Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T21:14:38.351Z Has data issue: false hasContentIssue false

3 - Nonpremixed turbulent combustion

Published online by Cambridge University Press:  06 January 2010

Get access

Summary

Introduction

In many combustion applications fuel and oxidizer enter separately into the combustion chamber where they mix and burn during continuous interdiffusion. This process is called nonpremixed combustion.

A typical example is combustion in furnaces, which are operated under nonpremixed conditions mainly for safety reasons. Fuel is supplied, for instance, by jets of gaseous fuel, which entrain enough air from the surroundings so that all the fuel can be burned within a certain distance from the nozzle. That distance is called the flame length. Other fuels used in furnaces are coal dust injected with air as a carrier gas, or liquid fuel that is injected as a spray. Since mixing and combustion in jets and sprays occur simultaneously, the formation of large volumes of unburnt flammable mixture can be avoided. In a practical application this requires a control system to make sure that each of the flames in a furnace is burning as long as fuel is supplied.

Other applications of nonpremixed combustion include diesel engines and gas turbines. In diesel engines the air is compressed by the piston before a liquid fuel spray is injected into the combustion chamber. The hot compressed air is entrained into the spray, leading to liquid fuel breakup, evaporation, and finally to auto-ignition. During the combustion phase, at first the premixed fraction of the gas is rapidly consumed, but then combustion takes place under nonpremixed conditions. During this phase most of the formation of NOx and soot is taking place, but it also provides the necessary conditions for soot oxidation.

In aircraft gas turbine engines nonpremixed combustion occurs in the swirlstabilized combustion zone downstream of the spray injector.

Type
Chapter
Information
Turbulent Combustion , pp. 170 - 236
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×