Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T08:46:09.878Z Has data issue: false hasContentIssue false

22 - Optical Control of Polariton Condensates

from Part IV - Condensates in Condensed Matter Physics

Published online by Cambridge University Press:  18 May 2017

G. Christmann
Affiliation:
Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser
P. G. Savvidis
Affiliation:
Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser
J. J. Baumberg
Affiliation:
Cavendish Laboratory, University of Cambridge
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Microcavity polaritons, the bosonic quasiparticles resulting from the strong coupling between a cavity photon and a quantum well exciton, offer unique opportunities to study quantum fluids on a semiconductor chip. Their excitonic part leads to strong repulsive polariton–polariton interactions, and their photonic part allows one to probe their properties using conventional imaging and spectroscopy techniques. In this chapter, we report on recent results on the optical manipulation and control of polariton condensates. Using spatially engineered excitation profiles, it is possible to create potential landscapes for the polaritons. This leads to the observation of effects such as long distance spontaneous polariton propagation; confined states in a parabolic potential, in a configuration similar to a quantum harmonic oscillator; and vortex lattices.

Introduction

Wave-particle duality is one of the most striking features of quantum physics and has led to numerous discussions spreading far beyond the field of physics. The fact that the properties of a particle are described by a wavefunction redefined physics between the 19th and 20th centuries. When technological progress started to allow experimental access to microscopic particles, wave effects could be observed. Around the same time, the observation of the photoelectric effect eventually explained by Einstein, introduced the concept of photons, as quanta of electromagnetic radiation [1]. This also forced a reconsideration of the wave theory of light, which at that time was well established thanks to interferometry experiments and Maxwell's equations. Such quantisation in fact linked back to the ideas of light corpuscles as introduced by Newton.

In the 1920s, Einstein, on the basis of Bose's work on the statistics of photons [2], proposed the idea that an atomic gas of noninteracting bosons should exhibit, below a finite temperature, a macroscopic occupation of the lowest energy quantum state [3]. This is what is now called Bose-Einstein condensation and is the main topic of this book. This phenomenon extends the wave properties of matter to an ensemble of particles and therefore to the macroscopic scale. At first, this purely theoretical prediction was first rejected by the scientific community. However, when superfluidity of 4He was observed [4, 5], London proposed that this observation was in fact linked to Bose-Einstein condensation [6]. The situation of liquid helium was however quite far from the picture of a gas of noninteracting particles.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Einstein, A. (1905) ‘Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt’, Ann. Phys. 322, 132–148.Google Scholar
[2] Bose, S. N. (1924) ‘Plancks gesetz und lichtquantenhypothese’, Z. Phys. A 26, 178–181.Google Scholar
[3] Einstein, A. (1925) ‘Quantum theory of mono-atomic ideal gas. Second paper’, Sitzungsber. K. Preuss. Akad. Wiss., 3–14.Google Scholar
[4] Allen, J. F. & Misener, A. D. (1938) ‘Flow of liquid helium II’, Nature 141, 75.Google Scholar
