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature, 401, 379–83.Google Scholar
Loffredo, C. A., Ferencz, C., Wilson, P. D.et al. (2000) Interrupted aortic arch: an epidemiologic study. Teratology, 61, 368–75.Google Scholar
Lu, H. J., Chung, M. Y., Betau, H.et al. (2001a) Molecular characterization of tetralogy of Fallot within DiGeorge critical region of the chromosome 22. Ped. Cardiol., 22 (4), 279–84.Google Scholar
Lu, J. H., Chung, M. Y., Hwang, B.et al. (2001b) Monozygotic twins with chromosome 22q11 microdeletion and discordant phenotypes in cardiovascular patterning. Pediatr. Cardiol., 22, 260–3.Google Scholar
Lucani, G. B. & Starnes, V. A. (1996). Clamshell for pulmonary atresia, ventricular septal defect, and aortopulmonary collaterals. Ann. Thorac. Surg., 62 (4), 1247–8.Google Scholar
Maeda, J., Yamagishi, H., Matsuoka, R.et al. (2000) Frequent association of 22q11.2 deletion with tetralogy of Fallot. Am. J. Med. Genet., 92, 269–72.Google Scholar
Maharasingam, M. & Ostam-Smith, I. (2003) A cohort study of neurodevelopmental outcome in children with DiGeorge syndrome following cardiac surgery. Arch. Dis. Child., 88, 61–4.Google Scholar
Mahle, W. T., Crisalli, J., Coleman, K.et al. (2003) Deletion of chromosome 22q11.2 and outcome in patients with pulmonary atresia and ventricular septal defect. Ann. Thorac. Surg., 76 (2), 567–71.Google Scholar
Marino, B., Vairo, U., Corno, A.et al. (1990a) Atrioventricular canal in Down syndrome: prevalence of associated cardiac malformations compared with patients without Down syndrome. Am. J. Dis. Child., 144, 1120–2.Google Scholar
Marino, B., Corno, A., Carotti, A.et al. (1990b) Pediatric cardiac surgery guided by echocardiography. Scand. J. Cardiovasc. Surg., 24, 197–201.Google Scholar
Marino, B., Marcelletti, C., Giannotti, A.et al. (1991) DiGeorge anomaly with atrio-ventricular canal. Chest, 99, 242–3.Google Scholar
Marino, B., Digilio, M. C., Giannotti, A.et al. (1996a) Heterotaxia syndromes and 22q11 deletion. J. Med. Genet., 33 (12), 1052.Google Scholar
Marino, B., Digilio, M. C., Grazioli, S., et al. (1996b) Associated cardiac anomalies in isolated and syndromic patients with patients with tetralogy of Fallot. Am. J. Cardiol., 77, 505–8.Google Scholar
Marino, B., Digilio, M. C., Grazioli, S.et al. (1997a) Cardiac defect and deletion 22q11. J. Med. Genet., 34, 20.Google Scholar
Marino, B., Digilio, M. C., Novelli, G.et al. (1997b) Tricuspid atresia and 22q11 deletion. Am. J. Med. Genet., 72, 40–2.Google Scholar
Marino, B., Digilio, M. C. & Dallapiccola, B. (1998) Severe truncal valve displasia: association with DiGeorge syndrome? Ann. Thorac. Surg., 66, 980.Google Scholar
Marino, B., Digilio, M. C., Persiani, M.et al. (1999a) Deletion 22q11 in patients with interrupted aortic arch. Am. J. Cardiol., 84, 360–1.Google Scholar
Marino, B., Digilio, M. C., Toscano, A.et al. (1999b) Congenital heart defects in patients with DiGeorge/velocardiofacial syndrome and del 22q11. Genet. Counsel., 10 (1), 25–33.Google Scholar
