Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T01:32:33.148Z Has data issue: false hasContentIssue false

Computable model theory

Published online by Cambridge University Press:  05 June 2014

Ekaterina B. Fokina
Affiliation:
University of Vienna
Valentina Harizanov
Affiliation:
George Washington University
Alexander Melnikov
Affiliation:
Victoria University of Wellington
Rod Downey
Affiliation:
Victoria University of Wellington
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Turing's Legacy
Developments from Turing's Ideas in Logic
, pp. 124 - 194
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] S. I., Adyan, Algorithmic unsolvability of problems of recognition of certain properties of groups, Doklady Akademii Nauk SSSR, vol. 103 (1955), pp. 533-535, (Russian).Google Scholar
[2] B. M., Andersen, A. M., Kach, A. G., Melnikov, and D. R., Solomon, Jump degrees of torsion-free abelian groups, The Journal of Symbolic Logic, (to appear).
[3] B. A., Anderson and B. F., Csima, Degrees that are not degrees of categoricity, preprint.
[4] U., Andrews, New spectra of strongly minimal theories in finite languages, Annals of Pure and Applied Logic, vol. 162 (2011), pp. 367-372.Google Scholar
[5] U., Andrews, A new spectrum of recursive models using an amalgamation construction, The Journal of Symbolic Logic, vol. 76 (2011), pp. 883-896.Google Scholar
[6] U., Andrews, The degrees of categorical theories with recursive models, Proceedings of the American Mathematical Society, vol. 131 (2013), pp. 2501-2514.Google Scholar
[7] U., Andrews and J. F., Knight, Spectra of atomic theories, The Journal of Symbolic Logic, vol. 78 (2013), pp. 1189-1198.Google Scholar
[8] U., Andrews, S., Lempp, J. S., Miller, K. M., Ng, L. S., Mauro, and A., Sorbi, Universal computably enumerable equivalence relations, preprint.
[9] U., Andrews and J. S., Miller, Spectra of theories and structures, Proceedings of the American Mathematical Society, (to appear).
[10] C., Ash, J., Knight, M., Manasse, and T., Slaman, Generic copies of countable structures, Annals of Pure and Applied Logic, vol. 42 (1989), pp. 195-205.Google Scholar
[11] C. J., Ash, Recursive labeling systems and stability of recursive structures in hyperarithmetical degrees, Transactions of the American Mathematical Society, vol. 298 (1986), pp. 497-514.Google Scholar
[12] C. J., Ash, Categoricity in hyperarithmetical degrees, Annals of Pure and Applied Logic, vol. 34 (1987), pp. 1-14.Google Scholar
[13] C. J., Ash, P., Cholak, and J. F., Knight, Permitting, forcing, and copying of a given recursive relation, Annals of Pure and Applied Logic, vol. 86 (1997), pp. 219-236.Google Scholar
[14] C. J., Ash, C. G., Jookusoh Jr. and J. F., Knight, Jumps of orderings, Transactions of the American Mathematical Society, vol. 319 (1990), pp. 573-599.Google Scholar
[15] C. J., Ash and J. F., Knight, Possible degrees in recursive copies, Annals of Pure and Applied Logic, vol. 75 (1995), pp. 215-221.Google Scholar
[16] C. J., Ash and J. F., Knight, Possible degrees in recursive copies II, Annals of Pure and Applied Logic, vol. 87 (1997), pp. 151-165.Google Scholar
[17] C. J., Ash and J. F., Knight, Computable structures and the hyperarithmetical hierarchy, Elsevier, Amsterdam, 2000.
[18] C. J., Ash, J. F., Knight, and J. B., Remmel, Quasi-simple relations in copies of a given recursive structure, Annals of Pure and Applied Logic, vol. 86 (1997), pp. 203-218.Google Scholar
[19] C. J., Ash and A., Nerode, Intrinsically recursive relations, Aspects of effective algebra (J. N., Crossley, editor), U. D. A. Book Company, Steel's Creek, Australia, 1981, pp. 26-41.
[20] S. A., Badaev, Computable enumerations of families of general recursive functions, Algebra and Logic, vol. 16 (1977), pp. 129-148, (Russian); (1978) pp. 83-98 (English translation).Google Scholar
[21] J., Baldwin and A., Laohlan, On strongly minimal sets, The Journal of Symbolic Logic, vol. 36 (1971), pp. 79-96.Google Scholar
[22] V., Baleva, The jump operation for structure degrees, Archive for Mathematical Logic, vol. 45 (2006), pp. 249-265.Google Scholar
[23] E., Barker, Intrinsically relations, Annals of Pure and Applied Logic, vol. 39 (1988), pp. 105-130.Google Scholar
[24] E., Barker, Back andforth relations for reduced abelian p-groups, Annals of Pure and Applied Logic, vol. 75 (1995), pp. 223-249.Google Scholar
[25] J., Barwise, Infinitary logic and admissible sets, The Journal of Symbolic Logic, vol. 34 (1969), pp. 226-252.Google Scholar
[26] J., Barwise and J., Schlipf, On recursively saturated models of arithmetic, Model theory and algebra, Lecture Notes in Mathematics 498, Springer, Berlin, 1975, pp. 42-55.
[27] C., Bernardi and A., Sorbi, Classifying positive equivalence relations, The Journal of Symbolic Logic, vol. 48 (1983), pp. 529-538.Google Scholar
[28] W. W., Boone, The word problem, Proceedings of the National Academy of Sciences, vol. 44 (1958), pp. 1061-1065.Google Scholar
[29] W., Calvert, The isomorphism problem for classes of computable fields, Archive for Mathematical Logic, vol. 43 (2004), pp. 327-336.Google Scholar
[30] W., Calvert, Algebraic structure and computable structure, PhD dissertation, University of Notre Dame, 2005.
[31] W., Calvert, The isomorphism problem for computable abelian p-groups of bounded length, The Journal of Symbolic Logic, vol. 70 (2005), pp. 331-345.Google Scholar
[32] W., Calvert, D., Cenzer, V., Harizanov, and A., Morozov, Effective categoricity of equivalence structures, Annals of Pure and Applied Logic, vol. 141 (2006), pp. 61-78.Google Scholar
[33] W., Calvert, D., Cenzer, V., Harizanov, and A., Morozov, Effective categoricity of Abelian p-groups, Annals of Pure and Applied Logic, vol. 159 (2009), pp. 187-197.Google Scholar
[34] W., Calvert, D., Cummins, J. F., Knight, and S., Miller, Comparing classes of finite structures, Algebra and Logic, vol. 43 (2004), pp. 374-392.Google Scholar
[35] W., Calvert, E., Fokina, S., Gonoharov, J., Knight, O., Kudinov, A., Morozov, and V., Puzarenko, Index sets for classes of high rank structures, The Journal of Symbolic Logic, vol. 72 (2007), pp. 1418-1432.Google Scholar
[36] W., Calvert, S., Gonoharov, J., Millar, and J., Knight, Categoricity of computable infinitary theories, Archive for Mathematical Logic, vol. 48 (2009), pp. 25-38.Google Scholar
[37] W., Calvert, S. S., Gonoharov, and J. F., Knight, Computable structures of Scott rank rank in familiar classes, Contemporary mathematics (S., Gao, S., Jackson, and Y., Zhang, editors), Advances in Logic, vol. 425, American Mathematical Society, Providence, RI, 2007, pp. 49-66.
[38] W., Calvert, V., Harizanov, and A., Shlapentokh, Turing degrees of the isomorphism types of geometric objects, Computability, (to appear).