[5] Kapitza, P. (1938) ‘Viscosity of liquid helium below the ƛ-Point’, Nature 141, 74.Google Scholar
[6] London, F. (1938) ‘On the Bose-Einstein condensation’, Phys. Rev. 54, 947–954.Google Scholar
[7] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. (1995) ‘Observation of Bose-Einstein condensation in a dilute atomic vapor’, Science 269, 198–201.Google Scholar
[8] Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M. & Ketterle, W. (1996) ‘Bose-Einstein condensation in a gas of sodium atoms’, Phys. Rev. Lett. 75, 3969–3973.Google Scholar
[9] Andrews, M. R., Townsend, C. G., Miesner, H. J., Durfee, D. S., Kurn, D. M. & Ketterle, W. (1997) ‘Observation of interference between two Bose condensates’, Science 275, 637–641.Google Scholar
[10] High, A. A., Leonard, J. R., Remeika, M., Butov, L. V., Hanson, M. & Gossard, A. C. (2012) ‘Condensation of excitons in a trap’, Nano Lett. 12, 2605–2609.Google Scholar
[11] Alloing, M., Beian, M., Lewenstein, M., Fuster, D., González, Y., González, L., Combescot, R., Combescot, M. & Dubin, F. (2014) ‘Evidence for a Bose-Einstein condensate of excitons’, Europhys. Lett. 107, 10012.Google Scholar
[12] Demokritov, S. O., Demidov, V. E., Dzyapko, O., Melkov, G. A., Serga, A. A., Hillebrands, B. & Slavin, A. N. (2006) ‘Bose-Einstein condensation of quasiequilibrium magnons at room temperature under pumping’, Nature 443, 430–433.Google Scholar
[13] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., Marchetti, F. M., Szymanska, M. H., André, R., Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B. & Le Si, Dang (2006) ‘Bose-Einstein condensation of exciton polaritons’, Nature 443, 409–414.Google Scholar
[14] Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. (2010) ‘BoseEinstein condensation of photons in an optical microcavity’, Nature 468, 545–548.Google Scholar
[15] Christopoulos, S., von Hgersthal, G. B. H., Grundy, A. J. D., Lagoudakis, P. G., Kavokin, A. V., Baumberg, J. J., Christmann, G., Butté, R., Feltin, E., Carlin, J.-F. & Grandjean, N. (2007) ‘Room-temperature polariton lasing in semiconductor microcavities’, Phys. Rev. Lett. 98, 126405.Google Scholar
[16] Kéna-Cohen, S. & Forrest, S. R. (2010) ‘Room-temperature polariton lasing in an organic single-crystal microcavity’, Nat. Photon. 4, 371–375.Google Scholar
[17] Guillet, T., Mexis, M., Levrat, J., Rossbach, G., Brimont, C., Bretagnon, T., Gil, B., Butté, R., Grandjean, N., Orosz, L., Réveret, F., Leymarie, J., Zúñiga-Pérez, J., Leroux, M., Semond, F. & Bouchoule, S. (2011) ‘Polariton lasing in a hybrid bulk ZnO microcavity’, Appl. Phys. Lett. 99, 161104.Google Scholar
[18] Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. (1992) ‘Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity’, Phys. Rev. Lett. 69, 3314.Google Scholar
[19] Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., Carusotto, I., André, R., Le Si, Dang & Deveaud-Plédran, B. (2008) ‘Quantized vortices in an exciton–polariton condensate’, Nat. Phys. 4, 706–710.Google Scholar
[20] Amo, A., Sanvitto, D., Laussy, F. P., Ballarini, D., del Valle, E., Martin, M. D., LemaÎtre, A., Bloch, J., Krizhanovskii, D. N., Skolnick, M. S., Tejedor, C. & Viña, L. (2009) ‘Collective fluid dynamics of a polariton condensate in a semiconductor microcavity’, Nature 457, 291–295.Google Scholar
[21] Amo, A., Lefrère, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., Houdré, R., Giacobino, E. & Bramati, A. (2009) ‘Superfluidity of polaritons in semiconductor microcavities’, Nat. Phys. 5, 805–810.Google Scholar
