Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T12:39:34.178Z Has data issue: false hasContentIssue false

5 - Ecology and ecophysiology of epiphytes in tropical montane cloud forests

from Part I - General perspectives

Published online by Cambridge University Press:  03 May 2011

P. Hietz
Affiliation:
University of Natural Resources and Applied Life Sciences (BOKU), Austria
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Because several reviews of epiphyte ecology and physiology are already available, this chapter focuses on what is particular about epiphyte ecology in cloud forests as opposed to lowland rain forests. The combination of high atmospheric humidity, frequent precipitation and low temperature results in much lower drought stress, which enables a denser colonization of exposed twigs with no “canopy soil” (humus), and the survival of small species, small individuals with little internal water storage, and species with no adaptations to drought. Because juveniles have the highest mortality with drought as the most important factor, water availability in most cases explains why cloud forest epiphytes do not occur in lowland forests. Species not occurring in cloud forests are limited by low temperatures (particularly in sub-tropical and upper montane areas) or excessive humidity (particularly bromeliads). The lower temperatures in cloud forests reduce night-time respiration, resulting in higher growth of non-vascular epiphytes. This, together with lower decomposition rates, leads to the formation of thick layers of canopy soil, providing a rooting substrate for vascular epiphytes. The very high living and dead epiphytic biomass plays an important role in the nutrient and hydrological cycles of tropical montane cloud forests.

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 67 - 76
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asbury, C. E., McDowell, W. H., Trinidad-Pizarro, R., and Berrios, R. (1994). Solute deposition from cloud water to the canopy of a Puerto Rican montane forest. Atmospheric Environment 28: 1773–1780.CrossRefGoogle Scholar
Ataroff, M. (1998). Importance of cloud water in Venezuelan Andean cloud forest water dynamics. In Proceedings of the 1st International Conference on Fog and Fog Collection, eds. Schemenauer, R. S. and Bridgman, H. A., pp. 25–38. Ottowa, Canada: IDRC.Google Scholar
Ball, E., Hann, J., Kluge, M., et al. (1991). Ecophysiological comportment of the tropical CAM-tree Clusia in the field. I. Growth of Clusia rosea Jacq. on St John, US Virgin Islands, Lesser Antilles. New Phytologist 117: 473–481.CrossRefGoogle Scholar
Barthlott, W., Schmit-Neuerburg, V., Nieder, J., and Engwald, S. (2001). Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology 152: 145–156.CrossRefGoogle Scholar
Benner, J. W., and Vitousek, P. M. (2007). Development of a diverse epiphyte community in response to phosphorus fertilization. Ecology Letters 10: 628–636.CrossRefGoogle ScholarPubMed
Benner, J. W., Conroy, S., Lunch, C. K., Toyoda, N., and Vitousek, P. M. (2007). Phosphorus fertilization increases the abundance and nitrogenase activity of the cyanolichen Pseudocyphellaria crocata in Hawaiian montane forests. Biotropica 39: 400–405.CrossRefGoogle Scholar
Benzing, D. H. (1990). Vascular Epiphytes: General Biology and Related Biota. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Benzing, D. H., Seemann, J., and Renfrow, A. (1978). The foliar epidermis in Tillandsioideae (Bromeliaceae) and its role in habitat selection. American Journal of Botany 65: 359–365.CrossRefGoogle Scholar
Bogh, A. (1992). Composition and distribution of the vascular epiphyte flora of an Ecuadorian montane rain forest. Selbyana 13: 25–34.Google Scholar
Bohlman, S. A., Matelson, T. J., and Nadkarni, N. M. (1995). Moisture and temperature patterns of canopy humus and forest floor soil of a montane cloud forest, Costa Rica. Biotropica 27: 13–19.CrossRefGoogle Scholar