[39] W., Calvert, V., Harizanov, and A., Shlapentokh, Turing degrees of isomorphism types of algebraic objects, Journal of the London Mathematical Society, vol. 75 (2007), pp. 273-286.Google Scholar
[40] W., Calvert, V. S., Harizanov, J. F., Knight, and S., Miller, Index sets of computable structures, Algebra and Logic, vol. 45 (2006), pp. 306-325.Google Scholar
[41] W., Calvert and J. F., Knight, Classification from a computable point of view, The Bulletin of Symbolic Logic, vol. 12 (2006), pp. 191-218.Google Scholar
[42] W., Calvert, J. F., Knight, and J., Millar, Computable trees of Scott rank, and computable approximability, The Journal of Symbolic Logic, vol. 7 (2006), pp. 283-298.Google Scholar
[43] J., Carson, E., Fokina, V., Harizanov, J., Knight, S., Quinn, C., Safranski, and J., Wallbaum, The computable embedding problem, Algebra and Logic, vol. 50 (2011), pp. 707-732.Google Scholar
[44] J., Carson, V., Harizanov, J., Knight, K., Lange, C., McCoy, A., Morozov, S., Quinn, C., Safranski, and J., Wallbaum, Describing free groups, Transactions of the American Mathematical Society, vol. 364 (2012), pp. 5715-5728.Google Scholar
[45] D., Cenzer, V., Harizanov, and J., Remmel, and equivalence structures, Annals of Pure and Applied Logic, vol. 162 (2011), pp. 490-503.Google Scholar
[46] D., Cenzer, V., Harizanov, and J., Remmel, Effective categoricity of injection structures, Algebra and Logic, (to appear).
[47] D., Cenzer, G., LaForte, and J., Remmel, Equivalence structures and isomorphisms in the difference hierarchy, The Journal of Symbolic Logic, vol. 74 (2009), pp. 535-556.Google Scholar
[48] D., Cenzer and J. B., Remmel, Complexity-theoretic model theory and algebra, Handbook of recursive mathematics, volume 1 (Yu. L., Ershov, S. S., Goncharov, A., Nerode, and J. B., Remmel, editors), Studies in Logic and the Foundations of Mathematics 139, North-Holland, Amsterdam, 1998, pp. 381-513.Google Scholar
[49] C. C., Chang and H. J., Keisler, Model theory, North-Holland, Amsterdam, 1973.
[50] J., Chisholm, Effective model theory vs. recursive model theory, The Journal of Symbolic Logic, vol. 55 (1990), pp. 1168-1191.Google Scholar
[51] J., Chisholm, E., Fokina, S., Gonoharov, V., Harizanov, J., Knight, and S., Quinn,Intrinsic bounds on complexity and definability at limit levels, The Journal of Symbolic Logic, vol. 74 (2009), pp. 1047-1060.Google Scholar
[52] J., Chisholm and M., Moses, An undecidable linear order that is n-decidable for all n, Notre Dame Journal of Formal Logic, vol. 39 (1998), pp. 519-526.Google Scholar
[53] J. A., Chisholm, J., Chubb, V. S., Harizanov, D. R., Hirsohfeldt, C. G., Jookusoh Jr., T. H., MoNioholl, and S., Pingrey, classes and strong degree spectra of relations, The Journal of Symbolic Logic, vol. 72 (2007), pp. 1003-1018.Google Scholar
[54] P., Cholak, S., Gonoharov, B., Khoussainov, and R. A., Shore, Computably categorical structures and expansions by constants, The Journal of Symbolic Logic, vol. 64 (1999), pp. 13-37.Google Scholar
[55] P., Cholak, R. A., Shore, and R., Solomon, A computably stable structure with no Scott family offinitary formulas, Archive for Mathematical Logic, vol. 45 (2006), pp. 519-538.Google Scholar
[56] J., Chubb, A., Frolov, and V., Harizanov, Degree spectra of the successor relation on computable linear orderings, Archive for Mathematical Logic, vol. 48 (2009), pp. 7-13.Google Scholar
[57] J., Chubb, V., Harizanov, A., Morozov, S., Pingrey, and E., Ufferman, Partial automorphism semigroups, Annals of Pure and Applied Logic, vol. 156 (2008), pp. 245-258.Google Scholar
[58] R. J., Coles, R. G., Downey, and T. A., Slaman, Every set has a least jump enumeration, Journal of the London Mathematical Society, vol. 62 (2000), pp. 641-649.Google Scholar
[59] S., Coskey, J., Hamkins, and R., Miller, The hierarchy of equivalence relations on the natural numbers under computable reducibility, Computability, vol. 1 (2012), pp. 15-38.Google Scholar
[60] T. C., Craven, The Boolean space of orderings of a field, Transactions of the American Mathematical Society, vol. 209 (1975), pp. 225-235.Google Scholar
[61] B., Csima, V., Harizanov, D., Hirsohfeldt, and R., Soare, Bounding homogeneous models, The Journal of Symbolic Logic, vol. 72 (2007), pp. 305-323.Google Scholar
[62] B., Csima, V., Harizanov, R., Miller, and A., Montalbá, Computability of Fraïssé limits, The Journal of Symbolic Logic, vol. 76 (2011), pp. 66-93.Google Scholar
[63] B., Csima and I. Sh., Kalimullin, Degree spectra and immunity properties, Mathematical Logic Quarterly, vol. 56 (2010), pp. 67-77.Google Scholar
[64] B. F., Csima, Degree spectra of prime models, The Journal of Symbolic Logic, vol. 69 (2004), pp. 430–412.Google Scholar
[65] B. F., Csima, J. N. Y., Franklin, and R. A., Shore, Degrees of categoricity and the hyperarithmetic hierarchy, Notre Dame Journal of Formal Logic, vol. 54 (2013), pp. 215-231.Google Scholar
[66] B. F., Csima, D. R., Hirsohfeldt, J. F., Knight, and R. I., Soare, Bounding prime models, The Journal of Symbolic Logic, vol. 69 (2004), pp. 1117-1142.Google Scholar
[67] M., Dabkowska, M., Dabkowski, V., Harizanov, J., Przytyoki, and M., Veve, Compactness of the space of left orders, Journal of Knot Theory and Its Ramifications, vol. 16 (2007), pp. 257-366.Google Scholar
[68] M., Dabkowska, M., Dabkowski, V., Harizanov, and A., Sikora, Turing degrees of non-abelian groups, Proceedings of the American Mathematical Society, vol. 135 (2007), pp. 3383-3391.Google Scholar
[69] M. A., Dabkowska, Turing degree spectra of groups and their spaces of orders, PhD dissertation, George Washington University, 2006.
[70] M. A., Dabkowska, M. K., Dabkowski, V. S., Harizanov, and A. A., Togha, Spaces of orders and their Turing degree spectra, Annals of Pure and Applied Logic, vol. 161 (2010), pp. 1134-1143.Google Scholar
[71] R., Dimitrov, V., Harizanov, and A. S., Morozov, Dependence relations in computably rigid computable vector spaces, Annals of Pure and Applied Logic, vol. 132 (2005), pp. 97-108.Google Scholar
[72] V. P., Dobritsa, Some constructivizations of abelian groups, Siberian Mathematical Journal, vol. 24(1983), pp. 167-173, (English translation).Google Scholar
[73] A., Dolioh, C., Laskowski, and A., Raiohev, Model completeness for trivial, uncountably categorical theories of Morley rank one, Archive for Mathematical Logic, vol. 45 (2006), pp. 931-945.Google Scholar
[74] R., Downey and D., Hirsohfeldt, Algorithmic randomness and complexity, Springer, 2010.
[75] R., Downey and C. G., Jookusoh Jr., Every low Boolean algebra is isomorphic to a recursive one, Proceedings of the American Mathematical Society, vol. 122 (1994), pp. 871-880.Google Scholar
[76] R., Downey, A., Kaoh, S., Lempp, A., Lewis, A., Montalbán, and D., Turetsky, The complexity of computable categoricity, preprint.