Marino, B., Digilio, M. C., Toscano, A.et al. (1999c) Congenital heart diseases in children with Noonan syndrome: an expanded cardiac spectrum with high prevalence of atrioventricular canal. J. Pediatr., 136, 703–6.Google Scholar
Marino, B. & Digilio, M. C. (2000) Congenital heart disease and genetic syndromes: specific correlation between cardiac phenotype and genotype. Cardiovasc. Pathol., 9 (6), 303–15.Google Scholar
Marino, B., Digilio, M. C., Toscano, A.et al. (2001) Anatomic patterns of conotruncal defects associated with deletion 22q11. Genet. Med., 3 (1), 45–8.Google Scholar
Marino, B., Digilio, M. C. & Toscano, A. (2002) Common arterial trunk, DiGeorge syndrome and microdeletion 22q11. Prog. Ped. Cardiol., 15, 9–17.Google Scholar
Marino, B. & Digilio, M. C. (2003) Tetralogy of Fallot with aortic valvular stenosis and deletion 22q11. Ann. Thorac. Surg., 75, 2007–12.Google Scholar
Marmon, L. M., Balsara, R. K., Chen, R.et al. (1984) Congenital cardiac anomalies associated with DiGeorge syndrome: a neonatal experience. Ann. Thorac. Surg., 38 (2), 146–50.Google Scholar
Matsuoka, R., Kimura, M., Scambler, P. J.et al. (1998). Molecular and clinical study of 183 patients with conotruncal anomaly face syndrome. Hum Genet. 103, 70–80.Google Scholar
McElhinney, D. B., Thompson, L. D., Weinberg, P. M.et al. (2000) Surgical approach to complicated cervical aortic arch: anatomic, developmental, and surgical considerations. Cardiol. Young., 10 (3), 212–19.Google Scholar
McElhinney, D. B., Clark, B. J., Weinberg, P. M.et al. (2001a) Association of chromosome 22q11 deletion with isolated anomalies of aortic arch laterality and branching. J. Am. Coll. Cardiol., 37 (8), 2114–19.Google Scholar
McElhinney, D. B., Hoydu, A. K., Gaynor, J. W.et al. (2001b) Patterns of right aortic arch and mirror-image branching of the brachiocefalic vessels without associated anomalies. Pediatr. Cardiol., 22, 285–91.Google Scholar
McElhinney, D. B., Jacobs, I., McDonald-McGinn, D. M.et al. (2002) Chromosomal and cardiovascular anomalies associated with congenital laryngeal web. Int. J. Pediatr. Otorhinolaryngol., 66, 23–7.Google Scholar
McElhinney, D. B., Driscoll, D. A., Levin, E. R.et al. (2003) Chromosome 22q11 deletion in patients with ventricular septal defect: frequency and associated cardiovascular anomalies. Pediatrics, 112 (6), 472–6.Google Scholar
McGoon, D. C., Rastelli, G. C. & Ongley, P. A. (1968) An operation for the correction of truncus arteriosus. J. Am. Med. Assoc., 205 (2), 69–73.Google Scholar
Mehraein, Y., Wippermann, C. F., Michel-Behnke, I.et al. (1997) Microdeletion 22q11 in complex cardiovascular malformations. Hum. Genet., 99, 433–42.Google Scholar
Melchionda, S., Digilio, M. C., Mingarelli, R.et al. (1995) Transposition of the great arteries associated with deletion of chromosome 22q11. Am. J. Cardiol., 75, 95–8.Google Scholar
Michielon, G., Marino, B., Formigari, R. et al. (2004) Impact of genetic syndromes on surgical correction of tetralogy of Fallot. Circulation, Abstract Book, Am Heart Association.
