Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T07:28:41.960Z Has data issue: false hasContentIssue false

29 - Bose-Einstein Condensates in Neutron Stars

from Part V - Condensates in Astrophysics and Cosmology

Published online by Cambridge University Press:  18 May 2017

C. J. Pethick
Affiliation:
University of Copenhagen
T. Schäfer
Affiliation:
Stanford University
A. Schwenk
Affiliation:
Technische Universität Darmstadt
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Griffin, A., Snoke, D. W., and Stringari, S. (eds). 1995. Bose-Einstein Condensation. Cambridge: Cambridge University Press.
[2] Pethick, C. J., and Ravenhall, D. G. 1995. Matter at large neutron excess and the physics of neutron star crusts. Annu. Rev. Nucl. Part. Sci., 45, 429–484.Google Scholar
[3] Hebeler, K., Lattimer, J. M., Pethick, C. J., and Schwenk, A. 2013. Equation of state and neutron star properties constrained by nuclear physics and observation. Ap. J., 773, 11.Google Scholar
[4] Bardeen, J., Cooper, L. N., and Schrieffer, J. R. 1957. Theory of superconductivity. Phys. Rev., 108, 1175–1204.Google Scholar
[5] Migdal, A. B. 1960. Superfluidity and the moments of inertia of nuclei. Sov. Phys. JETP, 10, 176.Google Scholar
[6] Ginzburg, V. L., and Kirzhnits, D. A. 1965. On the superfluidity of neutron stars. Sov. Phys. JETP, 20, 1346–1348.Google Scholar
[7] Hoffberg, M., Glassgold, A. E., Richardson, R. W., and Ruderman, M. 1970. Anisotropic superfluidity in neutron star matter. Phys. Rev. Lett., 24, 775–777.Google Scholar
[8] Bahcall, J. N., and Wolf, R. A. 1965. Neutron stars. I. Properties at absolute zero temperature. Phys. Rev., 140, B1445–1451.Google Scholar
[9] Baym, G., and Campbell, D. K. 1978. Chiral symmetry and pion condensation. Pages 1031–1094 of: Rho, M., and Wilkinson, D. H. (eds), Mesons in Nuclei, vol. III. Amsterdam: North Holland.
[10] Kaplan, D. B., and Nelson, A. E. 1986. Strange goings on in dense nucleonic matter. Phys. Lett. B, 175, 57–63.Google Scholar
[11] Pandharipande, V. R., Pethick, C. J., and Thorsson, V. 1995. Kaon energies in dense matter. Phys. Rev. Lett., 75, 4567–4570.Google Scholar
[12] Collins, J. C., and Perry, M. J. 1975. Superdense matter: neutrons or asymptotically free quarks? Phys. Rev. Lett., 34, 1353–1356.Google Scholar
[13] Baym, G., and Chin, S. A. 1976. Can a neutron star be a giant MIT bag? Phys. Lett. B, 62, 241–244.Google Scholar
[14] Schäfer, T., and Wilczek, F. 1999. Continuity of quark and hadron matter. Phys. Rev. Lett., 82, 3956–3959.Google Scholar
[15] Ivanenko, D., and Kurdgelaidze, D. F. 1969. Remarks on quark stars. Nuovo Cim. Lett., 2, 13–16.Google Scholar
[16] Barrois, B. C. 1977. Superconducting quark matter. Nucl. Phys. B, 129, 390–396.Google Scholar
[17] Bailin, D., and Love, A. 1979. Superfluid quark matter. J. Phys. A Math. Gen., 12, L283–L289.Google Scholar
[18] Alford, M. G., Schmitt, A., Rajagopal, K., and Schäfer, T. 2008. Color superconductivity in dense quark matter. Rev. Mod. Phys., 80, 1455–1515.Google Scholar
[19] Gor'kov, L. P., and Melik-Barkhudarov, T. K. 1961. Contribution to the theory of superfluidity in an imperfect Fermi gas. Sov. Phys. JETP, 13, 1018–1022.Google Scholar
[20] Heiselberg, H., Pethick, C. J., Smith, H., and Viverit, L. 2000. Influence of induced interactions on the superfluid transition in dilute Fermi gases. Phys. Rev. Lett., 85, 2418–2421.Google Scholar
[21] Gezerlis, A., Pethick, C. J., and Schwenk, A. 2014. Pairing and superfluidity of nucleons in neutron stars. Pages 580–615 of: Bennemann, K. H., and Ketterson, J. B. (eds), Novel Superfluids, vol. 2. Oxford: Oxford University Press.