[77] R., Downey and J., Knight, Orderings with ath jump degree 0(α), Proceedings of the American Mathematical Society, vol. 114 (1992), pp. 545-552.Google Scholar
[78] R., Downey, S., Lempp, and G., Wu, On the complexity of the successivity relation in computable linear orderings, Journal of Mathematical Logic, vol. 10 (2010), pp. 83-99.Google Scholar
[79] R., Downey and A. G., Melnikov, Computable completely decomposable groups, preprint.
[80] R., Downey and A. G., Melnikov, Effectively categorical abelian groups, Journal of Algebra, (to appear).
[81] R. G., Downey, On presentations of algebraic structures, Complexity, logic and recursion theory (A., Sorbi, editor), Lecture Notes in Pure and Applied Mathematics 187, Marcel Dekker, New York, 1997, pp. 157-205.
[82] R. G., Downey, S. S., Gonoharov, and D. R., Hirsohfeldt, Degree spectra of relations on Boolean algebras, Algebra and Logic, vol. 42 (2003), pp. 105-111.Google Scholar
[83] R. G., Downey, A. M., Kach, S., Lempp, and D. D., Turetsky, Computable categoricity versus relative computable categoricity, Fundamenta Mathematicae, vol. 221 (2013), pp. 129-159.Google Scholar
[84] R. G., Downey and S. A., Kurtz, Recursion theory and ordered groups, Annals of Pure and Applied Logic, vol. 32 (1986), pp. 137-151.Google Scholar
[85] R. G., Downey and M. F., Moses, Recursive linear orders with incomplete successivities, Transactions of the American Mathematical Society, vol. 326 (1991), pp. 653-668.Google Scholar
[86] R. G., Downey and J. B., Remmel, Computable algebras and closure systems: coding properties, Handbook of recursive mathematics, volume 2 (Yu. L., Ershov, S. S., Goncharov, A., Nerode, and J. B., Remmel, editors), Studies in Logic and the Foundations of Mathematics 139, North-Holland, Amsterdam, 1998, pp. 997-1039.
[87] B. N., Drobotun, Enumerations of simple models, Siberian Mathematical Journal, vol. 18 (1977), pp. 707-716, (English translation).Google Scholar
[88] V. D., Dzgoev, Recursive automorphisms of constructive models, Proceedings of the 15th All-Union Algebraic Conference (Novosibirsk, 1979), Part 2, (Russian), p. 52.
[89] R., Epstein, Computably enumerable degrees of prime models, The Journal of Symbolic Logic, vol. 73 (2008), pp. 1373-1388.Google Scholar
[90] Yu. L., Ershov, Theorie der Numierungen III, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 23 (1977), pp. 289-371.Google Scholar
[91] Yu. L., Ershov, Theory of numberings, Nauka, Moscow, 1977, (Russian).
[92] Yu. L., Ershov, Decidability problems and constructive models, Nauka, Moscow, 1980, (Russian).
[93] Yu. L., Ershov and S. S., Gonoharov, Constructive models, Siberian School of Algebra and Logic, Kluwer Academic/Plenum Publishers, 2000, (English translation).
[94] L., Feiner, Hierarchies of Boolean algebras, The Journal of Symbolic Logic, vol. 35 (1970), pp. 365-374.Google Scholar
[95] E., Fokina, On complexity of categorical theories with computable models, Vestnik NGU, vol. 5 (2005), pp. 78-86, (Russian).Google Scholar
[96] E., Fokina, S., Friedman, V., Harizanov, J., Knight, C., McCoy, and A., Montalbán, Isomorphism relations on computable structures, The Journal of Symbolic Logic, vol. 77 (2012), pp. 122-132.Google Scholar
[97] E., Fokina, S. D., Friedman, and A., Nies, Equivalence relations that are complete for computable reducibility, Logic, Language, Information and Computation, 19th International Workshop, WoLLIC 2012 (C.-H. L., Ong and R. J. G. B., de Queiroz, editors), Springer, Berlin, 2012, pp. 26-33.
[98] E., Fokina, A., Frolov, and I., Kalimullin, Spectra of categoricity for rigid structures, Notre Dame Journal of Formal Logic, (to appear).
[99] E. B., Fokina, Index sets of decidable models, Siberian Mathematical Journal, vol. 48 (2007), pp. 939-948, (English translation).Google Scholar
[100] E. B., Fokina, Index sets for some classes of structures, Annals of Pure and Applied Logic, vol. 157 (2009), pp. 139-147.Google Scholar
[101] E. B., Fokina and S. D., Friedman, Equivalence relations on classes of computable structures, Proceedings of Computability in Europe 2009, Lecture Notes in Computer Science 5635, Springer, Heidelberg, 2009, pp. 198-207.
[102] E. B., Fokina and S. D., Friedman, On equivalence relations over the natural numbers, Mathematical Logic Quarterly, vol. 58 (2012), pp. 3-24.Google Scholar
[103] E. B., Fokina, I., Kalimullin, and R., Miller, Degrees of categoricity of computable structures, Archive for Mathematical Logic, vol. 49 (2010), pp. 51-67.Google Scholar
[104] C., Freer, Models with high Scott rank, PhD dissertation, Harvard University, 2008.
[105] H., Friedman and L., Stanley, A Borel reducibility theory for classes of countable structures, The Journal of Symbolic Logic, vol. 54 (1989), pp. 894-914.Google Scholar
[106] S. D., Friedman and L., Motto Ros, Analytic equivalence relations and bi-embeddability, The Journal of Symbolic Logic, vol. 76 (2011), pp. 243-266.Google Scholar
[107] A., Fröhlich and J., Shepherdson, Effective procedures in field theory, Philosophical Transactions of the Royal Society. Series A, vol. 248 (1956), pp. 407-432.Google Scholar
[108] A., Frolov, V., Harizanov, I., Kalimullin, O., Kudinov, and R., Miller, Degree spectra of highn and nonlown degrees, Journal of Logic and Computation, vol. 22 (2012), pp. 755-777.Google Scholar
[109] A., Frolov, I., Kalimullin, and R., Miller, Spectra of algebraic fields and subfields, Mathematical theory and computational practice, Computability in Europe (K., Ambos-Spies, B., Löwe, and W., Merkle, editors), Lecture Notes in Computer Science 5635, Springer, Berlin, 2009, pp. 232-241.
[110] L., Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford, 1963.
[111] S., Gao, Invariant descriptive set theory, Pure and Applied Mathematics, CRC Press/Chapman & Hall, 2009.
[112] S., Gao and P., Gerdes, Computably enumerable equivalence relations, Studia Logica, vol. 67 (2001), pp. 27-59.Google Scholar
[113] A., Gavryushkin, Computable models of Ehrenfeucht theories, Centre de Recerca Matemática (Barcelona), vol. 11 (2012), pp. 67-77.Google Scholar
[114] A. N., Gavryushkin, Spectra of computable models for Ehrenfeucht theories, Algebra and Logic, vol. 46(2007), pp. 149-157, (English translation).Google Scholar
[115] A. M. W., Glass, Ordered permutation groups, London Mathematical Society Lecture Note Series, vol. 55, Cambridge University Press, 1981.