[22] Amo, A., Pigeon, S., Sanvitto, D., Sala, V. G., Hivet, R., Carusotto, I., Pisanello, F., Leménager, G., Houdré, R., Giacobino, E., Ciuti, C. & Bramati, A. (2011) ‘Polariton superfluids reveal quantum hydrodynamic solitons’, Science 332, 1167–1170.Google Scholar
[23] Savvidis, P. G., Baumberg, J. J., Stevenson, R. M., Skolnick, M. S., Whittaker, D. M. & Roberts, J. S. (2000) ‘Angle-resonant stimulated polariton amplifier’, Phys. Rev. Lett. 84, 1547.Google Scholar
[24] Stevenson, R. M., Astratov, V. N., Skolnick, M. S., Whittaker, D. M., Emam-Ismail, M., Tartakovskii, A. I., Savvidis, P. G., Baumberg, J. J., & Roberts, J. S. (2000) ‘Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities’, Phys. Rev. Lett. 85, 3680.Google Scholar
[25] Diederichs, C., Tignon, J., Dasbach, G., Ciuti, C., LemaÎtre, A., Bloch, J., Roussignol, Ph. & Delalande, C. (2006) ‘Parametric oscillation in vertical triple microcavities’, Nature 440, 904–907.Google Scholar
[26] El DaÎf, O., Baas, A., Guillet, T., Brantut, J.-P., Idrissi Kaitouni, R., Staehli, J. L., Morier-Genoud, F. & Deveaud, B. (2006) ‘Polariton quantum boxes in semiconductor microcavities’, Appl. Phys. Lett. 88, 061105.Google Scholar
[27] Bajoni, D., Senellart, P., Wertz, E., Sagnes, I., Miard, A., LemaÎtre, A. & Bloch, J. (2008) ‘Polariton laser using single micropillar GaAsGaAlAs semiconductor cavities’, Phys. Rev. Lett. 100, 047401.Google Scholar
[28] Wertz, E., Ferrier, L., Solnyshkov, D. D., Johne, R., Sanvitto, D., LemaÎtre, A., Sagnes, I., Grousson, R., Kavokin, A. V., Senellart, P., Malpuech, G. & Bloch, J. (2010) ‘Spontaneous formation and optical manipulation of extended polariton condensates’, Nat. Phys. 6, 860–864.Google Scholar
[29] Galbiati, M., Ferrier, L., Solnyshkov, D. D., Tanese, D., Wertz, E., Amo, A., Abbarchi, M., Senellart, P., Sagnes, I., LemaÎtre, A., Galopin, E., Malpuech, G. & Bloch, J. (2012) ‘Polariton condensation in photonic molecules’, Phys. Rev. Lett. 108, 126403.Google Scholar
[30] Jacqmin, T., Carusotto, I., Sagnes, I., Abbarchi, M., Solnyshkov, D. D., Malpuech, G., Galopin, E., LemaÎtre, A., Bloch, J. & Amo, A. (2014) ‘Direct observation of dirac cones and a flatband in a honeycomb lattice for polaritons’, Phys. Rev. Lett. 112, 116402.Google Scholar
[31] Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. (2007) ‘Bose-Einstein condensation of microcavity polaritons in a trap’, Science 316, 1007–1010.Google Scholar
[32] Lai, C. W., Kim, N. Y., Utsunomiya, S., Roumpos, G., Deng, H., Fraser, M. D., Byrnes, T., Recher, P., Kumada, N., Fujisawa, T. & Yamamoto, Y. (2007) ‘Coherent zero-state and π-state in an excitonpolariton condensate array’, Nature 450, 529–532.Google Scholar
[33] Hopfield, J. J. (1958) ‘Theory of the contribution of excitons to the complex dielectric constant of crystals’, Phys. Rev. 112, 1555–1567.Google Scholar
[34] Tassone, F., Piermarocchi, C., Savona, V., Quattropani, A. & Schwendimann, P. (1997) ‘Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons’, Phys. Rev. B 56, 7554.Google Scholar
[35] Richard, M., Kasprzak, J., Romestain, R., André, R. & Le Si, Dang (2005) ‘Spontaneous coherent phase transition of polaritons in CdTe microcavities’, Phys. Rev. Lett. 94, 187401.Google Scholar
[36] Richard, M., Kasprzak, J., André, R., Romestain, R., Le Si, Dang, Malpuech, G. & Kavokin, A. (2005) ‘Experimental evidence for nonequilibrium Bose condensation of exciton polaritons’, Phys. Rev. B 72, 201301.Google Scholar
[37] Tsotsis, P., Eldridge, P. S., Gao, T., Tsintzos, S. I., Hatzopoulos, Z. & Savvidis, P. G. (2012) ‘Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity’, New J. Phys. 14, 023060.Google Scholar
