Published online by Cambridge University Press: 05 October 2012
A key focus of this text is to relate the manner in which fluctuations in flow or thermodynamic variables propagate and interact in combustion systems. In this chapter, we demonstrate that combustor disturbances can be decomposed into three canonical types of fluctuations, referred to here as acoustic, entropy, and vorticity disturbances. This decomposition is highly illustrative in understanding the spatial/temporal dynamics of combustor disturbances [1]. For example, we show that unsteady flow motions can be decomposed into acoustic fluctuations, which propagate as waves at the speed of sound, and vorticity fluctuations, which are advected by the flow. This decomposition is important because, as shown in Chapters 11 and 12, two velocity disturbances of the same magnitude can lead to very different influences on the flame, depending on their phase speeds and space–time correlation. Aside 2.2 further emphasizes how this decomposition provides insight into behavior measured in a harmonically oscillating flow field.
This chapter is organized in the following manner. Section 2.1 introduces the basic approach for analyzing disturbances, and illustrates the formal process of perturbation expansions used throughout the text. Section 2.2 then considers small-amplitude disturbance propagation in homogeneous flows. This limit is helpful for understanding key aspects of the problem, as the disturbance modes do not interact and are not excited. Section 2.3 closely follows this material by treating the effects of boundary conditions, finite amplitude disturbances, and inhomogeneities, and shows how these effects cause interaction and/or excitation of these modes. Sec-tion 2.4 then considers the energy density and energy flux associated with these fluctuations.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.