Moerman, P., Goddeeris, P., Lauwerijns, J.et al. (1980) Cardiovascular malformations in DiGeorge syndrome (congenital absence or hypoplasia of the thymus). Br. Heart J., 44, 452–9.Google Scholar
Moerman, P., Dumoulin, M., Lauweryns, J.et al. (1987) Interrupted right aortic arch in DiGeorge syndrome. Br. Heart J., 58, 274–8.Google Scholar
Momma, K., Kondo, C., Ando, M.et al. (1995) Tetralogy of Fallot associated with chromosome 22q11 deletion. Am. J. Cardiol., 76, 618–21.Google Scholar
Momma, K., Kondo, C., Matsuoka, R.et al. (1996a) Cardiac anomalies associated with a chromosome 22q11 deletion in patients with conotruncal anomaly face syndrome. Am. J. Cardiol., 78, 591–4.Google Scholar
Momma, K., Kondo, C. & Matsuoka, R. (1996b) Tetralogy of Fallot with pulmonary atresia associated with chromosome 22q11 deletion. J. Am. Coll. Cardiol., 27 (1), 198–202.Google Scholar
Momma, K., Ando, M. & Matsuoka, R. (1997) Truncus arteriosus communis associated with chromosome 22q11 deletion. J. Am. Coll. Cardiol., 30 (4), 1067–71.Google Scholar
Momma, K., Ando, M., Matsuoka, R.et al. (1999a) Interruption of the aortic arch associated with deletion of chromosome 22q11 is associated with a subarterial and doubly committed ventricular septal defect in Japanese patients. Cardiol. Young., 9 (5), 451–7.Google Scholar
Momma, K., Matsuoka, R. & Takao, A. (1999b) Aortic arch anomalies associated with chromosome 22q11 deletion (CATCH 22). Pediatr. Cardiol., 20, 97–102.Google Scholar
Momma, K., Takao, A., Matsuoka, R.et al. (2001) Tetralogy of Fallot associated with chromosome 22q11.2 deletion in adolescents and young adults. Genet. Med., 3 (1), 56–60.Google Scholar
Moran, A. M., Colan, S. D., Mayer, J. E.et al. (1999) Echocardiographic identification of thymic hypoplasia in tetralogy of Fallot/tetralogy pulmonary atresia. Am. J. Cardiol., 84, 1268–71.Google Scholar
Nakagawa, M., Okamoto, N., Fujino, H.et al. (2000). Tetracuspid aortic valve in a patient with 22q11.2 microdeletion. Am. J. Med. Genet., 93, 74–5.Google Scholar
Neirotti, R., Galindez, E., Kreutzer, G.et al. (1978) Tetralogy of Fallot with subpulmonary ventricular septal defect. Ann. Thorac. Surg., 25 (1), 51–6.Google Scholar
Nishibatake, M., Kirby, M. L. & Mierop, L. H. S. (1987) Pathogenesis of persistent truncus arteriosus and dextroposed aorta in the chick embryo after neural crest ablation. Circulation, 75 (1), 255–64.Google Scholar
Okita, Y., Miki, S., Ueda, Y.et al. (1995) Early and late results of repair of tetralogy of Fallot with subarterial ventricular septal defect. A comparative evaluation of tetralogy with perimembranous ventricular septal defect. J. Thorac. Cardiovasc. Surg., 110 (1), 180–5.Google Scholar
Oppenheimer-Dekker, A., Gittenberger-de Groot, A. C. & Roozendaal, H. (1982) The ductus arteriosus and associated cardiac anomalies in interruption of the aortic arch. Ped. Cardiol., 2, 185–93.Google Scholar
Patel, R. G., Freedom, R. M., Bloom, K. R.et al. (1978) Truncal or aortic valve stenosis in functionally single arterial trunk. Am. J. Cardiol., 42, 800–9.Google Scholar
Penman Splitt, M., Burn, J. & Goodship, J. (1996) Defects in the determination of left-right asymmetry. J. Med. Genet., 33, 498–503.Google Scholar
Perez Martinez, V. M., Diaz Gongola, G., Calabrò, R.et al. (1975) Tronco arterial comun con interrupcion del istmo aortico. Peculiaridades anatomicas e implicaciones quirurgicas en relacion al tronco arterial comun habitual. Revista Latina de Cardiologia, 6 (4), 291–6.Google Scholar
