Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T06:04:25.356Z Has data issue: false hasContentIssue false

12 - Climate change and implications for the future distribution and management of ungulates in Europe

Published online by Cambridge University Press:  26 April 2011

Atle Mysterud
Affiliation:
University of Oslo
Bernt-Erik Sæther
Affiliation:
Norwegian University of Science and Technology
Rory Putman
Affiliation:
Manchester Metropolitan University
Marco Apollonio
Affiliation:
Università degli Studi di Sassari, Sardinia
Reidar Andersen
Affiliation:
Museum of Natural History and Archaeology, Norwegian University of Science and Technology, Trondheim
Get access

Summary

Introduction

There is little doubt that predicted changes in climate (IPCC,2007) are of an order of magnitude that they are likely to affect large herbivores in Europe in a number of ways. Whichever predictive models are used, the general expectation for future climate is for greater levels of precipitation, warmer temperatures, and perhaps most significantly an overall increase in variability (IPCC, 2007). However, at the regional level, both variation and uncertainty is expected to be much higher.

It is important to realise that climate in itself is not necessarily the only limitation for the current distribution ranges of all ungulate species, whose range may also be affected by both natural and artificial barriers, by patterns of land use (and urbanisation), by direct management, or by the fact that they are still colonising (Groot Bruinderink et al., 2003). This, combined with the absence of published assessments of how the distribution of different large herbivore species may be affected by climate, make our attempt here a risky business in terms of accuracy of predictions. However, with that said, what might we nevertheless expect? We focus, in the following, mainly on global distribution patterns.

In general, large herbivores can be both directly and indirectly affected by climate. Direct effects of climate are mainly related to thermoregulation either due to extreme heat or cold (Parker and Robbins, 1985), water limitation (Wallach et al., 2007), and costs of moving in snow (Parker et al., 1984).

Type
Chapter
Information
Ungulate Management in Europe
Problems and Practices
, pp. 349 - 375
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aanes, R., Sæther, B.-E. and Øritsland, N. A. (2000) Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation. Ecography 23, 437–443.CrossRefGoogle Scholar
Aanes, R., Sæther, B.-E., Smith, F. M., et al. (2002) The Arctic Oscillation predicts effect of climate change in two trophic levels in a high-arctic ecosystem. Ecology Letters 5, 445–453.CrossRefGoogle Scholar
Aanes, R., Sæther, B.-E., Solberg, E. J., et al. (2003) Synchrony in Svalbard reindeer population dynamics. Canadian Journal of Zoology 81, 103–110.CrossRefGoogle Scholar
Acevedo, P., Cassinello, J. and Gortázar, C. (2008a) The Iberian ibex is under an expansion trend but displaced to suboptimal habitats by the presence of extensive goat livestock in central Spain. Biodiversity and Conservation 16, 3361–3376.CrossRefGoogle Scholar
Acevedo, P., Cassinello, J., Hortal, J. and Gortázar, C. (2008b) Invasive exotic aoudad (Ammotragus lervia) as a major threat to native Iberian ibex (Capra pyrenaica): a habitat suitability model approach. Diversity and Distributions 13, 587–597.CrossRefGoogle Scholar
Albon, S. D. and Langvatn, R. (1992) Plant phenology and the benefits of migration in a temperate ungulate. Oikos 65, 502–513.CrossRefGoogle Scholar
Albon, S. D., Clutton-Brock, T. H. and Langvatn, R. (1992) Cohort variation in reproduction and survival: implications for population demography. In Brown, R. D. (ed.) The Biology of Deer. New York: Springer Verlag, pp.15–21.CrossRefGoogle Scholar
Albon, S. D., Coulson, T. N., Brown, D., et al. (2000) Temporal changes in key factors and key age groups influencing the population dynamics of female red deer. Journal of Animal Ecology 69, 1099–1110.CrossRefGoogle Scholar
Andersen, R. (1991) Habitat deterioration and the migratory behaviour of moose (Alces alces L.) in Norway. Journal of Applied Ecology 28, 102–108.CrossRefGoogle Scholar
Andersen, R., Herfindal, I., Sæther, B.-E., et al. (2004) When range expansion rate is faster in marginal habitats. Oikos 107, 210–214.CrossRefGoogle Scholar
Beniston, M. (2006) Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia 562, 3–16.CrossRefGoogle Scholar