Brass, L. J. (1956). Results of the Archbold Expeditions. No. 79. Summary of the Fourth Archbold Expedition to New Guinea (1953). Bulletin of the American Museum of Natural History 118: 1–70.Google Scholar
Breazeale, E. L., McGeorge, W. T., and Breazeale, J. F. (1950). Moisture absorption by plants from an atmosphere of high humidity. Plant Physiology 25: 413–419.CrossRefGoogle Scholar
Bruijnzeel, L. A. (2001). Hydrology of tropical montane cloud forests: a reassessment. Land Use and Water Resources Research 1: 1–18.Google Scholar
Bruijnzeel, L. A. (2005). Tropical montane cloud forests: a unique hydrological case. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 462–483. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bruijnzeel, L. A., and Proctor, J. (1995). Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know? In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 38–78. New York:Springer-Verlag.CrossRefGoogle Scholar
Bruijnzeel, L. A., and Veneklaas, E. J. (1998). Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79: 3–9.CrossRefGoogle Scholar
Burgess, S. S. O., and Dawson, T. E. (2004). The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell and Environment 27: 1023–1034.CrossRefGoogle Scholar
Cardelús, C. L., Colwell, R. K., and Watkins, J. E. (2006). Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. Journal of Ecology 94: 144–156.CrossRefGoogle Scholar
Castro-Hernández, J. C., Wolf, J. H. D., Garcia-Franco, J. G., and Gonzalez-Espinosa, M. (1999). The influence of humidity, nutrients and light on the establishment of the epiphytic bromeliad Tillandsia guatemalensis in the highlands of Chiapas, Mexico. Revista de Biologia Tropical 47: 763–773.Google Scholar
Cavelier, J., Jaramillo, M., Solis, D., and Leon, D. (1997). Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. Journal of Hydrology 193: 83–96.CrossRefGoogle Scholar
Chang, S. C., Lai, I. L., and Wu, J. T. (2002). Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research 64: 159–167.CrossRefGoogle Scholar
Clark, K. L., and Nadkarni, N. M. (2000). Epiphytic histosols. In Monteverde: Ecology and Conservation of a Tropical Cloud Forest, eds. Nadkarni, N. M. and Wheelwright, N. T., pp. 34–35. New York: Oxford University Press.Google Scholar
Clark, K. L., Nadkarni, N. M., Schaeffer, D., and Gholz, H. L. (1998). Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. Journal of Tropical Ecology 14: 27–45.CrossRefGoogle Scholar
Clarkson, D. T., Kuiper, P. J. C., and Lüttge, U. (1986). Mineral nutrition: sources of nutrients for land plants from outside the pedosphere. Progress in Botany 48, 80–96.CrossRefGoogle Scholar
Coxon, D. S., and Nadkarni, N. M. (1995). Ecological roles of epiphytes in nutrient cycles of forest ecosystems. In Forest Canopies, eds. Lowman, M. and Nadkarni, N. M., pp. 495–543. San Diego, CA: Academic Press.Google Scholar
Earnshaw, M. J., Winter, K., Ziegler, H., et al. (1987). Altitudinal changes in the incidence of crassulacean acid metabolism in vascular epiphytes and related life forms in Papua New Guinea. Oecologia 73: 566–572.CrossRefGoogle ScholarPubMed
Fleischbein, K., Wilcke, W., Goller, R., et al. (2006). Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties. Hydrological Processes 19: 1355–1371.CrossRefGoogle Scholar
Flores-Palacios, A., and García-Franco, J. G. (2003). Effect of isolation on the structure and nutrient budget of oak epiphyte communities. Plant Ecology 173: 259–269.CrossRefGoogle Scholar
Forman, R. T. T. (1975). Canopy lichens with blue–green algae: a nitrogen source in a Colombian rain forest. Ecology 56: 1176–1184.CrossRefGoogle Scholar
Frahm, J. P., and Gradstein, S. R. (1991). An altitudinal zonation of tropical rain forests using bryophytes. Journal of Biogeography 18: 669–676.CrossRefGoogle Scholar
Freiberg, E. (1998). Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 117: 9–18.CrossRefGoogle Scholar
