Book contents
- Frontmatter
- Contents
- Historical Preface
- General Outline
- Part I Volume Preserving Homeomorphisms of the Cube
- 1 Introduction to Parts I and II (Compact Manifolds)
- 2 Measure Preserving Homeomorphisms
- 3 Discrete Approximations
- 4 Transitive Homeomorphisms of In and Rn
- 5 Fixed Points and Area Preservation
- 6 Measure Preserving Lusin Theorem
- 7 Ergodic Homeomorphisms
- 8 Uniform Approximation in G[In, λ] and Generic Properties in M[In, λ]
- Part II Measure Preserving Homeomorphisms of a Compact Manifold
- Part III Measure Preserving Homeomorphisms of a Noncompact Manifold
- Appendix 1 Multiple Rokhlin Towers and Conjugacy Approximation
- Appendix 2 Homeomorphic Measures
- Bibliography
- Index
8 - Uniform Approximation in G[In, λ] and Generic Properties in M[In, λ]
Published online by Cambridge University Press: 24 August 2009
- Frontmatter
- Contents
- Historical Preface
- General Outline
- Part I Volume Preserving Homeomorphisms of the Cube
- 1 Introduction to Parts I and II (Compact Manifolds)
- 2 Measure Preserving Homeomorphisms
- 3 Discrete Approximations
- 4 Transitive Homeomorphisms of In and Rn
- 5 Fixed Points and Area Preservation
- 6 Measure Preserving Lusin Theorem
- 7 Ergodic Homeomorphisms
- 8 Uniform Approximation in G[In, λ] and Generic Properties in M[In, λ]
- Part II Measure Preserving Homeomorphisms of a Compact Manifold
- Part III Measure Preserving Homeomorphisms of a Noncompact Manifold
- Appendix 1 Multiple Rokhlin Towers and Conjugacy Approximation
- Appendix 2 Homeomorphic Measures
- Bibliography
- Index
Summary
Introduction
In this chapter we show that any volume preserving homeomorphism of the cube can be uniformly approximated by volume preserving automorphisms (not generally continuous) with certain specified measure theoretic properties. As shown in the previous section (when the property was ergodicity), this approximation can then be combined with the Lusin Theory to produce homeomorphisms possessing that property, and a version of Theorem C (of Chapter 1) for generic properties of volume preserving homeomorphisms of the cube.
Suppose we want to find homeomorphisms of In which have some particular measure theoretic property, such as ergodicity or weak mixing. Such a property can be designated by specifying a subset V of the space G[X, μ] of all automorphisms of a Lebesgue space (X, μ), which we will take for convenience as all volume preserving bijections of (In, λ). We will only consider properties V which don't depend on the names of the points, i.e., which are conjugate invariant in G[In, λ]. (This assumption means that g ∈ V implies f−1gf ∈ V for all f ∈ G[In, λ].) In this context the statement at the beginning of this paragraph is equivalent to showing V ∩ M[In, λ] is nonempty. Many important measure theoretic properties in G[In, λ] are determined by a countable number of conditions, which each define an open set in the weak topology on G[In, λ], that is, they are Gδ subsets of G[In, λ].
- Type
- Chapter
- Information
- Typical Dynamics of Volume Preserving Homeomorphisms , pp. 53 - 58Publisher: Cambridge University PressPrint publication year: 2001