Beniston, M. and Jungo, P. (2002) Shifts in the distributions of pressure, temperature and moisture and changes in the typical weather patterns in the Alpine region in response to the behavior of the North Atlantic Oscillation. Theoretical and Applied Climatology 71, 29–42.CrossRefGoogle Scholar
Berger, J. (2004) The last mile: how to sustain long-distance migration in mammals. Conservation Biology 18, 320–331.CrossRefGoogle Scholar
Berger, J., Young, J. K. and Berger, K. M. (2008) Protecting migration corridors: challenges and optimism for Mongolian saiga. PLoS Biology 6, 1365–1367.CrossRefGoogle ScholarPubMed
Bergerud, A. T., Butler, H. E. and Miller, D. R. (1984) Antipredator tactics of calving caribou: dispersion in mountains. Canadian Journal of Zoology 62, 1566–1575.CrossRefGoogle Scholar
Blasius, B. and Stone, L. (2000) Nonlinearity and the Moran effect. Nature 406, 846–847.Google ScholarPubMed
Bolger, D. T., Newmark, W. D., Morrison, T. A. and Doak, D. F. (2008) The need for integrative approaches to understand and conserve migratory ungulates. Ecology Letters 11, 63–77.Google ScholarPubMed
Borner, A. P., Kielland, K. and Walker, M. D. (2008) Effects of simulated climate change on plant phenology and nitrogen mineralization in Alaskan arctic tundra. Arctic, Antarctic, and Alpine Research 40, 27–38.CrossRefGoogle Scholar
Brooks, D. R. and Hoberg, E. P. (2008) How will global climate change affect parasite–host assemblages?Trends in Parasitology 23, 571–574.CrossRefGoogle Scholar
Calder, W. A. (1984) Size, Function, and Life History. Cambridge, MA: Harvard University Press.Google Scholar
Case, T. J., Holt, R. D., McPeek, M. A. and Keitt, T. H. (2005) The community context of species' borders: ecological and evolutionary perspectives. Oikos 108, 28–46.CrossRefGoogle Scholar
Cassinello, J., Serrano, E., Calabuig, G. and Pérez, J. M. (2004) Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: ecological and conservation concerns. Biodiversity and Conservation 13, 851–866.CrossRefGoogle Scholar
Cebrian, M. R., Kielland, K. and Finstad, G. (2008) Forage quality and reindeer productivity: multiplier effects amplified by climate change. Arctic, Antarctic, and Alpine Research 40, 48–54.CrossRefGoogle Scholar
Cederlund, G. and Lindström, E. (1983) Effects of severe winters and fox predation on roe deer mortality. Acta Theriologica 28, 129–145.CrossRefGoogle Scholar
Cederlund, G., Sand, H. and Pehrson, Å. (1991) Body mass dynamics of moose calves in relation to winter severity. Journal of Wildlife Management 55, 675–681.CrossRefGoogle Scholar
Charmantier, A., McCleery, R. H., Cole, L. R., et al. (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 230, 800–803.CrossRefGoogle Scholar
Ciais, P., Reichstein, M., Viovy, N., et al. (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H., Illius, A. W., Wilson, K., et al. (1997) Stability and instability in ungulate populations: an empirical analysis. American Naturalist 149, 195–219.CrossRefGoogle Scholar
Clutton-Brock, T. H., Coulson, T. N., Milner-Gulland, E. J., Thomson, D. and Armstrong, H. M. (2002) Sex differences in emigration and mortality affects optimal management of deer populations. Nature 415, 633–637.CrossRefGoogle ScholarPubMed
Coulson, T. N., Albon, S. D., Pemberton, J. M., et al. (1998) Genotype by environment interactions in winter survival in red deer. Journal of Animal Ecology 67, 434–445.CrossRefGoogle Scholar
Coulson, T., Catchpole, E. A., Albon, S. D., et al. (2001a) Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292, 1528–1531.CrossRefGoogle ScholarPubMed
Coulson, T., Mace, G. M., Hudson, E. and Possingham, H. (2001b) The use and abuse of population viability analysis. Trends in Ecology and Evolution 16, 219–221.CrossRefGoogle ScholarPubMed
Coulson, T., Kruuk, L. E. B., Tavecchia, G., Pemberton, J. M. and Clutton-Brock, T. H. (2003) Estimating selection on neonatal traits in red deer using elasticity path analysis. Evolution 57, 2879–2892.CrossRefGoogle Scholar
Cushing, D. H. (1990) Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Advances in Marine Biology 26, 249–293.CrossRefGoogle Scholar
Danilkin, A. A. (1996) Behavioural Ecology of Siberian and European Roe Deer. London: Chapman and Hall.Google Scholar
Demment, M. W. and Soest, P. J. (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. American Naturalist 125, 641–672.CrossRefGoogle Scholar
Devictor, V., Julliard, R., Couvet, D. and Jiguet, F. (2008) Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B–Biological Sciences 275, 2743–2748.CrossRefGoogle Scholar
Durant, J. M., Anker-Nilssen, T., Hjermann, D.Ø. and Stenseth, N. C. (2004) Regime shifts in the breeding of an Atlantic puffin population. Ecology Letters 7, 388–394.CrossRefGoogle Scholar
