Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T21:46:54.397Z Has data issue: false hasContentIssue false

3 - Convergence of Spectral Sequences

Published online by Cambridge University Press:  19 January 2010

John McCleary
Affiliation:
Vassar College, New York
Get access

Summary

“The machinery of spectral sequences, stemming from the algebraic work of Lyndon and Koszul, seemed complicated and obscure to many topologists. Nevertheless, it was successful…”

G. W. Whitehead

In Chapter 2, we find recipes for the construction of spectral sequences. To develop these ideas further we need to clarify the relationship between a spectral sequence and its target; this is the goal of Chapter 3. To achieve this goal, it is necessary to introduce more refined ideas of convergence. These ideas require a discussion of limits and colimits of modules and the definition of a morphism between spectral sequences with which one can express the relevant theorems of comparison. In the case of a filtered differential graded module, conditions on the filtration guarantee that the associated spectral sequence converges uniquely to its target. The case of an exact couple is more subtle and we develop it after a discussion of some associated limits.

We express convergence results as comparison theorems that answer the questions: If two spectral sequences are isomorphic via a morphism of spectral sequences, then how do the targets of the spectral sequences compare? Need they be isomorphic? We end the chapter with some constructions and Zeeman's comparison theorem that reveals how special circumstances lead to powerful conclusions.

On convergence

Theorem 2.6 tells us that a filtered differential graded module, (A, d, F), determines a spectral sequence and, if the filtration is bounded, then the spectral sequence determines H(A, d) (up to extension problems). We want to remove the restrictive hypothesis of a bounded filtration and still retain convergence to a uniquely determined target.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×