Published online by Cambridge University Press: 27 October 2021
Chapter 11 described the dynamics of flamelets forced by velocity or burning rate oscillations and illustrated the key physics controlling the spatiotemporal dynamics of the flame position. This chapter focuses on the impacts of these disturbances on the mass burning rate and/or heat release rate itself. For example, a key quantity of interest for the thermoacoustic instability problem is the heat release fluctuations that are induced by the flame disturbances. Section 12.1 gives an overview of the basic mechanisms through which flow disturbances lead to heat release oscillations, and differentiates between velocity coupling, fuel/air ratio coupling, pressure coupling, and acceleration coupling. Section 12.2 treats the effects of the flame configuration on its sensitivity to these disturbances, such as geometry or reactant premixing.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.