Eberhardt, L. L. (2002) A paradigm for population analysis of long-lived vertebrates. Ecology 83, 2841–2854.CrossRefGoogle Scholar
Edwards, J. (1983) Diet shifts in moose due to predator avoidance. Oecologia 60, 185–189.CrossRefGoogle ScholarPubMed
Engen, S. and Sæther, B.-E. (2005) Generalizations of the Moran effect explaining spatial synchrony in population fluctuations. American Naturalist 166, 603–612.CrossRefGoogle ScholarPubMed
Engen, S., Lande, R. and Sæther, B.-E. (2003) Demographic stochasticity and Allee effects in populations with two sexes. Ecology 84, 2378–2386.CrossRefGoogle Scholar
Enserink, M. and Vogel, G. (2006) The carnivore comeback. Science 314, 746–749.CrossRefGoogle ScholarPubMed
Fauchald, P., Rodven, R., Bardsen, B. J., et al. (2007) Escaping parasitism in the selfish herd: age, size and density-dependent warble fly infestation in reindeer. Oikos 116, 491–499.CrossRefGoogle Scholar
Festa-Bianchet, M., Coulson, T., Gaillard, J.-M., Hogg, J. T. and Pelletier, F. (2006) Stochastic predation events and population persistence in bighorn sheep. Proceedings of the Royal Society B–Biological Sciences 273, 1537–1543.CrossRefGoogle ScholarPubMed
Fletcher, T. J. (1974) The timing of reproduction in red deer (Cervus elaphus) in relation to latitude. Journal of Zoology, London 172, 363–367.CrossRefGoogle Scholar
Formozow, A. N. (1946) Snow Cover as an Integral Factor of the Environment and its Importance in the Ecology of Mammals and Birds (In Russian, translated to English). Edmonton, Canada: Boreal Institute, University of Alberta.Google Scholar
Fortin, D., Beyer, H. L., Boyce, M. S., et al. (2005) Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86, 1320–1330.CrossRefGoogle Scholar
Fryxell, J. M. and Sinclair, A. R. E. (1988) Causes and consequences of migration by large herbivores. Trends in Ecology and Evolution 3, 237–241.CrossRefGoogle ScholarPubMed
Gaillard, J.-M. and Yoccoz, N. G. (2003) Temporal variation in survival of mammals: a case of environmental canalization?Ecology 84, 3294–3306.CrossRefGoogle Scholar
Gaillard, J.-M., Festa-Bianchet, M. and Yoccoz, N. G. (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends in Ecology and Evolution 13, 58–63.CrossRefGoogle ScholarPubMed
Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N. G., Loison, A. and Toigo, C. (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annual Review of Ecology and Systematics 31, 367–393.CrossRefGoogle Scholar
Gaillard, J.-M., Loison, A., Toïgo, C., Delorme, D. and Laere, G. (2003) Cohort effects and deer population dynamics. Ecoscience 10, 412–420.CrossRefGoogle Scholar
Gaillard, J.-M., Hewison, A. J. M., Kjellander, P., et al. (2008) Population density and sex do not influence fine-scale natal dispersal in roe deer. Proceedings of the Royal Society of London B–Biological Sciences 275, 2025–2030.CrossRefGoogle Scholar
Garel, M., Loison, A., Gaillard, J.-M., Cugnasse, J.-M. and Maillard, D. (2004) The effects of a severe drought on mouflon lamb survival. Proceedings of the Royal Society B–Biological Sciences, Suppl. 271, S471–S473.CrossRefGoogle ScholarPubMed
Garel, M., Solberg, E. J., Sæther, B.-E.et al. (2009) Age, size and spatio-temporal variation in ovulation patterns of a seasonal breeder, the Norwegian moose (Alces alces). American Naturalist 173, 89–104.CrossRefGoogle Scholar
Gillett, N. P., Graf, H. F. and Osborn, T. J. (2003) Climate change and the North Atlantic Oscillation. In Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. (eds.) The North Atlantic Oscillation. Washington, DC: American Geophysical Union, pp.193–210.Google Scholar
Grenfell, B. T., Wilson, K., Finkenstädt, B. F., et al. (1998) Noise and determinism in synchronized sheep dynamics. Nature 394, 674–677.CrossRefGoogle Scholar
Grenfell, T. C. and Putkonen, J. (2008) A method for the detection of the severe rain-on-snow events on Banks island, October 2003, using passive microwave remote sensing. Water Resources Research 44, (article number W03425).CrossRefGoogle Scholar
Groot Bruinderink, G., Sluis, T., Lammertsma, D., Opdam, P. and Pouwels, R. (2003) Designing a coherent ecological network for large mammals in northwestern Europe. Conservation Biology 17, 549–557.CrossRefGoogle Scholar
Grøtan, V., Sæther, B.-E., Engen, S., et al. (2005) Climate causes large-scale spatial synchrony in population fluctuations of a temperate herbivore. Ecology 86, 1472–1482.CrossRefGoogle Scholar
Grøtan, V., Sæther, B.-E., Filli, F. and Engen, S. (2008) Effects of climate on population fluctuations of ibex. Global Change Biology 14, 218–228.CrossRefGoogle Scholar