[116] S., Gonoharov, V., Harizanov, J., Knight, C., McCoy, R., Miller, and R., Solomon, Enumerations in computable structure theory, Annals of Pure and Applied Logic, vol. 136 (2005), pp. 219-246.Google Scholar
[117] S., Gonoharov, V., Harizanov, J., Knight, A., Morozov, and A., Romina, On automorphic tuples of elements in computable models, Siberian Mathematical Journal, vol. 46 (2005), pp. 405-412, (English translation).Google Scholar
[118] S., Gonoharov, V., Harizanov, C., Laskowski, S., Lempp, and C., McCoy, Trivial, strongly minimal theories are model complete after naming constants, Proceedings of the American Mathematical Society, vol. 131 (2003), pp. 3901-3912.Google Scholar
[119] S., Gonoharov, S., Lempp, and R., Solomon, The computable dimension of ordered abelian groups, Advances in Mathematics, vol. 175 (2003), pp. 102-143.Google Scholar
[120] S. S., Gonoharov, Selfstability and computable families of constructivizations, Algebra and Logic, vol. 14 (1975), pp. 647-680, (Russian).Google Scholar
[121] S. S., Gonoharov, Restricted theories of constructive Boolean algebras, Siberian Mathematical Journal, vol. 17 (1976), pp. 601-611, (English translation).Google Scholar
[122] S. S., Gonoharov, The quantity of nonautoequivalent constructivizations, Algebra and Logic, vol. 16 (1977), pp. 169-185, (English translation).Google Scholar
[123] S. S., Gonoharov, Constructive models of and ℵ1-categorical theories, Matematicheskie Zametki, vol. 23 (1978), pp. 885-888, (Russian).(English translation in Mathematical Notes, vol. 23 (1978), no. 5–6, pp. 486–488).Google Scholar
[124] S. S., Gonoharov, Strong constructivizability of homogeneous models, Algebm and Logic, vol. 17 (1978), pp. 247-263, (English translation).Google Scholar
[125] S. S., Gonoharov, Autostability of models and abelian groups, Algebra and Logic, vol. 19 (1980), pp. 13-27, (English translation).Google Scholar
[126] S. S., Gonoharov, Computable single valued numerations, Algebra and Logic, vol. 19 (1980), pp. 325-356, (English translation).Google Scholar
[127] S. S., Gonoharov, Problem of number of nonautoequivalent constructivizations, Algebra and Logic, vol. 19 (1980), pp. 401-414, (English translation).Google Scholar
[128] S. S., Gonoharov, A totally transcendental decidable theory without constructivizable homogeneous models, Algebra and Logic, vol. 19 (1980), pp. 85-93, (English translation).Google Scholar
[129] S. S., Gonoharov, Autostable models and algorithmic dimensions, Handbook of recursive mathematics, volume 1 (Yu. L., Ershov, S. S., Goncharov, A., Nerode, and J. B., Remmel, editors), North-Holland, Amsterdam, 1998, pp. 261-287.
[130] S. S., Gonoharov, Autostability of prime models with respect to strong constructivizations, Algebra and Logic, vol. 48 (2009), pp. 410-417, (English translation).Google Scholar
[131] S. S., Gonoharov, On the autostability of almost prime models with respect to strong constructivizations, Russian Mathematical Surveys, vol. 65 (2010), pp. 901-935, (English translation).Google Scholar
[132] S. S., Gonoharov, Degrees of autostability relative to strong constructivizations, Proceedings of the Steklov Institute of Mathematics, vol. 274(2011), pp. 105-115, (English translation).Google Scholar
[133] S. S., GOnoharov and B. N., Drobotun, Numerations of saturated and homogeneous models, Siberian Mathematical Journal, vol. 21 (1980), pp. 164-176, (English translation).Google Scholar
[134] S. S., Gonoharov and V. D., Dzgoev, Autostability of models, Algebra and Logic, vol. 19 (1980), pp. 28-37, (English translation).Google Scholar
[135] S. S., Gonoharov, V. S., Harizanov, J. F., Knight, and C. F. D., McCoy, Simple and immune relations on countable structures, Archive for Mathematical Logic, vol. 42 (2003), pp. 279-291.Google Scholar
[136] S. S., Gonoharov, Relatively hyperimmune relations on structures, Algebra and Logic, vol. 43 (2004), pp. 94-101, (English translation).Google Scholar
[137] S. S., Gonoharov, V. S., Harizanov, J. F., Knight, and R. A., Shore, relations and paths through, The Journal of Symbolic Logic, vol. 69 (2004), pp. 585-611.Google Scholar
[138] S. S., Gonoharov and B., Khoussainov, On the spectrum of degrees of decidable relations, Doklady Mathematics, vol. 55 (1997), pp. 55-57, (English translation).Google Scholar
[139] S. S., Gonoharov and B., Khoussainov, Complexity of theories of computable categorical models, Algebm and Logic, vol. 43 (2004), pp. 365-373, (English translation).Google Scholar
[140] S. S., Gonoharov and J. F., Knight, Computable structure and non-structure theorems, Algebra and Logic, vol. 41 (2002), pp. 351-373.Google Scholar
[141] S. S., Gonoharov, A. V., Molokov, and N. S., Romanovskii, Nilpotent groups of finite algorithmic dimension, Siberian Mathematical Journal, vol. 30 (1989), pp. 63-68.Google Scholar
[142] S. S., Gonoharov and A. T., Nurtazin, Constructive models of complete decidable theories, Algebra and Logic, vol. 12 (1973), pp. 125-142 (Russian); (1974) pp.67–77, (English translation).Google Scholar
[143] N., Greenberg, A., Montalbán, and T. A., Slaman, Relative to any non-hyperarithmetic set, Journal of Mathematical Logic, vol. 13 (2013), pp. 1-26.Google Scholar
[144] N., Greenberg, A., Montalbán, and T. A., Slaman, The Slaman–Wehner theorem in higher recursion theory, Proceedings of the American Mathematical Society, vol. 139 (2011), pp. 1865-1869.Google Scholar
[145] V., Harizanov, Effectively nowhere simple relations on computable structures, Recursion theory and complexity (M. M., Arslanov and S., Lempp, editors), Walterde Gruyter, Berlin, 1999, pp. 59-70.
[146] V., Harizanov, Turing degrees of hypersimple relations on computable structures, Annals of Pure and Applied Logic, vol. 121 (2003), pp. 209-226.Google Scholar
[147] V., Harizanov, C., Jookusoh Jr., and J., Knight, Chains and antichains in computable partial orderings, Archive for Mathematical Logic, vol. 48 (2009), pp. 39-53.Google Scholar
[148] V., Harizanov, J., Knight, C., McCoy, V., Puzarenko, R., Solomon, and J., Wallbaum, Orders on F∞, preprint.
[149] V., Harizanov and R., Miller, Spectra of structures and relations, The Journal of Symbolic Logic, vol. 72 (2007), pp. 324-348.Google Scholar
[150] V., Harizanov, R., Miller, and A. S., Morozov, Simple structures with complex symmetry, Algebra and Logic, vol. 49 (2010), pp. 98-134, (English translation).Google Scholar
[151] V. S., Harizanov, Degree spectrum of a recursive relation on a recursive structure, PhD dissertation, University of Wisconsin, Madison, 1987.
[152] V. S., Harizanov, Some effects of Ash–Nerode and other decidability conditions on degree spectra, Annals of Pure and Applied Logic, vol. 55 (1991), pp. 51-65.Google Scholar
[153] V. S., Harizanov, Uncountable degree spectra, Annals of Pure and Applied Logic, vol. 54 (1991), pp. 255-263.Google Scholar
[154] V. S., Harizanov, The possible Turing degree of the nonzero member in a two-element degree spectrum, Annals of Pure and Applied Logic, vol. 60 (1993), pp. 1-30.Google Scholar
[155] V. S., Harizanov, Turing degrees of certain isomorphic images of computable relations, Annals of Pure and Applied Logic, vol. 93 (1998), pp. 103-113.Google Scholar
[156] V. S., Harizanov, J. F., Knight, and A. S., Morozov, Sequences of n-diagrams, The Journal of Symbolic Logic, vol. 67 (2002), pp. 1227-1247.Google Scholar
[157] L., Harrington, Recursively presentable prime models, The Journal of Symbolic Logic, vol. 39 (1974), pp. 305-309.Google Scholar
[158] K., Harris, Categoricity in Boolean algebras, preprint.
[159] K., Harris, On bounding saturated models, preprint.
[160] K., Harris and A., Montalbán, Boolean algebra approximations, preprint.