[38] Christmann, G., Tosi, G., Berloff, N. G., Tsotsis, P., Eldridge, P. S., Hatzopoulos, Z., Savvidis, P. G. & Baumberg, J. J. (2012) ‘Polariton ring condensates and sunflower ripples in an expanding quantum liquid’, Phys. Rev. B 85, 235303.Google Scholar
[39] Wertz, E., Ferrier, L., Solnyshkov, D. D., Senellart, P., Bajoni, D., Miard, A., LemaÎtre, A., Malpuech, G. & Bloch, J. (2009) ‘Spontaneous formation of a polariton condensate in a planar GaAs microcavity’, Appl. Phys. Lett. 95, 051108.Google Scholar
[40] Sich, M., Krizhanovskii, D. N., Skolnick, M. S., Gorbach, A. V., Hartley, R., Skryabin, D. V., Cerda-Méndez, E. A., Biermann, K., Hey, R. & Santos, P. V. (2012) ‘Observation of bright polariton solitons in a semiconductor microcavity’, Nat. Photon. 6, 50–55.Google Scholar
[41] Sanvitto, D., Marchetti, F. M., Szymaska, M. H., Tosi, G., Baudisch, M., Laussy, F. P., Krizhanovskii, D. N., Skolnick, M. S., Marrucci, L., LemaÎtre, A., Bloch, J., Tejedor, C. & L., Viña (2010) ‘Persistent currents and quantized vortices in a polariton superfluid’, Nat. Phys. 6, 527–533.Google Scholar
[42] Amo, A., Pigeon, S., Adrados, C., Houdré, R., Giacobino, E., Ciuti, C. & Bramati, A. (2010) ‘Light engineering of the polariton landscape in semiconductor microcavitiesPhys. Rev. B 82, 081301.Google Scholar
[43] Sanvitto, D., Pigeon, S., Amo, A., Ballarini, D., De Giorgi, M., Carusotto, I., Hivet, R., Pisanello, F., Sala, V. G., Guimaraes, P. S. S., Houdré, R., Giacobino, E., Ciuti, C., Bramati, A. & Gigli, G. (2011) ‘All-optical control of the quantum flow of a polariton condensate’, Nat. Photon. 5, 610–614.Google Scholar
[44] Baas, A., Karr J., Ph., Eleuch, H. & Giacobino, E. (2004) ‘Optical bistability in semiconductor microcavities’, Phys. Rev. A 69, 023809.Google Scholar
[45] Ballarini, D., De Giorgi, M., Cancellieri, E., Houdré, R., Giacobino, E., Cingolani, R., Bramati, A., Gigli, G. & Sanvitto, D. (2012) ‘All-optical polariton transistor’, Nat. Comms. 4, 1778.Google Scholar
[46] Liew, T. C. H., Kavokin, A. V. & Shelykh, I. A. (2008) ‘Optical circuits based on polariton neurons in semiconductor microcavities’, Phys. Rev. Lett. 101, 016402.Google Scholar
[47] Liew, T. C. H., Shelykh, I. A. & Malpuech, G. (2011) ‘Polaritonic devices’, Physica E 43, 1543–1568.Google Scholar
[48] Gao, T., Eldridge, P. S., Liew, T. C. H., Tsintzos, S. I., Stavrinidis, G., Deligeorgis, G., Hatzopoulos, Z. & Savvidis, P. G. (2012) ‘Polariton condensate transistor switch’, Phys. Rev. B 85, 235102.Google Scholar
[49] Antón, C., Liew, T. C. H., Sarkar, D., Martín, M. D., Hatzopoulos, Z., Eldridge, P. S., Savvidis, P. G. & Viña, L. (2014) ‘Operation speed of polariton condensate switches gated by excitons’, Phys. Rev. B 89, 235312.Google Scholar
[50] Nguyen, H. S., Vishnevsky, D., Sturm, C., Tanese, D., Solnyshkov, D., Galopin, E., LemaÎtre, A., Sagnes, I., Amo, A., Malpuech, G. & Bloch, J. (2013) ‘Realization of a double-barrier resonant tunneling diode for cavity polaritons’, Phys. Rev. Lett. 110, 236601.Google Scholar
[51] Sturm, C., Tanese, D., Nguyen, H. S., Flayac, H., Galopin, E., LemaÎtre, A., Sagnes, I., Solnyshkov, D., Amo, A., Malpuech, G. & Bloch, J. (2014) ‘All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer’, Nat. Comms. 5, 3278.Google Scholar
[52] Tosi, G., Christmann, G., Berloff, N. G., Tsotsis, P., Gao, T., Hatzopoulos, Z., Savvidis, P. G. & Baumberg, J. J. (2012a) ‘Sculpting oscillators with light within a nonlinear quantum fluid’, Nat. Phys. 8, 190–194.Google Scholar