Gundersen, H. and Andreassen, H. P. (1998) The risk of moose Alces alces collision: a predictive logistic model for moose-train accidents. Wildlife Biology 4, 103–110.CrossRefGoogle Scholar
Hagemoen, R. I. M. and Reimers, E. (2002) Reindeer summer activity pattern in relation to weather and insect harassment. Journal of Animal Ecology 71, 883–892.CrossRefGoogle Scholar
Hallett, T. B., Coulson, T., Pilkington, J. G., et al. (2004) Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430, 71–75.CrossRefGoogle ScholarPubMed
Hebblewhite, M. (2005) Predation by wolves interacts with the North Pacific Oscillation (NPO) on a western North American elk population. Journal of Animal Ecology 74, 226–233.CrossRefGoogle Scholar
Hebblewhite, M., Merrill, E. and McDermid, G. (2008) A multi-scale test of the forage maturation hypothesis in a partially migratory ungulate population. Ecological Monographs 78, 141–166.CrossRefGoogle Scholar
Herfindal, I., Sæther, B -E., Solberg, E. J., Andersen, R. and Høgda, K. -A. (2006a) Population characteristics predict responses in moose body mass to temporal variation in the environment. Journal of Animal Ecology 75, 1110–1118.CrossRefGoogle ScholarPubMed
Herfindal, I., Solberg, E. J., Sæther, B. -E., Høgda, K. -A. and Andersen, R. (2006b) Environmental phenology and geographical gradients in moose body mass. Oecologia 150, 213–224.CrossRefGoogle ScholarPubMed
Hoegh-Guldeberg, O., Hughes, L., McIntyre, S. M., et al. (2008) Assisted colonization and rapid climate change. Science 321, 345–346.CrossRefGoogle Scholar
Holand, Ø., Mysterud, A., Røed, K. H., et al. (2006) Adaptive adjustment of offspring sex ratio and maternal reproductive effort in an iteroparous mammal. Proceedings of the Royal Society B–Biological Sciences 273, 293–299.CrossRefGoogle Scholar
Holt, R. D. and Keitt, T. H. (2005) Species' borders: a unifying theme in ecology. Oikos 108, 3–6.CrossRefGoogle Scholar
Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. and Taper, M. L. (2005) Theoretical models of species' borders: single species approaches. Oikos 108, 18–27.CrossRefGoogle Scholar
Hurrell, J. W. (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679.CrossRefGoogle ScholarPubMed
Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. (2003) The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
Ims, R. A., Henden, J. -A. and Killengreen, S. T. (2008) Collapsing population cycles. Trends in Ecology and Evolution 23, 79–86.CrossRefGoogle ScholarPubMed
,IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Jacobson, A. R., Provenzale, A., Hardenberg, A., Bassano, B. and Festa-Bianchet, M. (2004) Climate forcing and density dependence in a mountain ungulate population. Ecology 85, 1598–1610.CrossRefGoogle Scholar
Kausrud, K. L., Mysterud, A., Steen, H., et al. (2008) Linking climate change to lemming cycles. Nature 456, 93–98.CrossRefGoogle ScholarPubMed
Kettlewell, P. S., Easey, J., Stephenson, D. B. and Poulton, P. R. (2006) Soil moisture mediates association between the winter North Atlantic Oscillation and summer growth in the Park Grass Experiment. Proceedings of the Royal Society B–Biological Sciences 273, 1149–1154.CrossRefGoogle ScholarPubMed
Kjellander, P. and Nordström, J. (2003) Cyclic voles, prey switching in red fox, and roe deer dynamics: a test of the alternative prey hypothesis. Oikos 101, 338–344.CrossRefGoogle Scholar
Kjellander, P., Gaillard, J. -M. and Hewison, A. J. M. (2006) Density-dependent responses of fawn cohort body mass in two contrasting roe deer populations. Oecologia 146, 521–530.CrossRefGoogle ScholarPubMed
Klein, D. R. (1965) Ecology of deer range in Alaska. Ecological Monographs 35, 259–284.CrossRefGoogle Scholar
Klein, D. R. (1992) The status of deer in a changing world environment. In Brown, R. D. (ed.) Proceedings of the International Symposium on Biology of Deer. New York: Springer, pp. 3–12.Google Scholar
Kohler, J. and Aanes, R. (2004) Effect of winter snow and ground-icing on a Svalbard reindeer population: results of a simple snowpack model. Arctic, Antarctic, and Alpine Research 36, 333–341.CrossRefGoogle Scholar
Lande, R. (1982) A quantitative genetic theory of life-history evolution. Ecology 63, 607–615.CrossRefGoogle Scholar
Langvatn, R., Mysterud, A., Stenseth, N. C. and Yoccoz, N. G. (2004) Timing and synchrony of ovulation in red deer constrained by short northern summers. American Naturalist 163, 763–772.CrossRefGoogle Scholar
Latham, J. (1999) Interspecific interactions of ungulates in European forests: an overview. Forest Ecology and Management 120, 13–21.CrossRefGoogle Scholar
