Published online by Cambridge University Press: 05 October 2012
Chapter 11 described the dynamics of flamelets forced by velocity or burning rate oscillations and illustrated the key physics controlling the spatiotemporal dynamics of the flame position. This chapter focuses on the impacts of these disturbances on the mass burning rate and/or heat release rate itself. For example, a key quantity of interest for the thermoacoustic instability problem is the heat release fluctuations that are induced by the flame wrinkling processes described in Chapter 11. Section 12.1 overviews basic mechanisms through which flow disturbances lead to heat release oscillations, and differentiates among velocity coupling, fuel/air ratio coupling, pressure coupling, and acceleration coupling. These are quantitatively analyzed in the linear regime in Section 12.2. Key questions addressed in this section are the gain and phase responses of the unsteady heat release in response to different types of disturbances. For example, given a disturbance velocity fluctuation of magnitude ɛ, what are the magnitude and phase shift of the resulting unsteady heat release, Q̇(t)? This phase shift has profound implications on thermoacoustic instability limits in particular. We also detail how these gain and phase shifts are functions of the flame configuration, such as its length and spreading angle, as well as the frequency. Nonlinear effects are discussed in Section 12.3. As detailed in Section 6.7.2.2, the amplitude dependence of the flame response is critically important in controlling the limit cycle oscillations in self-excited instabilities.
Section 12.4 then treats broadband flame excitation and the generation of sound by turbulent flames. Section 12.4.1 discusses the influence of broadband fluctuations on the time-averaged burning rate, a key problem in turbulent combustion. Section 12.4.2 treats the spectrum of heat release fluctuations induced by broadband flow disturbances, an important problem for combustion noise applications. Finally, Section 12.4.3 treats the sound generated by unsteady heat release fluctuations.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.