[161] K., Harris, On the n-back-and-forth types of Boolean algebras, Transactions of the American Mathematical Society, vol. 364 (2012), pp. 827-866.Google Scholar
[162] J., Harrison, Recursive pseudo-well-orderings, Transactions of the American Mathematical Society, vol. 131 (1968), pp. 526-543.Google Scholar
[163] E., Herrmann, Infinite chains and antichains in computable partial orderings, The Journal of Symbolic Logic, vol. 66 (2001), pp. 923-934.Google Scholar
[164] B., Herwig, S., Lempp, and M., Ziegler, Constructive models of uncountably categorical theories, Proceedings of the American Mathematical Society, vol. 127 (1999), pp. 3711-3719.Google Scholar
[165] G., Higman, Subgroups of finitely presented groups, Proceedings of the Royal Society of London, vol. 262 (1961), pp. 455-475.Google Scholar
[166] G., Hird, Recursive properties of intervals of recursive linear orders, Logical methods (J. N., Crossley, J. B., Remmel, R. A., Shore, and M. E., Sweedler, editors), Birkhäuser, 1993, pp. 422-437.
[167] G. R., Hird, Recursive properties of relations on models, Annals of Pure and Applied Logic, vol. 63 (1993), pp. 241-269.Google Scholar
[168] D., Hirsohfeldt, K., Kramer, R., Miller, and A., Shlapentokh, Categoricity properties for computable algebraic fields, Transactions of the American Mathematical Society, (to appear).
[169] D. R., Hirsohfeldt, Prime models of theories of computable linear orderings, Proceedings of the American Mathematical Society, vol. 129 (2001), pp. 3079-3083.Google Scholar
[170] D. R., Hirsohfeldt, Degree spectra of relations on computable structures in the presence of isomorphisms, The Journal of Symbolic Logic, vol. 67 (2002), pp. 697-720.Google Scholar
[171] D. R., Hirsohfeldt, Computable trees, prime models and relative decidability, Proceedings of the American Mathematical Society, vol. 134 (2006), pp. 1495-1498.Google Scholar
[172] D. R., Hirsohfeldt, B., Khoussainov, and P., Semukhin, An uncountably categorical theory whose only computably presentable model is saturated, Notre Dame Journal of Formal Logic, vol. 47 (2006), pp. 63-71.Google Scholar
[173] D. R., Hirsohfeldt, B., Khoussainov, and R. A., Shore, A computably categorical structure whose expansion by a constant has infinite computable dimension, The Journal of Symbolic Logic, vol. 68 (2003), pp. 1199-1241.Google Scholar
[174] D. R., Hirsohfeldt, B., Khoussainov, R. A., Shore, and A. M., Slinko, Degree spectra and computable dimensions in algebraic structures, Annals of Pure and Applied Logic, vol. 115 (2002), pp. 71-113.Google Scholar
[175] D. R., Hirsohfeldt and W. M., White, Realizing levels of the hyperarithmetic hierarchy as degree spectra of relations on computable structures, Notre Dame Journal of Formal Logic, vol. 43 (2002), pp. 51-64.Google Scholar
[176] G., Hjorth, The isomorphism relation on countable torsion-free Abelian groups, Fundamenta Mathematicae, vol. 175 (2002), pp. 241-257.Google Scholar
[177] E., Hrushovski, A new strongly minimal set, Annals of Pure and Applied Logic, vol. 62 (1993), pp. 147-166, Stability in model theory, III (Trento, 1991).Google Scholar
[178] C. G., Jookusoh Jr., Ramsey's theorem and recursion theory, The Journal of Symbolic Logic, vol. 37 (1972), pp. 268-280.Google Scholar
[179] C. G., Jookusoh Jr. and R. I., Soare, classes and degrees of theories, Transactions of the American Mathematical Society, vol. 173 (1972), pp. 33-56.Google Scholar
[180] C. G., Jookusoh, Degrees of orderings not isomorphic to recursive linear orderings, Annals of Pure and Applied Logic, vol. 52 (1991), pp. 39-64.Google Scholar
[181] C. G., Jookusoh, Boolean algebras, Stone spaces, and the iterated Turing jump, The Journal of Symbolic Logic, vol. 59 (1994), pp. 1121-1138.Google Scholar
[182] A. M., Kach, K., Lange, and R., Solomon, Degrees of orders on torsion-free abelian groups, Annals of Pure and Applied Logic, (to appear).
[183] A. M., Kach and D., Turetsky, -categoricity of equivalence structures, New Zealand Journal of Mathemtics, vol. 39 (2009), pp. 143-149.Google Scholar
[184] I., Kalantari and A., Retzlaff, Maximal vector spaces under automorphisms of the lattice of recursively enumerable vector spaces, The Journal of Symbolic Logic, vol. 42 (1977), pp. 481-491.Google Scholar
[185] I., Kalimullin, B., Khoussainov, and A., Melnikov, Limitwise monotonic sequences and degree spectra of structures, Proceedings of the American Mathematical Society, (to appear).
[186] I. Sh., Kalimullin, Some notes on degree spectra of structures, Computation and logic in the real world, Computability in Europe (S. B., Cooper, B., Ltowe, and A., Sorbi, editors), Lecture Notes in Computer Science 4497, Springer, Berlin, 2007, pp. 389-397.
[187] I. Sh., Kalimullin, Spectra of degrees of some algebraic structures, Algebra and Logic, vol. 46 (2007), pp. 399-408, (English translation).Google Scholar
[188] I. Sh., Kalimullin, Almost computably enumerable families of sets, Sbornik. Mathematics, vol. 199 (2008), pp. 1451-1458, (English translation).Google Scholar
[189] I. Sh., Kalimullin, Restrictions on the spectra of degrees of algebraic structures, Siberian Mathematical Journal, vol. 49 (2008), pp. 1034-1043, (English translation).Google Scholar
[190] V., Kanovei, Borel equivalence relations. structure and classification, University Lecture Series 44, American Mathematical Society, Providence, RI, 2008.
[191] A., Keohris and A., Louveau, The classification of hypersmooth Borel equivalence relations, Journal of the American Mathematical Society, vol. 10 (1997), pp. 215-242.Google Scholar
[192] C. F., Kent, Constructive analogues of the group of permutations of the natural numbers, Transactions of the American Mathematical Society, vol. 104 (1962), pp. 347-362.Google Scholar
[193] O., Kharlampovioh and A., Myasnikov, Elementary theory of free non-abelian groups, Journal of Algebra, vol. 302 (2006), pp. 451-552.Google Scholar
[194] A. N., Khisamiev, On the upper semilattice LE, Siberian Mathematical Journal, vol. 45 (2004), pp. 173-187, (English translation).Google Scholar
[195] N. G., Khisamiev, Strongly constructive models of a decidable theory, Izvestiya Akademii Nauk Kazakhskoj SSR, Seriya Fiziko-Matematicheskaya, vol. 1 (1974), pp. 83-84, (Russian).Google Scholar
[196] N. G., Khisamiev, A constructibility criterion for the direct product of cyclic p-groups, Izvestiya Akademii Nauk Kazakhskoj SSR, Seriya Fiziko-Matematicheskaya, vol. 51 (1981), pp. 51-55, (Russian).Google Scholar
[197] N. G., Khisamiev, Theory of abelian groups with constructive models, Siberian Mathematical Journal, vol. 27 (1986), pp. 572-585, (English translation).Google Scholar
[198] N. G., Khisamiev and A. A., Krykpaeva, Effectively totally decomposable abelian groups, Siberian Mathematical Journal, vol. 38 (1997), pp. 1227-1229, (English translation).Google Scholar
[199] B., Khoussainov, C., Laskowski, S., Lempp, and R., Solomon, On the computability-theoretic complexity of trivial, strongly minimal models, Proceedings of the American Mathematical Society, vol. 135 (2007), pp. 3711-3721.Google Scholar
[200] B., Khoussainov and M., Minnes, Three lectures on automatic structures, Logic Colloquium '07 (F., Delon, U., Kohlenbach, P., Maddy, and F., Stephan, editors), Lecture Notes in Logic 35, Cambridge University Press, 2010, pp. 132-176.