Latham, J., Staines, B. W. and Gorman, M. L. (1996) The relative densities of red (Cervus elaphus) and roe (Capreolus capreolus) deer and their relationship in Scottish plantation forests. Journal of Zoology, London 240, 285–299.CrossRefGoogle Scholar
Latham, J., Staines, B. W. and Gorman, M. L. (1997) Correlations of red (Cervus elaphus) and roe (Capreolus capreolus) deer densities in Scottish forests with environmental variables. Journal of Zoology,London 242, 681–704.CrossRefGoogle Scholar
Liberg, O. and Wahlström, L. K. (1995) Habitat stability and litter size in the Cervidae; a comparative analysis. In Wahlström, L. K., Natal dispersal in roe deer: an evolutionary perspective. PhD thesis, University of Stockholm.Google Scholar
Loe, L. E., Bonenfant, C., Mysterud, A., et al. (2005) Climate predictability and breeding phenology in red deer: timing and synchrony of rutting and calving in Norway and France. Journal of Animal Ecology 74, 579–588.CrossRefGoogle Scholar
Loison, A. and Langvatn, R. (1998) Short- and long-term effects of winter and spring weather on growth and survival of red deer in Norway. Oecologia 116, 489–500.CrossRefGoogle Scholar
Loison, A., Festa-Bianchet, M., Gaillard, J. -M., Jorgenson, J. T. and Jullien, J. -M. (1999a) Age-specific survival in five populations of ungulates: evidence of senescence. Ecology 80, 2539–2554.CrossRefGoogle Scholar
Loison, A., Jullien, J. -M. and Menaut, P. (1999b) Relationship between chamois and isard survival and variation in global and local climate regimes: contrasting examples from the Alps and Pyrenees. Ecology Bulletin 47, 126–136.Google Scholar
Loison, A., Darmon, G., Cassar, S., Jullien, J. -M. and Maillard, D. (2008) Age- and sex-specific settlement patterns in chamois (Rupicapra rupicapra) offspring. Canadian Journal of Zoology 86, 588–593.CrossRefGoogle Scholar
Lundmark, C. (2008) Morphological and behavioural adaptations of moose to climate, snow, and forage. PhD thesis, Swedish University of Agricultural Sciences, Umeå, Sweden.
Lundmark, C. and Ball, J. P. (2008) Living in snowy environments: quantifying the influence of snow on moose behavior. Arctic, Antarctic, and Alpine Research 40, 111–118.CrossRefGoogle Scholar
Martínez-Jauregui, M., Miguel-Ayanz, A. S., Mysterud, A., et al. (2009) Are local weather, NDVI or NAO consistent determinants of female red deer weight across Europe?Global Change Biology 15, 1727–1738.CrossRefGoogle Scholar
Maurer, B. A. and Taper, M. L. (2002) Connecting geographical distributions with population processes. Ecology Letters 5, 223–231.CrossRefGoogle Scholar
Mitchell, B. (1973) The reproductive performance of wild Scottish red deer, Cervus elaphus. Journal of Reproduction and Fertility, Supplement 19, 271–285.Google ScholarPubMed
Mobæk, R., Mysterud, A., Loe, L. E., Holand, Ø. and Austrheim, G. (2009) Density dependent and temporal variability in habitat selection by a large herbivore: an experimental approach. Oikos 118, 209–218.CrossRefGoogle Scholar
Moen, A. N. (1973) Wildlife Ecology. San Fransciso, CA: W.H. Freeman and Company.Google Scholar
Moran, P. A. P. (1953) The statistical analysis of the Canadian lynx cycle. II. Synchronisation and meteorology. Australian Journal of Zoology 1, 291–298.CrossRefGoogle Scholar
Morris, W. F., Pfister, C. A., Tuljapurkar, S., et al. (2008) Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89, 19–25.CrossRefGoogle ScholarPubMed
Murray, D. L., Cox, E. W., Ballard, W. B., et al. (2006) Pathogens, nutritional deficiency, and climate influences on a declining moose population. Wildlife Monographs 166, 1–30.CrossRefGoogle Scholar
Mysterud, A. (1999) Seasonal migration pattern and home range of roe deer (Capreolus capreolus) in an altitudinal gradient in southern Norway. Journal of Zoology, London 247, 479–486.CrossRefGoogle Scholar
Mysterud, A., Yoccoz, N. G., Stenseth, N. C. and Langvatn, R. (2000) Relationships between sex ratio, climate and density in red deer: the importance of spatial scale. Journal of Animal Ecology 69, 959–974.CrossRefGoogle Scholar
Mysterud, A., Langvatn, R., Yoccoz, N. G. and Stenseth, N. C. (2001a) Plant phenology, migration and geographic variation in body weight of a large herbivore: the effect of a variable topography. Journal of Animal Ecology 70, 915–923.CrossRefGoogle Scholar
Mysterud, A., Stenseth, N. C., Yoccoz, N. G., Langvatn, R. and Steinheim, G. (2001b) Nonlinear effects of large-scale climatic variability on wild and domestic herbivores. Nature 410, 1096–1099.CrossRefGoogle ScholarPubMed
