Book contents
- Frontmatter
- Summary Contents
- Detailed Contents
- Introduction
- Overview of the Book
- 1 Overview and Basic Equations
- 2 Decomposition and Evolution of Disturbances
- 3 Hydrodynamic Flow Stability I: Introduction
- 4 Hydrodynamic Flow Stability II: Common Combustor Flow Fields
- 5 Acoustic Wave Propagation I – Basic Concepts
- 6 Acoustic Wave Propagation II – Heat Release, Complex Geometry, and Mean Flow Effects
- 7 Flame–Flow Interactions
- 8 Ignition
- 9 Internal Flame Processes
- 10 Flame Stabilization, Flashback, Flameholding, and Blowoff
- 11 Forced Response I – Flamelet Dynamics
- 12 Forced Response II – Heat Release Dynamics
- Index
- Solutions
- References
10 - Flame Stabilization, Flashback, Flameholding, and Blowoff
Published online by Cambridge University Press: 05 October 2012
- Frontmatter
- Summary Contents
- Detailed Contents
- Introduction
- Overview of the Book
- 1 Overview and Basic Equations
- 2 Decomposition and Evolution of Disturbances
- 3 Hydrodynamic Flow Stability I: Introduction
- 4 Hydrodynamic Flow Stability II: Common Combustor Flow Fields
- 5 Acoustic Wave Propagation I – Basic Concepts
- 6 Acoustic Wave Propagation II – Heat Release, Complex Geometry, and Mean Flow Effects
- 7 Flame–Flow Interactions
- 8 Ignition
- 9 Internal Flame Processes
- 10 Flame Stabilization, Flashback, Flameholding, and Blowoff
- 11 Forced Response I – Flamelet Dynamics
- 12 Forced Response II – Heat Release Dynamics
- Index
- Solutions
- References
Summary
This chapter initiates the third section of the text, discussing transient and time-harmonic combustor phenomena. This particular chapter focuses on the transient phenomena of flashback, flame stabilization, and blowoff. Chapters 11 and 12 then focus on time-harmonic and broadband flame forcing.
This chapter is divided into two main sections. Section 10.1 treats flame flashback. It shows that there are multiple mechanisms through which a flame can propagate upstream into premixed reactants, each of which has different sensitivities to the flow field and operating conditions. We also show that the processes controlling the initiation of flashback, and those controlling its behavior once it has begun to propagate upstream, are quite different. Section 10.2 then treats flame stabilization and blowoff. This chapter starts with the classical treatment of the problem, by considering the relative balance between flame speed and flow velocity in the shear layer. However, flames are strongly affected by stretch effects near the stabilization point, as they lie in regions of high shear. As such, we then work out the scalings for flame stretch rate in a shear layer and show that quite different results are possible, depending on the configuration. We also discuss effects of flow recirculation on flame stabilization and the processes leading to blowoff.
- Type
- Chapter
- Information
- Unsteady Combustor Physics , pp. 293 - 316Publisher: Cambridge University PressPrint publication year: 2012