[201] B., Khoussainov and A., Montalbán, A computable ℵ0-categorical structure whose theory computes true arithmetic, The Journal of Symbolic Logic, vol. 75 (2010), pp. 728-740.Google Scholar
[202] B., Khoussainov and A., Nerode, Automatic presentations of structures, Logic and Computational Complexity: International Workshop, LCC '94, Indianapolis (D., Leivant, editor), Lecture Notes in Computer Science 960, Springer, Berlin, 1995, pp. 367-395.
[203] B., Khoussainov, A., Nies, and R., Shore, On recursive models of theories, Notre Dame Journal of Formal Logic, vol. 38 (1997), pp. 165-178.Google Scholar
[204] B., Khoussainov, P., Semukhin, and F., Stephan, Applications of Kolmogorov complexity to computable model theory, The Journal of Symbolic Logic, vol. 72 (2007), pp. 1041-1054.Google Scholar
[205] B., Khoussainov and R. A., Shore, Computable isomorphisms, degree spectra of relations and Scott families, Annals of Pure and Applied Logic, vol. 93 (1998), pp. 153-193.Google Scholar
[206] B., Khoussainov, T., Slaman, and P., Semukhin, -presentations of algebras, Archive for Mathematical Logic, vol. 45 (2006), pp. 769-781.Google Scholar
[207] B., Khoussainov, F., Stephan, and Y., Yang, Computable categoricity and the Ershov hierarchy, Annals of Pure and Applied Logic, vol. 156 (2008), pp. 86-95.Google Scholar
[208] J., Knight, Nonarithmetical ℵ0-categorical theories with recursive models, The Journal of Symbolic Logic, vol. 59 (1994), pp. 106-112.Google Scholar
[209] J. F., Knight, Degrees coded in jumps of orderings, The Journal of Symbolic Logic, vol. 51 (1986), pp. 1034-1042.Google Scholar
[210] J. F., Knight and J., Millar, Computable structures of Scott rank, Journal of Mathematical Logic, vol. 10 (2010), pp. 31-43.Google Scholar
[211] J. F., Knight, S., Miller, and M., Vanden Boom, Turing computable embeddings, The Journal of Symbolic Logic, vol. 73 (2007), pp. 901-918.Google Scholar
[212] J. F., Knight and M., Stob, Computable Boolean algebras, The Journal of Symbolic Logic, vol. 65 (2000), pp. 1605-1623.Google Scholar
[213] G., Kreisel, Note on arithmetic models for consistent formulae of the predicate calculus, Fundamenta Mathematicae, vol. 37 (1950), pp. 265-285.Google Scholar
[214] K. Zh., Kudaibergenov, Constructivizable models of undecidable theories, Siberian Mathematical Journal, vol. 21 (1980), pp. 155-158, (Russian).Google Scholar
[215] K. Zh., Kudaibergenov, Effectively homogenous models, Siberian Mathematical Journal, vol. 27 (1986), pp. 180-182, (Russian).Google Scholar
[216] O., Kudinov, An autostable 1-decidable model without a computable Scott family of 3-formulas, Algebra and Logic, vol. 35 (1996), pp. 458-467.Google Scholar
[217] V. A., Kuzioheva, Inverse isomorphisms of rings of recursive endomorphisms, Moscow University Mathematics Bulletin, vol. 41 (1986), pp. 82-84, (English translation).Google Scholar
[218] A. V., Kuznetsov, On primitive recursive functions of large oscillation, Doklady Akademii Nauk SSSR, vol. 71 (1950), pp. 233-236, (Russian).Google Scholar
[219] A., Lange, The degree spectra of homogeneous models, The Journal of Symbolic Logic, vol. 73 (2008), pp. 1009-1028.Google Scholar
[220] A., Lange, A characterization of the 0-basis homogeneous bounding degrees, The Journal of Symbolic Logic, vol. 75 (2010), pp. 971-995.Google Scholar
[221] P., LaRoche, Recursively presented Boolean algebras, Notices of the American Mathematical Society, vol. 24 (1977), pp. A552-A553.Google Scholar
[222] C., Laskowski, Characterizing model completeness among mutually algebraic structures, The Journal of Symbolic Logic, vol. 78 (2013), pp. 185-194.Google Scholar
[223] S., Lempp, C., McCoy, R., Miller, and R., Solomon, Computable categoricity of trees of finite height, The Journal of Symbolic Logic, vol. 70 (2005), pp. 151-215.Google Scholar
[224] S., Lempp, C. F. D., McCoy, A. S., Morozov, and R., Solomon, Group theoretic properties of the group of computable automorphisms of a countable dense linear order, Order, vol. 19 (2002), pp. 343-364.Google Scholar
[225] M., Lerman and J., Sohmerl, Theories with recursive models, The Journal of Symbolic Logic, vol. 44 (1979), pp. 59-76.Google Scholar
[226] A. J., Maointyre and D., Marker, Degrees of recursively saturated models, Transactions of the American Mathematical Society, vol. 282 (1984), pp. 539-554.Google Scholar
[227] M., Makkai, An example concerning Scott heights, The Journal of Symbolic Logic, vol. 46 (1981), pp. 301-318.Google Scholar
[228] A. I., Mal'oev, Constructive algebras I, Russian Mathematical Surveys, vol. 16 (1961), pp. 77-129, (English translation).Google Scholar
[229] A. I., Mal'oev, On recursive Abelian groups, Doklady Akademii Nauk SSSR, vol. 3 (1962), pp. 1431-1434, (English translation).Google Scholar
[230] M., Manasse, Techniques and counterexamples in almost categorical recursive model theory, PhD dissertation, University of Wisconsin, Madison, 1982.
[231] A. B., Manaster and J. B., Remmel, Some recursion theoretic aspects of dense two-dimensional partial orderings, Aspects of effective algebra (J. N., Crossley, editor), U. D. A. Book Co., Steel's Creek, Australia, 1981, pp. 161-188.
[232] Yu. V., Matiyasevioh, The diophantineness of enumerable sets, Doklady Akademii Nauk SSSR, vol. 191 (1970), pp. 279-282, (Russian).Google Scholar
[233] Yu. V., Matiyasevioh, Hilbert's tenth problem, The MIT Press, Cambridge, Massachusetts, 1993, (English translation).