Mysterud, A., Langvatn, R., Yoccoz, N. G. and Stenseth, N. C. (2002) Large-scale habitat variability, delayed density effects and red deer populations in Norway. Journal of Animal Ecology 71, 569–580.CrossRefGoogle Scholar
Mysterud, A., Stenseth, N. C., Yoccoz, N. G., Ottersen, G. and Langvatn, R. (2003) The response of the terrestrial ecosystems to climate variability associated with the North Atlantic Oscillation. In Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. (eds.) The North Atlantic Oscillation. Washington, DC: American Geophysical Union, pp. 235–262.Google Scholar
Mysterud, A., Baron, K., Jedrzejewska, B., et al. (2007) Population ecology and conservation of endangered megafauna: the case of European bison (Bison bonasus) in Bialowieza Primeval Forest, Poland. Animal Conservation 10, 77–87.CrossRefGoogle Scholar
Mysterud, A., Yoccoz, N. G., Langvatn, R., Pettorelli, N. and Stenseth, N. C. (2008) Hierarchical path analysis of deer responses to direct and indirect effects of climate in northern forest. Philosophical Transactions of the Royal Society 363, 2359–2368.CrossRefGoogle ScholarPubMed
Nussey, D. H., Clutton-Brock, T. H., Albon, S. D., Pemberton, J. and Kruuk, L. E. B. (2005a) Constraints on plastic responses to climate variation in red deer. Biology Letters 1, 457–460.CrossRefGoogle ScholarPubMed
Nussey, D. H., Clutton-Brock, T. H., Elston, D. A., Albon, S. D. and Kruuk, L. E. B. (2005b) Phenotypic plasticity in a maternal trait in red deer. Journal of Animal Ecology 74, 387–396.CrossRefGoogle Scholar
Nussey, D. H., Postma, E., Gienapp, P. and Visser, M. E. (2005c) Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306.CrossRefGoogle Scholar
Parker, K. L. and Robbins, C. T. (1985) Thermoregulation in ungulates. In Hudson, R. J. and White, R. G. (eds.) Bioenergetics of Wild Herbivores. Boca Raton, FL: CRC Press, pp. 161–182.Google Scholar
Parker, K. L., Robbins, C. T. and Hanley, T. A. (1984) Energy expenditure for locomotion by mule deer and elk. Journal of Wildlife Management 48, 474–488.CrossRefGoogle Scholar
Pelletier, F., Clutton-Brock, T., Pemberton, J., Tuljapurkar, S. and Coulson, T. (2007a) The evolutionary demography of ecological change: linking trait variation and population growth. Science 315, 1571–1574.CrossRefGoogle ScholarPubMed
Pelletier, F., Réale, D., Garant, D., Coltman, D. W. and Festa-Bianchet, M. (2007b) Selection on heritable seasonal phenotypic plasticity of body mass. Evolution 61, 1969–1979.CrossRefGoogle ScholarPubMed
Pettorelli, N., Mysterud, A., Yoccoz, N. G., Langvatn, R. and Stenseth, N. C. (2005a) Importance of climatological downscaling and plant phenology for red deer in heterogeneous landscapes. Proceedings of the Royal Society of London B–Biological Sciences 272, 2357–2364.CrossRefGoogle Scholar
Pettorelli, N., Vik, J. O., Mysterud, A., et al. (2005b) Using the satellite-derived Normalized Difference Vegetation Index (NDVI) to assess ecological responses to environmental change. Trends in Ecology and Evolution 20, 503–510.CrossRefGoogle ScholarPubMed
Pettorelli, N., Weladji, R. B., Holand, Ø., et al. (2005c) The relative role of winter and spring conditions: linking climate and landscape-scale plant phenology to alpine reindeer performance. Biology Letters 1, 24–26.CrossRefGoogle Scholar
Pettorelli, N., Gaillard, J. -M., Mysterud, A., et al. (2006) Using a proxy of plant productivity (NDVI) to find key periods for animal performance: the case of roe deer. Oikos 112, 565–572.CrossRefGoogle Scholar
Pioz, M., Loison, A., Gauthier, D., et al. (2008) Diseases and reproductive success in a wild mammal: example in the alpine chamois. Oecologia 155, 691–704.CrossRefGoogle Scholar
Post, E. and Forchhammer, M. C. (2002) Synchronization of animal population dynamics by large-scale climate. Nature 420, 168–171.CrossRefGoogle ScholarPubMed
Post, E. and Forchhammer, M. C. (2008) Climate change reduces reproductive success of an arctic herbivore through trophic mismatch. Philosophical Transactions of the Royal Society 363, 2369–2375.CrossRefGoogle ScholarPubMed
Post, E. and Stenseth, N. C. (1999) Climatic variability, plant phenology, and northern ungulates. Ecology 80, 1322–1339.CrossRefGoogle Scholar
Post, E., Stenseth, N. C., Langvatn, R. and Fromentin, J. -M. (1997) Global climate change and phenotypic variation among red deer cohorts. Proceedings of the Royal Society B–Biological Sciences 264, 1317–1324.CrossRefGoogle ScholarPubMed
Post, E., Pedersen, C., Wilmers, C. C. and Forchhammer, M. C. (2008) Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proceedings of the Royal Society B–Biological Sciences 275, 2005–2013.CrossRefGoogle ScholarPubMed