[22] Schwenk, A., and Friman, B. 2004. Polarization contributions to the spin-dependence of the effective interaction in neutron matter. Phys. Rev. Lett., 92, 082501.Google Scholar
[23] Pethick, C. J., Chamel, N., and Reddy, S. 2010. Superfluid dynamics in neutron star crusts. Prog. Theor. Phys. Suppl., 186, 9–16.Google Scholar
[24] Haskell, B., and Melatos, A. 2015. Models of pulsar glitches. Int. J. Mod. Phys. D, 24, 1530008.Google Scholar
[25] Andersson, N., Glampedakis, K., Ho, W. C. G., and Espinoza, C. M. 2012. Pulsar glitches: the crust is not enough. Phys. Rev. Lett., 109, 241103.Google Scholar
[26] Chamel, N. 2013. Crustal entrainment and pulsar glitches. Phys. Rev. Lett., 110, 011101.Google Scholar
[27] Duncan, R. C. 1998. Global seismic oscillations in soft gamma repeaters. Ap. J. Lett., 498, L45–L49.Google Scholar
[28] Steiner, A. W., and Watts, A. L. 2009. Constraints on neutron star crusts from oscillations in giant flares. Phys. Rev. Lett., 103, 181101.Google Scholar
[29] Chamel, N. 2012. Neutron conduction in the inner crust of a neutron star in the framework of the band theory of solids. Phys. Rev. C, 85, 035801.Google Scholar
[30] Watanabe, G., Orso, G., Dalfovo, F., Pitaevskii, L. P., and Stringari, S. 2008. Equation of state and effective mass of the unitary Fermi gas in a one-dimensional periodic potential. Phys. Rev. A, 78, 063619.Google Scholar
[31] Watanabe, G. private communication.
[32] Mora, C., and Chevy, F. 2010. Normal phase of an imbalanced Fermi gas. Phys. Rev. Lett., 104, 230402.Google Scholar
[33] Yu, Z., Zöllner, S., and Pethick, C. J. 2010. Comment on ‘Normal phase of an imbalanced Fermi gas’. Phys. Rev. Lett., 105, 188901.Google Scholar
[34] Baldo, M., and Schulze, H.-J. 2007. Proton pairing in neutron stars. Phys. Rev. C, 75, 025802.Google Scholar
[35] Lu, M., Youn, S. H., and Lev, B. L. 2010. Trapping ultracold dysprosium: a highly magnetic gas for dipolar physics. Phys. Rev. Lett., 104, 063001.Google Scholar
[36] Lu, M., Burdick, N. Q., and Lev, B. L. 2012. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett., 108, 215301.Google Scholar
[37] Maeda, K., Hatsuda, T., and Baym, G. 2013. Antiferrosmectic ground state of twocomponent dipolar Fermi gases: an analog of meson condensation in nuclear matter. Phys. Rev. A, 87, 021604.Google Scholar
[38] Baym, G., Monien, H., Pethick, C. J., and Ravenhall, D. G. 1990. Transverse interactions and transport in relativistic quark-gluon and electromagnetic plasmas. Phys. Rev. Lett., 64, 1867–1870.Google Scholar
[39] Holstein, T., Norton, R. E., and Pincus, P. 1973. de Haas-van Alphen effect and the specific heat of an electron gas. Phys. Rev. B, 8, 2649–2656.Google Scholar
[40] Alford, M. G., Rajagopal, K., and Wilczek, F. 1999. Color flavor locking and chiral symmetry breaking in high density QCD. Nucl. Phys. B, 537, 443–458.Google Scholar
[41] Schäfer, T. 2000. Patterns of symmetry breaking in QCD at high baryon density. Nucl. Phys. B, 575, 269–284.Google Scholar
[42] Bedaque, P. F., and Schäfer, T. 2002. High-density quark matter under stress. Nucl. Phys. A, 697, 802–822.Google Scholar