[234] C., McCoy and J., Wallbaum, Describing free groups, part II: -hardness and no basis, Transactions of the American Mathematical Society, vol. 364 (2012), pp. 5729-5734.Google Scholar
[235] C. F. D., McCoy, On -categoricity for linear orders and Boolean algebras, Algebra and Logic, vol. 41 (2002), pp. 295-305, (English translation).Google Scholar
[236] C. F. D., McCoy, -categoricity in Boolean algebras and linear orderings, Annals of Pure and Applied Logic, vol. 119(2003), pp. 85-120.Google Scholar
[237] Yu. T., Medvedev, Degrees of difficulty of the mass problem, Doklady Akademii Nauk SSSR, vol. 104 (1955), pp. 501-504, (Russian).Google Scholar
[238] A. G., Melnikov, Enumerations and completely decomposable torsion-free abelian groups, Theory of Computing Systems, vol. 45 (2009), pp. 897-916.Google Scholar
[239] G., Metakides and A., Nerode, Recursively enumerable vector spaces, Annals of Pure and Applied Logic, vol. 11 (1977), pp. 147-171.Google Scholar
[240] G., Metakides and A., Nerode, Effective content of field theory, Annals of Mathematical Logic, vol. 17 (1979), pp. 289-320.Google Scholar
[241] G., Metakides and A., Nerode, Recursion theory on fields and abstract dependence, Journal of Algebra, vol. 65 (1980), pp. 36-59.Google Scholar
[242] J., Millar and G. E., Sacks, Atomic models higher up, Annals of Pure and Applied Logic, vol. 155 (2008), pp. 225-241.Google Scholar
[243] T., Millar, Prime models and almost decidability, The Journal of Symbolic Logic, vol. 51 (1986), pp. 412-420.Google Scholar
[244] T., Millar, Recursive categoricity and persistence, The Journal of Symbolic Logic, vol. 51 (1986), pp. 430-434.Google Scholar
[245] T. S., Millar, Foundations of recursive model theory, Annals of Mathematical Logic, vol. 13 (1978), pp. 45-72.Google Scholar
[246] T. S., Millar, Homogeneous models and decidability, Pacific Journal of Mathematics, vol. 91 (1980), pp. 407-418.Google Scholar
[247] T. S., Millar, Type structure complexity and decidability, Transactions of the American Mathematical Society, vol. 271 (1982), pp. 73-81.Google Scholar
[248] A. W., Miller, On the Borel classification of the isomorphism class of a countable model, Notre Dame Journal of Formal Logic, vol. 24 (1983), pp. 22-34.Google Scholar
[249] D. E., Miller, The invariant separation principle, Transactions of the American Mathematical Society, vol. 242 (1978), pp. 185-204.Google Scholar
[250] R., Miller, The computable dimension of trees of infinite height, The Journal of Symbolic Logic, vol. 70 (2005), pp. 111-141.Google Scholar
[251] R., Miller, d-computable categoricity for algebraic fields, The Journal of Symbolic Logic, vol. 74 (2009), pp. 1325-1351.Google Scholar
[252] R., Miller and H., Schoutens, Computably categorical fields via Fermat's Last Theorem, Computability, vol. 2 (2013), pp. 51-65.Google Scholar
[253] R., Miller and A., Shlapentokh, Computable categoricity for algebraic fields with splitting algorithms, Transactions of the American Mathematical Society, (to appear).
[254] R. G., Miller, The -spectrum of a linear order, The Journal of Symbolic Logic, vol. 66 (2001), pp. 470-486.Google Scholar
[255] A., Montalbán, A computability theoretic equivalent to Vaught's conjecture, preprint.
[256] A., Montalbán, A fixed point for the jump operator on structures, preprint.
[257] A., Montalbán, On the equimorphism types of linear orderings, The Bulletin of Symbolic Logic, vol. 13 (2007), pp. 71-99.Google Scholar
[258] A., Montalbán, Notes on the jump of a structure, Mathematical theory and computational practice, CiE 2009 (K., Ambos-Spies, B., Löwe, and W., Merkle, editors), Lecture Notes in Computer Science, vol. 5635, Springer, 2009, pp. 372-378.
[259] M., Morley, Decidable models, Israel Journal of Mathematics, vol. 25 (1976), pp. 233-240.Google Scholar
[260] A. S., Morozov, On degrees of the recursive automorphism groups, Algebra, Logic, and Applications, in memoriam of A. I. Kokorin (Irkutsk University, 1994), pp. 79-85 (Russian).
[261] A. S., Morozov, Strong constructivizability of countable saturated Boolean algebras, Algebm and Logic, vol. 21 (1982), pp. 130-137, (English translation).Google Scholar
[262] A. S., Morozov, Groups of recursive automorphisms of constructive Boolean algebras, Algebra and Logic, vol. 22 (1983), pp. 95-112, (English translation).Google Scholar
[263] A. S., Morozov, Computable groups of automorphisms of models, Algebra and Logic, vol. 251 (1986), pp. 261-266, (English translation).Google Scholar
[264] A. S., Morozov, Permutations and implicit definability, Algebra and Logic, vol. 27 (1988), pp. 12-24, (English translation).Google Scholar
[265] A. S., Morozov, On theories of classes of groups of recursive permutations, Trudy Instituta Matematiki, vol. 12 (1989), pp. 91-104, (Russian). (English translation in Siberian Advances in Mathematics, vol. 1 (1991), pp. 138–153.).Google Scholar
[266] A. S., Morozov, Rigid constructive modules, Algebra and Logic, vol. 28 (1989), pp. 379-387, (English translation).Google Scholar
[267] A. S., Morozov, Functional trees and automorphisms of models, Algebra and Logic, vol. 32 (1993), pp. 28-38, (English translation).Google Scholar
[268] A. S., Morozov, Turing reducibility as algebraic embeddability, Siberian Mathematical Journal, vol. 38 (1997), pp. 312-313, (English translation).Google Scholar
[269] A. S., Morozov, Groups of computable automorphisms, Handbook of recursive mathematics, volume 1 (Yu. L., Ershov, S. S., Goncharov, A., Nerode, and J. B., Remmel, editors), Studies in Logic and the Foundations of Mathematics 139, North-Holland, Amsterdam, 1998, pp. 311-345.Google Scholar
[270] A. S., Morozov, Once again on the Higman question, Algebra and Logic, vol. 39 (2000), pp. 78-83, (English translation).Google Scholar
[271] A. S., Morozov, On the relation of Σ-reducibility between admissible sets, Siberian Mathematical Journal, vol. 45 (2004), pp. 634-652, (English translation).Google Scholar
[272] A. S., Morozov and A. N., Buzykaeva, On a hierarchy of groups of computable automorphisms, Siberian Mathematical Journal, vol. 43 (2002), pp. 124-127, (English translation).Google Scholar
[273] A. S., Morozov and J. K., Truss, On computable automorphisms of the rational numbers, The Journal of Symbolic Logic, vol. 66 (2001), pp. 1458-1470.Google Scholar
[274] A. S., Morozov and J. K., Truss, On the categoricity of the group of all computable automorphisms of the rational numbers, Algebra and Logic, vol. 46(2007), pp. 354-361, (English translation).Google Scholar
[275] M., Moses, Relations intrinsically recursive in linear orders, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 32 (1986), pp. 467-472.Google Scholar
[276] A., Mostowski, A formula with no recursively enumerable model, Fundamenta Mathematicae, vol. 42 (1955), pp. 125-140.Google Scholar
[277] A., Nies, A new spectrum of recursive models, Notre Dame Journal of Formal Logic, vol. 40 (1999), pp. 307-314.Google Scholar
[278] A., Nies, Computability and randomness, Oxford University Press, 2009.
[279] P. S., Novikov, On the algorithmic unsolvability of the word problem in group theory, Proceedings of the Steklov Institute of Mathematics, vol. 44 (1955), pp. 1-143, (Russian).Google Scholar
[280] A. T., Nurtazin, Strong and weak constructivizations and computable families, Algebra and Logic, vol. 13 (1974), pp. 177-184, (English translation).Google Scholar
[281] S., Oates, Jump degrees of groups, PhD dissertation, University of Notre Dame, 1989.