Pierdominici, M., Marziali, M., Giovanetti, A.et al. (2000) T cell receptor repertoire and function in patients with DiGeorge and velocardiofacial syndromes. Clin. Exp. Immunol., 121, 127–32.Google Scholar
Pierdominici, M., Mazzetta, F., Caprini, E.et al. (2003) Biased T-cell receptor repertoires in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin. Exp. Immunol., 132, 323–31.Google Scholar
Raatikka, M., Rapola, J., Tuuteri, L.et al. (1981) Familial third and fourth pharyngeal pouch syndrome with truncus arteriosus: DiGeorge syndrome. Pediatrics, 67 (2), 173–5.Google Scholar
Radford, D. J., Perkins, L., Lachman, R.et al. (1988) Spectrum of Di George syndrome in patients with truncus arteriosus: expanded Di George syndrome. Pediatr. Cardiol., 9 (2), 95–101.Google Scholar
Rajasinghe, H. A., McElhinney, D. B., Reddy, V. M.et al. (1997) Long-term follow-up of truncus arteriosus repaired in infancy: a twenty-year experience. J. Thorac. Cardiovasc. Surg., 113 (5), 869–79.Google Scholar
Raskind, W. J. (1972) Historic aspect of congenital heart disease. Birth Defects: Orig. Article Ser., 8 (1), 2–8.Google Scholar
Raskind, W. J.(1979) Pediatric cardiology: A brief report perspective. Ped. Cardiol., 1, 63–71.Google Scholar
Rauch, A., Hofbeck, M., Leipold, G.et al. (1998) Incidence and significance of 22q11.2 hemizygosity in patients with interrupted aortic arch. Am. J. Med. Genet., 78, 322–31.Google Scholar
Rauch, R., Rauch, A., Koch, A.et al. (2002) Cervical origin of the subclavian artery as a specific marker for monosomy 22q11. Am. J. Cardiol., 89, 481–4.Google Scholar
Recto, M. R., Parness, I. A., Gelb, B. D.et al. (1997) Clinical implications and possible association of malposition of the branch pulmonary arteries with DiGeorge syndrome and microdeletion of chromosomal region 22q11. Am. J. Cardiol., 80, 1624–7.Google Scholar
Reddy, V. M., Liddicoat, J. R. & Hanley, F. L. (1995) Midline one-stage complete unifocalization and repair of pulmonary atresia with ventricular septal defect and major aortopulmonary collaterals. J. Thorac. Cardiovasc. Surg., 109 (5), 832–45.Google Scholar
Reddy, V. M., Petrossian, E., McElhinney, D. B.et al. (1997) One-stage complete unifocalization in infants: when should the ventricular septal defect be closed? J. Thorac. Cardiovasc. Surg., 113 (5), 858–68.Google Scholar
Rhoden, D. K., Leatherbury, L., Helman, S.et al. (1996) Abnormalities in lymphocyte populationsin infants with neural crest cardiovascular defects. Pediatr. Cardiol., 17, 143–9.Google Scholar
Rubay, J. F., Macartney, F. J. & Anderson, R. H. (1987) A rare variant of common arterial trunk. Br. Heart J., 57 (2), 202–4.Google Scholar
Ryan, A. K., Goodship, J. A., Wilson, D. I.et al. (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J. Med. Genet., 34, 798–804.Google Scholar
Sano, S., Brawn, W. J. & Mee, R. B. (1990) Repair of truncus arteriosus and interrupted aortic arch. J. Cardiovasc. Surg., 5 (3), 157–62.Google Scholar
Santoro, G., Marino, B., Di Carlo, D.et al. (1994) Echocardiographically guided repair of tetralogy of Fallot. Am. J. Cardiol., 73, 808–11.Google Scholar
Sarkozy, A., Conti, E., Neri, C.et al. (2005) Spectrum of atrial septal defects associated with mutations of NKK 2.5 and GATA 4 transcription factors. J. Med. Genet., 42, 16–21.Google Scholar
Sawatari, K., Imai, Y., Kurosawa, H.et al. (1989) Staged operation for pulmonary atresia and ventricular septal defect with major aortopulmonary collateral arteries. New technique for complete unifocalization. J. Thorac. Cardiovasc. Surg., 98 (5), 738–50.Google Scholar