Przybylo, R., Sheldon, B. C. and Merilä, J. (2000) Climatic effects on breeding and morphology: evidence for phenotypic plasticity. Journal of Animal Ecology 69, 395–403.CrossRefGoogle Scholar
Putkonen, J. and Roe, G. (2003) Rain-on-snow events impact soil temperatures and affect ungulate survival. Geophysical Research Letters 30, 1118–1122.CrossRefGoogle Scholar
Putman, R. J. (1996) Competition and Resource Partitioning in Temperate Ungulate Assemblies. London: Chapman and Hall.CrossRefGoogle Scholar
Putman, R. J., Langbein, J., Hewison, A. J. M. and Sharma, S. K. (1996) Relative roles of density-dependent and density-independent factors in population dynamics of British deer. Mammal Review 26, 81–101.CrossRefGoogle Scholar
Ratcliffe, P. R. (1984) Population dynamics of red deer (Cervus elaphus L.) in Scottish commercial forests. Proceedings of the Royal Society of Edinburgh B 82B, 291–302.Google Scholar
Ratcliffe, P. R. (1987) Distribution and current status of sika deer, Cervus nippon, in Great Britain. Mammal Review 17, 39–58.CrossRefGoogle Scholar
Réale, D. and Festa-Bianchet, M. (2000) Mass-dependent reproductive strategies in wild bighorn ewes: a quantitative genetic approach. Journal of Evolutionary Biology 13, 679–688.CrossRefGoogle Scholar
Réale, D., Festa-Bianchet, M. and Jorgenson, J. T. (1999) Heritability of body mass varies with age and season in wild bighorn sheep. Heredity 83, 526–532.CrossRefGoogle ScholarPubMed
Reed, D. H., O'Grady, J. J., Ballou, J. D. and Frankham, R. (2003) The frequency and severity of catastrophic die-offs in vertebrates. Animal Conservation 6, 109–114.CrossRefGoogle Scholar
Sæther, B. -E. (1985) Annual variation in carcass weight of Norwegian moose in relation to climate along a latitudinal gradient. Journal of Wildlife Management 49, 977–983.CrossRefGoogle Scholar
Sæther, B. -E. (1997) Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends in Ecology and Evolution 12, 143–149.CrossRefGoogle ScholarPubMed
Sæther, B. -E. and Gravem, A. J. (1988) Annual variation in winter body condition of Norwegian moose calves. Journal of Wildlife Management 52, 333–336.CrossRefGoogle Scholar
Sæther, B. -E. and Heim, M. (1993) Ecological correlates of individual variation in age at maturity in female moose (Alces alces): the effects of environmental variability. Journal of Animal Ecology 62, 482–489.CrossRefGoogle Scholar
Sæther, B. -E., Andersen, R., Hjeljord, O. and Heim, M. (1996) Ecological correlates of regional variation in life history of the moose Alces alces. Ecology 77, 1493–1500.CrossRefGoogle Scholar
Sæther, B. -E., Engen, S., Filli, F., et al. (2002) Stochastic population dynamics of an introduced Swiss population of the ibex. Ecology 83, 3457–3465.CrossRefGoogle Scholar
Sætre, B. -E., Engen, S. and Solberg, E.J. (2009) Effective size of harvested ungulate populations. Animal conservation 12, 488–495.Google Scholar
Sætre, G. -P., Post, E. and Král, M. (1999) Can environmental fluctuation prevent competitive exclusion in sympatric flycatchers?Proceedings of the Royal Society B–Biological Sciences 266, 1247–1251.CrossRefGoogle Scholar
Sauer, J. R. and Boyce, M. S. (1983) Density dependence and survival of elk in northwestern Wyoming. Journal of Wildlife Management 47, 31–37.CrossRefGoogle Scholar
Shabbar, A. and Bonsal, B. (2003) An assessment of changes in winter cold and warm spells over Canada. Natural Hazards 29, 173–188.CrossRefGoogle Scholar
Sims, M., Elston, D. A., Larkham, A., Nussey, D. H. and Albon, S. D. (2007) Identifying when weather influences life-history traits of grazing herbivores. Journal of Animal Ecology 76, 761–770.CrossRefGoogle ScholarPubMed
Skelly, D. K., Joseph, L. N., Possingham, H. P., et al. (2007) Evolutionary responses to climate change. Conservation Biology 21, 1353–1355.CrossRefGoogle ScholarPubMed
Solberg, E. J., Sæther, B. -E., Strand, O. and Loison, A. (1999) Dynamics of a harvested moose population in a variable environment. Journal of Animal Ecology 68, 186–204.CrossRefGoogle Scholar
Solberg, E. J., Jordhøy, P., Strand, O., et al. (2001) Effects of density-dependence and climate on the dynamics of a Svalbard reindeer population. Ecography 24, 441–451.CrossRefGoogle Scholar
Solberg, E. J., Loison, A., Gaillard, J. -M. and Heim, M. (2004) Lasting effects of conditions at birth on moose body mass. Ecography 27, 677–687.CrossRefGoogle Scholar
Solberg, E. J., Heim, M., Grøtan, V., Sæther, B. -E. and Garel, M. (2007) Annual variation in maternal age and calving date generate cohort effects in moose (Alces alces) body mass. Oecologia 154, 259–271.CrossRefGoogle ScholarPubMed