Gentry, A. H. (1992). Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63: 19–28.CrossRefGoogle Scholar
Gentry, A. H., and Dodson, C. H. (1987a). Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74: 205–233.CrossRefGoogle Scholar
Gentry, A. H., and Dodson, C. H. (1987b). Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19: 149–156.CrossRefGoogle Scholar
Grubb, P. J., and Whitmore, T. C. (1966). A comparison of montane and lowland rain forest in Ecuador. II. The climate and its effects on the distribution and physiognomy of the forests. Journal of Ecology 54: 303–333.CrossRefGoogle Scholar
Grubb, P. J., Lloyd, J. R., Pennington, T. D., and Whitmore, T. C. (1963). A comparison of montane and lowland rain forest in Ecuador. I. The forest structure, physiognomy, and floristics. Journal of Ecology 51: 567–601.CrossRefGoogle Scholar
Hafkenscheid, R. L. L. J. (2000). Hydrology and biogeochemistry of tropical montane rain forests of contrasting stature in the Blue Mountains, Jamaica. Ph.D. thesis. VU University Amsterdam, Amsterdam, The Netherlands. Also available at http://dare.ubvu.vu.nl/bitstream/1871/12734/1/tekst.pdf.Google Scholar
Helbsing, S., Riederer, M., and Zotz, G. (2000). Cuticles of vascular epiphytes: efficient barriers for water loss after stomatal closure?Annals of Botany 86: 765–769.CrossRefGoogle Scholar
Hemp, A. (2001). Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro. II. Habitat selection. Plant Biology 3: 493–523.CrossRefGoogle Scholar
Hietz, P. (1997). Population dynamics of epiphytes in a Mexican humid montane forest. Journal of Ecology 85: 767–775.CrossRefGoogle Scholar
Hietz, P., and Briones, O. (1998). Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114: 305–316.CrossRefGoogle Scholar
Hietz, P., and Briones, O. (2001). Photosynthesis, chlorophyll fluorescence and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Plant Biology 3: 279–287.CrossRefGoogle Scholar
Hietz, P., and Hietz-Seifert, U. (1995). Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. Journal of Vegetation Science 6: 487–498.CrossRefGoogle Scholar
Hietz, P., and Wanek, W. (2001). Use of stable isotopes in canopy research. In Tropical Ecosystems: Structure, Diversity and Human welfare, eds. Ganeshaia, K. N., Shaanker, U. Uma, and Bawa, K. S., pp. 412–415. New Delhi: Oxford–IBH.Google Scholar
Hietz, P., and Wanek, W. (2003). Size-dependent variation of carbon and nitrogen isotope abundances in epiphytic bromeliads. Plant Biology 5: 137–142.CrossRefGoogle Scholar
Hietz, P., and Wolf, J. H. D. (1996). Vascular epiphytes. In How to Sample the Epiphytic Diversity of Tropical Rain Forests, eds. Gradstein, S. R., Hietz, P., Lücking, R., et al., pp. 60–63. New York: Ecotropica.Google Scholar
Hietz, P., Wanek, W., and Popp, M. (1999). Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect. Plant, Cell and Environment 22: 1435–1443.CrossRefGoogle Scholar
Hietz, P., Wanek, W., Wania, R., and Nadkarni, N. M. (2002). Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131: 350–355.CrossRefGoogle Scholar
Hietz, P., Buchberger, G., and Winkler, M. (2006). Effect of forest disturbance on abundance and distribution of epiphytic bromeliads and orchids. Ecotropica 12: 103–112.Google Scholar
Hietz-Seifert, U., Hietz, P., and Guevara, S. (1996). Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz, Mexico. Biological Conservation 75: 103–111.CrossRefGoogle Scholar
Hofstede, R. G. M., Wolf, J. H. D., and Benzing, D. H. (1993). Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 14: 37–45.Google Scholar
Hölscher, D., Köhler, L., Dijk, A. I. J. M., and Bruijnzeel, L. A. (2004). The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of Hydrology 292: 308–322.CrossRefGoogle Scholar
Holwerda, F., Bruijnzeel, L. A., Muñoz, L. E., Equihua, M., and Asbjornsen, H. (2010). Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico. Journal of Hydrology 384: 84–96.