Schmidt, K. G., Cassidy, S. C., Silverman, N. H.et al. (1988) Doubly committed subarterial ventricular septal defects: echocardiographic features and surgical implications. J. Am. Coll. Cardiol., 12 (6), 1538–46.Google Scholar
Schott, J. J., Benson, D. W., Basson, C. T.et al. (1998) Congenital heart disease caused by mutations in the transcription factor NKX2–5. Science, 281, 108–11.Google Scholar
Schreiber, C., Eicken, A., Balling, G.et al. (2000) Single centre experience on primary correction of common arterial trunk: overall survival and freedom from reoperation after more than 15 years. Eur. J. Cardiothorac. Surg., 18 (1), 68–73.Google Scholar
Sell, J. E., Jonas, R. A., Mayer, J. E.et al. (1998) The results of a surgical program for interrupted aortic arch. J. Thorac. Cardiovasc. Surg., 115 (6), 864–77.Google Scholar
Serraf, A., Lacour-Gayet, F., Robotin, M.et al. (1996) Repair of interrupted aortic arch: a ten-year experience. J. Thorac. Cardiovasc. Surg., 112 (5), 1150–60.Google Scholar
Sett, S. S., Sandor, G. G. S. & Mawson, J. B. (2001) Interrupted right aortic arch and origin of the left pulmonary artery from the aorta in DiGeorge syndrome. Cardiol. Young., 11 (6), 676–9.Google Scholar
Shashi, V., Berry, M. N. & Hines, M. H. (2003) Vasomotor instability in neonates with chromosome 22q11 deletion syndrome. Am. J. Med. Genet., 121, 231–4.Google Scholar
Sim, E. K., Grignani, R. T., Wong, M. L.et al. (1999) Influence of surgery on aortic valve prolapse and aortic regurgitation in doubly committed subarterial ventricular septal defect. Am. J. Cardiol., 84 (12), 1445–8, A8.Google Scholar
Stellin, G., Jonas, R. A., Goh, T. H.et al. (1983) Surgical treatment of absent pulmonary valve syndrome in infants: relief of bronchial obstruction. Ann. Thorac. Surg., 36 (4), 468–75.Google Scholar
Takahashi, K., Kido, S., Hoshino, K.et al. (1995) Frequency of a 22q11 deletion in patients with conotruncal cardiac malformations: a prospective study. Eur. J. Pediatr., 154, 878–81.Google Scholar
Tatsuno, K., Konno, S., Ando, M.et al. (1973) Pathogenetic mechanisms of prolapsing aortic valve and aortic regurgitation associated with ventricular septal defect. Anatomical, angiographic, and surgical considerations. Circulation, 48 (5), 1028–37.Google Scholar
Tchervenkov, C. I., Salasidis, G., Cecere, R.et al. (1997) One-stage midline unifocalization and complete repair in infancy versus multiple-stage unifocalization followed by repair for complex heart disease with major aortopulmonary collaterals. J. Thorac. Cardiovasc. Surg., 114 (5), 727–37.Google Scholar
Thompson, L. D., McElhinney, D. B., Reddy, M.et al. (2001) Neonatal repair of truncus arteriosus: continuing improvement in outcomes. Ann. Thorac. Surg., 72 (2), 391–5.Google Scholar
Tohyama, K., Satomi, G. & Momma, K. (1997) Aortic valve prolapse and aortic regurgitation associated with subpulmonic ventricular septal defect. Am. J. Cardiol., 79 (9), 1285–9.Google Scholar
Toscano, A., Anaclerio, S., Digilio, M. C.et al. (2002) Ventricular septal defect and deletion of chromosome 22q11: anatomical types and aortic arch anomalies. Eur. J. Pediatr., 161, 116–17.Google Scholar
Tworetzky, W., McElhinney, D. B., Brook, M. M.et al. (1999) Echocardiographic diagnosis alone for the complete repair of major congenital heart defects. J. Am. Coll. Cardiol., 33 (1), 228–33.Google Scholar
Vairo, U., Marino, B., Gagliardi, M. G.et al. (1989) Truncus arteriosus con discontinuitá delle arterie polmonari: studio ecocardiografico e angiocardiografico. Cardiovasc. Imag., 1 (3), 44–8.Google Scholar