Steen, H., Mysterud, A. and Austrheim, G. (2005) Sheep grazing and rodent populations: evidence of negative interactions from a landscape scale experiment. Oecologia 143, 357–364.CrossRefGoogle ScholarPubMed
Stenseth, N. C. and Mysterud, A. (2002) Climate, changing phenology, and other life history traits: non-linearity and match-mismatch to the environment. Proceedings of the National Academy of Sciences of the USA 99, 13 379–13 381.CrossRefGoogle Scholar
Stenseth, N. C. and Mysterud, A. (2005) Weather packages: finding the right scale and composition for climate in ecology. Journal of Animal Ecology 74, 1195–1198.CrossRefGoogle Scholar
Stenseth, N. C., Ottersen, G., Hurrell, J. W., et al. (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proceedings of the Royal Society B–Biological Sciences 270, 2087–2096.CrossRefGoogle ScholarPubMed
Telfer, E. S. and Kelsall, J. P. (1984) Adaptation of some large North American mammals for survival in snow. Ecology 65, 1828–1834.CrossRefGoogle Scholar
Telleria, J. L. and Virgos, E. (1997) Distribution of an increasing roe deer population in a fragmented Mediterranean landscape. Ecography 20, 247–252.CrossRefGoogle Scholar
Toïgo, C. and Gaillard, J. -M. (2003) Causes of sex-biased adult survival in ungulates: sexual size dimorphism, mating tactic or environment harshness?Oikos 101, 376–684.CrossRefGoogle Scholar
Toïgo, C., Gaillard, J. -M. and Michallet, J. (1997) Adult survival pattern of the sexually dimorphic Alpine ibex (Capra ibex ibex). Canadian Journal of Zoology 75, 75–79.CrossRefGoogle Scholar
Travis, J. M. J. (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society B–Biological Sciences 270, 467–473.CrossRefGoogle ScholarPubMed
Travis, J. M. J. and Dytham, C. (1999) Habitat persistence, habitat availability and the evolution of dispersal. Proceedings of the Royal Society B–Biological Sciences 266, 723–728.CrossRefGoogle Scholar
Veeroja, R., Tilgar, V., Kirk, A. and Tõnisson, J. (2008) Climatic effects on life-history traits of moose in Estonia. Oecologia 154, 703–713.CrossRefGoogle ScholarPubMed
Vik, J. O., Stenseth, N. C., Tavecchia, G., Mysterud, A. and Lingjerde, O. C. (2004) Living in synchrony on Greenland coasts?Nature 427, 697–698.CrossRefGoogle ScholarPubMed
Virgos, E. and Telleria, J. L. (1998) Roe deer habitat selection in Spain: constraints on the distribution of a species. Canadian Journal of Zoology 76, 1294–1299.CrossRefGoogle Scholar
Visser, M. E., Noordwijk, A. J., Tinbergen, J. M. and Lessells, C. M. (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proceedings of the Royal Society B–Biological Sciences 265, 1867–1870.CrossRefGoogle Scholar
Vucetich, J. A. and Peterson, R. O. (2004) The influence of top-down, bottom-up and abiotic factors on the moose (Alces alces) population of Isle Royale. Proceedings of the Royal Society B–Biological Sciences 271, 183–189.CrossRefGoogle ScholarPubMed
Wahlström, L. K. and Liberg, O. (1995) Patterns of dispersal and seasonal migration in roe deer (Capreolus capreolus). Journal of Zoology, London 235, 455–467.CrossRefGoogle Scholar
Wallach, A. D., Inbar, M., Scantlebury, M., Speakman, J. R. and Shanas, U. (2007) Water requirements as a bottleneck in the reintroduction of European roe deer to the southern edge of its range. Canadian Journal of Zoology 85, 1182–1192.CrossRefGoogle Scholar
Weladji, R. B., Klein, D. R., Holand, Ø. and Mysterud, A. (2002) Comparative response of Rangifer tarandus and other northern ungulates to climatic variability. Rangifer 22, 33–50.CrossRefGoogle Scholar
Weladji, R. B., Holand, Ø. and Almøy, T. (2003a) Use of climatic data to assess the effect of insect harassment on the autumn weight of reindeer (Rangifer tarandus) calves. Journal of Zoology, London 260, 79–85.CrossRefGoogle Scholar
Weladji, R. B., Steinheim, G., Holand, Ø., et al. (2003b) Temporal patterns of juvenile body weight variability in sympatric reindeer and sheep. Annales Zoologica Fennica 40, 17–26.Google Scholar
Weladji, R. B., Gaillard, J. -M., Yoccoz, N. G., et al. (2006) Good reindeer mothers live longer and become better in raising offspring. Proceedings of the Royal Society of London B–Biological Sciences 273, 1239–1244.CrossRefGoogle ScholarPubMed
Wilson, A. J., Pemberton, J. M., Pilkington, J. G., et al. (2006) Environmental coupling of selection and heritability limits evolution. PLoS Biology 4, 1270–1275.CrossRefGoogle ScholarPubMed
Wright, S. (1931) Evolution in Mendelian populations. Genetics 16, 97–159.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×