[282] E. N., Pavlovskii, An estimate for the algorithmic complexity of classes of computable models, Siberian Mathematical Journal, vol. 49 (2008), pp. 512-523, (English translation).Google Scholar
[283] M. G., Peretyat'kin, Strongly constructive models and enumerations of the Boolean algebra of recursive sets, Algebra and Logic, vol. 10 (1971), pp. 535-557, (Russian); (1973) pp. 332–345, (English translation).Google Scholar
[284] M. G., Peretyat'kin, Criterion for strong constructivizability of a homogeneous model, Algebra and Logic, vol. 17(1978), pp. 290-301, (English translation).Google Scholar
[285] M. G., Peretyat'kin, Turing machine computations in finitely axiomatizable theories, Algebra and Logic, vol. 21 (1982), pp. 272-295, (English translation).Google Scholar
[286] V. G., Puzarenko, On a certain reducibility on admissible sets, Siberian Mathematical Journal, vol. 50 (2009), pp. 330-340, (English translation).Google Scholar
[287] V. G., Puzarenko, Fixed points for the jump operator, Algebra and Logic, vol. 50 (2011), pp. 418-438, (English translation).Google Scholar
[288] M. O., Rabin, Computable algebra, general theory and theory of computable fields, Transactions of the American Mathematical Society, vol. 95 (1960), pp. 341-360.Google Scholar
[289] J. B., Remmel, Combinatorial functors on co-r.e. structures, Annals of Mathematical Logic, vol. 10 (1976), pp. 261-287.Google Scholar
[290] J. B., Remmel, Maximal and cohesive vector spaces, The Journal of Symbolic Logic, vol. 42 (1977), pp. 400-418.Google Scholar
[291] J. B., Remmel, Recursively enumerable Boolean algebras, Annals of Mathematical Logic, vol. 15 (1978), pp. 75-107.Google Scholar
[292] J. B., Remmel, Recursive isomorphism types of recursive Boolean algebras, The Journal of Symbolic Logic, vol. 46 (1981), pp. 572-594.Google Scholar
[293] J. B., Remmel, Recursively categorical linear orderings, Proceedings of the American Mathematical Society, vol. 83 (1981), pp. 387-391.Google Scholar
[294] J. B., Remmel, Recursively rigid Boolean algebras, Annals of Pure Applied Logic, vol. 36 (1987), pp. 39-52.Google Scholar
[295] J.-P., Ressayre, Boolean models and infinitary first order languages, Annals of Mathematical Logic, vol. 6 (1973), pp. 41-92.Google Scholar
[296] L. J., Richter, Degrees of unsolvability of models, PhD dissertation, University of Illinois at Urbana-Champaign, 1977.
[297] L. J., Richter, Degrees of structures, The Journal of Symbolic Logic, vol. 46 (1981), pp. 723-731.Google Scholar
[298] H., Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967, 2nd edition: MIT Press, Cambridge, MA, 1987.
[299] J., Rosenstein, Linear orderings, Academic Press, New York, 1982.
[300] S., Rubin, Automata presenting structures: a survey of the finite string case, The Bulletin of Symbolic Logic, vol. 14 (2008), pp. 169-209.Google Scholar
[301] G. E., Sacks, Higher recursion theory, Springer, Berlin, 1990.
[302] S., Schwarz, Recursive automorphisms of recursive linear orderings, Annals of Pure and Applied Logic, vol. 26 (1984), pp. 69-73.Google Scholar
[303] Z., Sela, Diophantine geometry over groups I: Makanin–Razborov diagrams, Publications Mathématiques. Institute de Hautes Études Scientifiques, vol. 93 (2001), pp. 31-105.Google Scholar
[304] Z., Sela, Diophantine geometry over groups II: Completions, closures, and formal solutions, Israel Journal of Mathematics, vol. 134 (2003), pp. 173-254.Google Scholar
[305] Z., Sela, Diophantine geometry over groups IV: An iterative procedure for validation of a sentence, Israel Journal of Mathematics, vol. 143 (2004), pp. 1-130.Google Scholar
[306] Z., Sela, Diophantine geometry over groups III: Rigid and solid solutions, Israel Journal of Mathematics, vol. 147 (2005), pp. 1-73.Google Scholar
[307] Z., Sela, Diophantine geometry over groups V1: Quantifier elimination I, Israel Journal of Mathematics, vol. 150 (2005), pp. 1-197.Google Scholar
[308] Z., Sela, Diophantine geometry over groups V2: Quantifier elimination II, Geometric and Functional Analysis, vol. 16 (2006), pp. 537-706.Google Scholar
[309] Z., Sela, Diophantine geometry over groups VI: The elementary theory of a free group, Geometric and Functional Analysis, vol. 16 (2006), pp. 707-730.Google Scholar
[310] V. L., Selivanov, Enumerations of families of general recursive functions, Algebm and Logic, vol. 15 (1976), pp. 128-141, (English translation).Google Scholar
[311] A., Selman, Arithmetical deducibilities I, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 17 (1971), pp. 335-370.Google Scholar
[312] I. P., Shestakov and U. U., Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables, Journal of the American Mathematical Society, vol. 17 (2004), pp. 197-227.Google Scholar
[313] R. A., Shore, Controlling the dependence degree of a recursively enumerable vector space, The Journal of Symbolic Logic, vol. 43 (1978), pp. 13-22.Google Scholar
[314] A. S., Sikora, Topology on the spaces of orderings of groups, Bulletin of the London Mathematical Society, vol. 36 (2004), pp. 519-526.Google Scholar
[315] T., Slaman, Relative to any nonrecursive set, Proceedings of the American Mathematical Society, vol. 126 (1998), pp. 2117-2122.Google Scholar
[316] R. L., Smith, Two theorems on autostability in p-groups, Logic Year 1979–80, University of Connecticut, Storrs, Lecture Notes in Mathematics 859, Springer, Berlin, 1981, pp. 302-311.
[317] R. I., Soare, Recursively enumerable sets and degrees, Springer, Berlin, 1987.
[318] D. R., Solomon, Reverse mathematics and ordered groups, PhD dissertation, Cornell University, 1998.
[319] R., Solomon, classes and orderable groups, Annals of Pure and Applied Logic, vol. 115 (2002), pp. 279-302.Google Scholar
[320] I. N., Soskov, Intrinsically hyperarithmetical sets, Mathematical Logic Quarterly, vol. 42 (1996), pp. 469-480.Google Scholar
[321] I. N., Soskov, Intrinsically relations, Mathematical Logic Quarterly, vol. 42 (1996), pp. 109-126.Google Scholar
[322] I. N., Soskov, Degree spectra and co-spectra of structures, Annuaire de l'Université de Sofia “St. Kliment Ohridski,” Faculté de Mathématiques et Informatique, vol. 96 (2004), pp. 45-68.Google Scholar
[323] A. A., Soskova and I. N., Soskov, A jump inversion theorem for the degree spectra, Journal of Logic and Computation, vol. 19 (2009), pp. 199-215.Google Scholar
[324] A. I., Stukaohev, Degrees of presentability of structures. I, Algebm and Logic, vol. 46 (2007), pp. 419-432, (English translation).Google Scholar
[325] A. I., Stukaohev, Degrees of presentability of structures. II, Algebra and Logic, vol. 47 (2008), pp. 65-74, (English translation).Google Scholar
[326] A. I., Stukaohev, A jump inversion theorem for the semilattices of Σ-degrees, Sibirskie Élektronnye Matematicheskie Izvestiya, vol. 6(2009), pp. 182-190, (Russian). (English translationin Siberian Advances in Mathematics, vol. 20 (2010), pp. 68–74.).Google Scholar
[327] S. V., Sudoplatov, Complete theories with finitely many countable models. I, Algebra and Logic, vol. 43 (3004), pp. 62-69, (English translation).Google Scholar
[328] J. J., THurber, Every low2 Boolean algebra has a recursive copy, Proceedings of the American Mathematical Society, vol. 123 (1995), pp. 3859-3866.Google Scholar
[329] B. L., van der Waerden, Eine Bemerkung über die Unzerlegbarkeit von Polynomen, Mathematische Annalen, vol. 102 (1930), pp. 738-739.Google Scholar
[330] R. L., Vaught, Sentences true in all constructive models, The Journal of Symbolic Logic, vol. 25 (1960), pp. 39-58.Google Scholar
[331] R. L., Vaught, Denumerable models of complete theories, Proceedings of Symposium on Foundations of Mathematics: Infinitistic Methods, Pergamon Press, London, 1961, pp. 301-321.
[332] S., WEhner, Enumerations, countable structures and Turing degrees, Proceedings of the American Mathematical Society, vol. 126 (1998), pp. 2131-2139.Google Scholar
[333] W., White, Characterization for computable structures, PhD dissertation, Cornell University, 2000.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×