[43] Schäfer, T. 2006. Meson supercurrent state in high-density QCD. Phys. Rev. Lett., 96, 012305.Google Scholar
[44] Son, D. T., and Stephanov, M. A. 2006. Phase diagram of cold polarized Fermi gas. Phys. Rev. A, 74, 013614.Google Scholar
[45] Radzihovsky, L., and Sheehy, D. E. 2010. Imbalanced Feshbach-resonant Fermi gases. Rep. Prog. Phys., 73, 076501.Google Scholar
[46] Kryjevski, A., and Schäfer, T. 2005. An effective theory for baryons in the CFL phase. Phys. Lett. B, 606, 52–58.Google Scholar
[47] Rapp, R., Zarand, G., Honerkamp, C., and Hofstetter, W. 2007. Color superfluidity and ‘baryon’ formation in ultracold fermions. Phys. Rev. Lett., 98, 160405.Google Scholar
[48] Son, D. T. 1999. Superconductivity by long-range color magnetic interaction in highdensity quark matter. Phys. Rev. D, 59, 094019.Google Scholar
[49] Schäfer, T., and Wilczek, F. 1999. Superconductivity from perturbative one-gluon exchange in high density quark matter. Phys. Rev. D, 60, 114033.Google Scholar
[50] Pisarski, R. D., and Rischke, D. H. 2000. Color superconductivity in weak coupling. Phys. Rev. D, 61, 074017.Google Scholar
[51] Brown, W. E., Liu, J. T., and Ren, H.-c. 2000. Perturbative nature of color superconductivity. Phys. Rev. D, 61, 114012.Google Scholar
[52] Page, D., Lattimer, J. M., Prakash, M., and Steiner, A. W. 2014. Stellar superfluids. Pages 505–579 of: Bennemann, K. H., and Ketterson, J. B. (eds), Novel Superfluids, vol. 2. Oxford: Oxford University Press.
[53] Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., and Hessels, J. W. T. 2010. A two-solar-mass neutron star measured using Shapiro delay. Nature, 467, 1081–1083.Google Scholar
[54] Antoniadis, J., Freire, P. C. C., Wex, N., Tauris, T. M., Lynch, R. S., van Kerkwijk, M. H., Kramer, M., Bassa, C., Dhillon, Vik, S., Driebe, T., Hessels, J. W. T., Kaspi, V. M., Kondratiev, V. I., Langer, N., Marsh, T. R., McLaughlin, M. A., Pennucci, T. T., Ransom, S. M., Stairs, I. H., van Leeuwen, J., Verbiest, J. P. W., and Whelan, D. G. 2013. A massive pulsar in a compact relativistic binary. Science, 340, 1233232.Google Scholar
[55] Yakovlev, D. G., and Pethick, C. J. 2004. Neutron star cooling. Annu. Rev. Astron. Astrophys., 42, 169–210.Google Scholar
[56] Page, D., Prakash, M., Lattimer, J. M., and Steiner, A. W. 2011. Rapid cooling of the neutron star in Cassiopeia A triggered by neutron superfluidity in dense matter. Phys. Rev. Lett., 106, 081101.Google Scholar
[57] Shternin, P. S., Yakovlev, D. G., Heinke, C. O., Ho, W. C. G., and Patnaude, D. J. 2011. Cooling neutron star in the Cassiopeia A supernova remnant: evidence for superfluidity in the core. Mon. Not. Roy. Astron. Soc., L108–L112.Google Scholar
[58] Epelbaum, E., Hammer, H.-W., and Meissner, U.-G. 2009. Modern theory of nuclear forces. Rev. Mod. Phys., 81, 1773–1825.Google Scholar
[59] Schneider, A. S., Berry, D. K., Briggs, C.M., Caplan, M. E., and Horowitz, C. J. 2014. Nuclear ‘waffles’. Phys. Rev. C, 90, 055805.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×