Book contents
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- 20 Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia
- 21 Structure and dynamics of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica
- 22 Quantitative measures of immersion in cloud and the biogeography of cloud forests
- 23 Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests
- 24 Using stable isotopes to identify orographic precipitation events at Monteverde, Costa Rica
- 25 Using “biosensors” to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves, and branches in a sheltered Colombian cloud forest
- 26 Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage, and evaporation
- 27 Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance
- 28 Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest
- 29 Fog interception in a Puerto Rican elfin cloud forest: a wet-canopy water budget approach
- 30 Fog gage performance under conditions of fog and wind-driven rain
- 31 The wet-canopy water balance of a Costa Rican cloud forest during the dry season
- 32 Measured and modeled rainfall interception in a lower montane forest, Ecuador
- 33 Measuring cloud water interception in the Tambito forests of southern Colombia
- 34 Relationships between rainfall, fog, and throughfall at a hill evergreen forest site in northern Thailand
- 35 History of fog and cloud water interception research in Hawai'i
- 36 Interpreting canopy water balance and fog screen observations: separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai'i
- 37 Historical background of fog water collection studies in the Canary Islands
- 38 Effects of fog on climatic conditions at a sub-tropical montane cloud forest site in northern Tenerife (Canary Islands, Spain)
- Part IV Nutrient dynamics in tropical montane cloud forests
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
25 - Using “biosensors” to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves, and branches in a sheltered Colombian cloud forest
from Part III - Hydrometeorology of tropical montane cloud forest
Published online by Cambridge University Press: 03 May 2011
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- 20 Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia
- 21 Structure and dynamics of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica
- 22 Quantitative measures of immersion in cloud and the biogeography of cloud forests
- 23 Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests
- 24 Using stable isotopes to identify orographic precipitation events at Monteverde, Costa Rica
- 25 Using “biosensors” to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves, and branches in a sheltered Colombian cloud forest
- 26 Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage, and evaporation
- 27 Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance
- 28 Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest
- 29 Fog interception in a Puerto Rican elfin cloud forest: a wet-canopy water budget approach
- 30 Fog gage performance under conditions of fog and wind-driven rain
- 31 The wet-canopy water balance of a Costa Rican cloud forest during the dry season
- 32 Measured and modeled rainfall interception in a lower montane forest, Ecuador
- 33 Measuring cloud water interception in the Tambito forests of southern Colombia
- 34 Relationships between rainfall, fog, and throughfall at a hill evergreen forest site in northern Thailand
- 35 History of fog and cloud water interception research in Hawai'i
- 36 Interpreting canopy water balance and fog screen observations: separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai'i
- 37 Historical background of fog water collection studies in the Canary Islands
- 38 Effects of fog on climatic conditions at a sub-tropical montane cloud forest site in northern Tenerife (Canary Islands, Spain)
- Part IV Nutrient dynamics in tropical montane cloud forests
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
Summary
ABSTRACT
Cloud water interception (CWI) by vegetation is a characteristic hydrological process in tropical montane cloud forests (TMCF). Its magnitude is difficult to measure directly and so artificial collectors tend to be used for comparisons between sites. However, artificial collectors say little about the actual inputs of cloud water (fog) to the vegetation. Scaling inputs via CWI from point measurements up to the watershed scale remains an important challenge. This chapter uses a combination of novel field monitoring techniques and epiphyte biomass measurements to quantify the magnitude and better understand the mechanisms of CWI in a sheltered, continental TMCF in south-western Colombia. Relationships were sought between amounts of fog water captured by complex vegetation structures including branches, leaves, and bryophytic epiphytes, for use in scaling up point measurements of fog water to the watershed scale using a simple GIS-based extrapolation.
INTRODUCTION
Tropical montane cloud forests (TMCF) often occur in hydrologically important headwater areas, and there is a growing recognition of their significance as reliable suppliers of high-quality water to downstream areas, particularly during prolonged rainless periods or where those areas are (seasonally) dry (Zadroga, 1981; Brown et al., 1996; Mulligan and Burke, 2005a,b). Nevertheless, TMCF are, hydrologically speaking, amongst the least known of tropical forest ecosystems and the precise hydrological role of the ubiquitous ground-level cloud (fog) has remained elusive (Bruijnzeel and Proctor, 1995; Bruijnzeel, 2005; cf. Part III, this volume).
- Type
- Chapter
- Information
- Tropical Montane Cloud ForestsScience for Conservation and Management, pp. 249 - 260Publisher: Cambridge University PressPrint publication year: 2011
References
- 4
- Cited by