Ibarra-Manríquez, G., and Sinaca, C. S. (1987). Listados florísticos de México VII. Los Tuxtlas, Veracruz: Estación de Biología Tropical, and Mexico City: Instituto de Biología, UNAM.Google Scholar
Ibisch, P. L. (1996). Neotropische Epiphytendiversität – das Beispiel Bolivien. Archiv naturwissenschaflicher Dissertationen 1: 1–357.Google Scholar
Ibisch, P. L., Boegner, A., Nieder, J., and Barthlott, W. (1996). How diverse are neotropical epiphytes? An analysis based on the ‘Catalogue of the flowering plants and gymnosperms of Peru’. Ecotropica 2: 13–28.Google Scholar
Ingram, S. W., Ferrell-Ingram, K., and Nadkarni, N. M. (1996). Floristic composition of vascular epiphytes in a neotropical cloud forest, Monteverde, Costa Rica. Selbyana 17: 88–103.Google Scholar
Jordan, J. F. (1985). Nutrient Cycling in Tropical Forest Ecosystems. Chichester, UK: John Wiley.Google Scholar
Kerstiens, G. (1996). Cuticular water permeability and its physiological significance. Journal of Experimental Botany 305: 1813–1832.CrossRefGoogle Scholar
Kikuzawa, K., Suzuki, S., Umeki, K., and Kitayama, K. (202). Herbivorous impacts on tropical mountain forests implied by fecal pellet production. Sabah Parks Nature Journal 5: 131–142.
Klinge, H. (1962). Über Epiphytenhumus aus El Salvador (Zentralamerika). I. Die Standorte und ihre gesamtökologische Situation. Pedobiologia 2: 1–8.Google Scholar
Köhler, L., Tobón, C., Frumau, K. F. A., and Bruijnzeel, L. A. (2007). Biomass and water storage of epiphytes in old-growth and secondary montane rain forest stands in Costa Rica. Plant Ecology 193: 171–184.CrossRefGoogle Scholar
Krömer, T., Kessler, M., Gradstein, S. R., and Acebey, A. (2005). Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography 32: 1799–1809.CrossRefGoogle Scholar
Kürschner, H., and Parolly, G. (1999). Pantropical epiphytic rain forest bryophyte communities: coeno-syntaxonomy and floristic-historical implications. Phytocoenologia 29: 1–52.CrossRefGoogle Scholar
Laube, S., and Zotz, G. (2003). Which abiotic factors limit vegetative growth in a vascular epiphyte?Functional Ecology 17: 598–604.CrossRefGoogle Scholar
Lawton, R. O., Nair, U. S., Pielke, R. A., and Welch, R. M. (2001). Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294: 584–587.Google ScholarPubMed
Long, A., and Heath, M. (1991). Flora of the El Triunfo biosphere reserve, Chiapas, Mexico: a preliminary floristic inventory and the plant communities of Polygon I. Annales del Instituto Biologico UNAM 62: 133–172.Google Scholar
Lüttge, U. (1989). Vascular Plants as Epiphytes: Evolution and Ecophysiology. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Müller, L., Starnecker, G., and Winkler, S. (1981). Zur Ökologie epiphytischer Farne in Südbrasilien. I. Saugschuppen. Flora 171: 55–63.CrossRefGoogle Scholar
Nadkarni, N. M., and Matelson, T. J. (1991) Fine litter dynamics within the tree canopy of a tropical cloud forest. Ecology 72: 2071–2082.CrossRefGoogle Scholar
Nadkarni, N. M., Schaefer, D., Matelson, T. J., and Solano, R. (2004). Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. Forest Ecology and Management 198: 223–236.CrossRefGoogle Scholar
Ngai, J. T., and Srivastava, D. S. (2006). Predators accelerate nutrient cycling in a bromeliad ecosystem. Science 314: 963.CrossRefGoogle Scholar
Nieder, J., Ibisch, P. L., and Barthlott, W. (1997). Biodiversidad de epífitas: una cuestión de escala. Revista del Jardín Botánico Nacional 17–18: 59–62.Google Scholar