[53] Manni, F., Lagoudakis, K. G., Liew, T. C. H., André, R. & Deveaud-Plédran, B. (2011) ‘Spontaneous pattern formation in a polariton condensate’, Phys. Rev. Lett. 107, 106401.Google Scholar
[54] Askitopoulos, A., Ohadi, H., Kavokin, A. V., Hatzopoulos, Z., Savvidis, P. G. & Lagoudakis, P. G. (2013) ‘Polariton condensation in an optically induced twodimensional potential’, Phys. Rev. B 88, 041308.Google Scholar
[55] Aßmann, M., Veit, F., Bayer, M., Löffler, A., Höfling, S., Kamp, M. & Forchel, A. (2012) ‘All-optical control of quantized momenta on a polariton staircase’, Phys. Rev. B 85, 155320.Google Scholar
[56] Cristofolini, P., Dreismann, A., Christmann, G., Franchetti, G., Berloff, N. G., Tsotsis, P., Hatzopoulos, Z., Savvidis, P. G. & Baumberg, J. J. (2013) ‘Optical superfluid phase transitions and trapping of polariton condensates’, Phys. Rev. Lett. 110, 186403.Google Scholar
[57] Dreismann, A., Cristofolini, P., Balili, R., Christmann, G., Pinsker, F., Berloff, N. G., Hatzopoulos, Z., Savvidis, P. G. & Baumberg, J. J. (2014) ‘Coupled counterrotating polariton condensates in optically defined annular potentials’, Proc. Natl. Acad. Sci.U.S.A. 111, 8770–8775.Google Scholar
[58] Baas, A., Lagoudakis, K. G., Richard, M., André, R., Le Si, Dang & Deveaud-Plédran, B. (2008) ‘Synchronized and desynchronized phases of exciton-polariton condensates in the presence of disorder’, Phys. Rev. Lett. 100, 170401.Google Scholar
[59] Christmann, G., Tosi, G., Berloff, N. G., Tsotsis, P., Eldridge, P. S., Hatzopoulos, Z., Savvidis, P. G. & Baumberg, J. J. (2014) ‘Oscillatory solitons and time-resolved phase locking of two polariton condensates’, New J. Phys. 16, 103039.Google Scholar
[60] Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. (2011) ‘Microresonator-based optical frequency combs’, Science, 332, 555–559.Google Scholar
[61] Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K., Sanpera, A., Shlyapnikov, G. V. & Lewenstein, M. (1999) ‘Dark solitons in Bose-Einstein condensates’, Phys. Rev. Lett. 83, 5198.Google Scholar
[62] Weller, A., Ronzheimer, J. P., Gross, C., Esteve, J., Oberthaler, M. K., Frantzeskakis, D. J., Theocharis, G. & Kevrekidis, P. G. (2008) ‘Experimental observation of oscillating and interacting matter wave dark solitons’, Phys. Rev. Lett. 101, 130401.Google Scholar
[63] Feng, M., Silverman, K. L., Mirin, R. P. & Cundiff, S. T. (2010) ‘Dark pulse quantum dot diode laser’, Opt. Express 18, 13385.Google Scholar
[64] Yulin, A. V., Egorov, O. A., Lederer, F. & Skryabin, D. V. (2008) ‘Dark polariton solitons in semiconductor microcavities’, Phys. Rev. A 78, 061801.Google Scholar
[65] Egorov, O. A., Skryabin, D. V., Yulin, A. V. & Lederer, F. (2009) ‘Bright cavity polariton solitons’, Phys. Rev. Lett. 102, 153904.Google Scholar
[66] Tosi, G., Christmann, G., Berloff, N. G., Tsotsis, P., Gao, T., Hatzopoulos, Z., Savvidis, P. G. & Baumberg, J. J. (2012b) ‘Geometrically locked vortex lattices in semiconductor quantum fluids’, Nat. Comms. 3, 1243.Google Scholar
[67] Tikhonenko, V., Christou, J., Luther-Davies, B. & Kivshar, Y. S. (1996) ‘Observation of vortex solitons created by the instability of dark soliton stripes’, Opt. Lett. 21, 1129–1131.Google Scholar
[68] Manni, F., Liew, T. C. H., Lagoudakis, K. G., Ouellet-Plamondon, C., André, R., Savona, V. & Deveaud, B. (2013) ‘Spontaneous self-ordered states of vortexantivortex pairs in a polariton condensate’, Phys. Rev. B 88, 201303.Google Scholar
[69] Hivet, R., Cancellieri, E., Boulier, T., Ballarini, D., Sanvitto, D., Marchetti, F. M., Szymanska, M. H., Ciuti, C., Giacobino, E. & Bramati, A. (2014) Phys. Rev. B 89, 134501.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×