Mierop, L. H. S. & Kutsche, L. M. (1984) Interruption of the aortic arch and coarctation of the aorta: pathogenetic relations. Am. J. Cardiol., 54, 829–34.Google Scholar
Mierop, L. H. S. & Kutsche, L. M.(1986) Cardiovascular anomalies in DiGeorge syndrome and importance of neural crest as a possible pathogenetic factor. Am. J. Cardiol., 58, 133–7.Google Scholar
Praagh, R. & McNamara, J. J. (1968) Anatomic types of ventricular septal defect with aortic insufficiency. Diagnostic and surgical considerations. Am. Heart J., 75 (5), 604–19.Google Scholar
Praagh, S., Truman, T., Firpo, A., Bano-Rodrigo, A.et al. (1989) Cardiac malformations in trisomy-18: a study of 41 postmortem cases. J. Am. Coll. Cardiol., 13, 1586–97.Google Scholar
Vargas, F. J., Kreutzer, G. O., Pedrini, M.et al. (1986) Tetralogy of Fallot with subarterial ventricular septal defect. Diagnostic and surgical considerations. J. Thorac. Cardiovasc. Surg., 92 (5), 908–12.Google Scholar
Vitelli, F., Morishima, M., Taddei, I.et al. (2002) Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum. Mol. Genet., 11 (8), 915–22.Google Scholar
Waldo, K., Zdanowicz, M., Burch, J.et al. (1999) A novel role for cardiac neural crest in heart development. J. Clin. Invest., 103, 1499–507.Google Scholar
Wang, J. N., Wu, J. M. & Yang, Y. J. (1999) Double-lumen aortic arch with anomalous left pulmonary artery origin from the main pulmonary artery-bilateral persistent fifth aortic arch – a case report. Int. J. Cardiol., 69, 105–8.Google Scholar
Webber, S. A., Hatchwell, E., Barber, J. C. K.et al. (1996) Importance of microdeletions of chromosomal region 22q11 as a cause of selected malformations of the ventricular outflow tracts and aortic arch: a three-year prospective study. J. Pediatr., 129, 26–32.Google Scholar
Weintraub, R. G., Chow, C. W. & Gow, R. M. (1989) Absence of the leaflets of the aortic valve in DiGeorge syndrome. Int. J. Cardiol., 23, 255–7.Google Scholar
Wilson, D. I., Cross, I. E., Goodship, J. A.et al. (1991) DiGeorge syndrome with isolated aortic coarctation and isolated ventricular septal defect in three sibs with a 22q11 deletion of maternal origin. Br. Heart J., 66, 308–12.Google Scholar
Wilson, D. I., Burn, J., Scambler, P.et al. (1993) DiGeorge syndrome: part of CATCH 22. J. Med. Genet., 30, 852–6.Google Scholar
Yacoub, M. H., Khan, H., Stavri, G.et al. (1997) Anatomic correction of the syndrome of prolapsing right coronary aortic cusp, dilatation of the sinus of Valsalva, and ventricular septal defect. J. Thorac. Cardiovasc. Surg., 113 (2), 253–61.Google Scholar
Yamagishy, H., Maeda, J., Tokumura, M.et al. (2000). Ventricular septal defect associated with microdeletions of chromosome 22q11.2. Clin. Genet., 58, 493–6.Google Scholar
Yates, R. W. M., Raymond, F. L., Cook, A.et al. (1996) Isomerism of the atrial appendages associated with 22q11 deletion in a fetus. Heart, 76, 548–9.Google Scholar
Yeager, S. B. & Sanders, S. P. (1995) Echocardiographic identification of thymic tissue in neonates with congenital heart disease. Am. Heart J., 129, 837–9.Google Scholar
Young, D., Shprintzen, F. R. J. & Golderb, R. B. (1980) Cardiac malformations in the velocardiofacial syndrome. Am. J. Cardiol., 46, 643–8.Google Scholar
Young, D. E. J., Booth, P., Barumi, J.et al. (1999) Chromosome 22q11 microdeletion and congenital heart disease – a survey in a pediatric population. Eur. J. Pediatr., 158, 566–70.Google Scholar
Zhang, G. C., Wang, Z. W., Zhang, R. F.et al. (1997) Surgical repair of patients with tetralogy of Fallot and unilateral absence of pulmonary artery. Ann. Thorac. Surg., 64 (4), 1150–3.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×