Nieder, J., Engwald, S., and Barthlott, W. (2002). Patterns of neotropical epiphyte diversity. Selbyana 20: 66–75.Google Scholar
Pócs, T. (1980). The epiphytic biomass and its effect on the water balance of two rain forest types in the Uluguru Mountains (Tanzania, East Africa). Acta Botanica Academiae Scientiarum Hungaricae 26: 143–167.Google Scholar
Ponette-González, A. G., Weathers, K. C., and Curran, L. M. (2009). Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Global Change Biology, doi: 10.1111/j.1365–2486.2009.01985.xGoogle Scholar
Pounds, J. A., Fogden, M. P. L., and Campbell, J. H. (1999). Biological response to climate change on a tropical mountain. Nature 398: 611–615.CrossRefGoogle Scholar
Rabatin, S. C., Stinner, B. R., and Paoletti, M. G. (1993). Vesicular–arbuscular mycorrhizal fungi, particularly Glomus tenue, in Venezuelan bromeliad epiphytes. Mycorrhiza 4: 17–20.CrossRefGoogle Scholar
Raciborski, M. (1898). Biologische Mitteilungen aus Java. Flora 85: 325.Google Scholar
Ray, D. K., Nair, U. S., Lawton, R. O., Welch, R. M., and Pielke, R. A. (2006). Impact of land use on Costa Rican tropical montane cloud forests: sensitivity of orographic cloud formation to deforestation in the plains. Journal of Geophysical Research 111: D02108.CrossRefGoogle Scholar
Rhoades, F. M. (1995). Nonvascular epiphytes in forest canopies: worldwide distribution, abundance, and ecological roles. In Forest Canopies, eds. Lowman, M. and Nadkarni, N. M., pp. 353–408. San Diego, CA: Academic Press.Google Scholar
Richards, P. W. (1952). The Tropical Rain Forest. Cambridge, UK: Cambridge University Press.Google Scholar
Schellekens, J., Bruijnzeel, L. A., Scatena, F. N., Bink, N. J., and Holwerda, F. (2000). Evaporation from a tropical rain forest, Luquillo Experimental Forest, eastern Puerto Rico. Water Resources Research 36: 2183–2196.CrossRefGoogle Scholar
Soethe, N., Wilcke, W., Homeier, J., Lehmann, J., and Engels, C. (2008). Plant growth along the altitudinal gradient: role of plant nutritional status, fine root activity, and soil properties. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 259–266. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Stadtmüller, T. (1987). Cloud Forests in the Humid Tropics: A Bibliographic Review. Tokyo: United Nations University, and Turrialba, Costa Rica: CATIE.Google Scholar
Still, C. J., Foster, P. N., and Schneider, S. H. (1999). Simulating the effects of climate change on tropical montane cloud forests. Nature 389: 608–610.CrossRefGoogle Scholar
Tanabe, S., Toda, M. J., Lakim, M. B., and Mohamed, M. B. (2002). Abundance, biomass, and composition of insect communities in various forests on Mount Kinabalu. Sabah Paks Nature Journal 5: 219–237.Google Scholar
Tanner, E. V. J., Vitousek, P. M., and Cuevas, E. (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79: 10–22.CrossRefGoogle Scholar
Vance, E. D., and Nadkarni, N. M. (1990). Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biology and Biochemistry 22: 677–684.CrossRefGoogle Scholar
Veneklaas, E. J. (1990). Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forests, Colombia. Journal of Ecology 78: 974–992.CrossRefGoogle Scholar
Veneklaas, E. J., and Ek, R. (1990). Rainfall interception in two tropical montane rain forests, Colombia. Hydrological Processes 4: 311–326.CrossRefGoogle Scholar
Veneklaas, E. J., Zagt, R. J., Leerdam, A., et al. (1990). Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89: 183–192.CrossRefGoogle Scholar
Wolf, J. H. D. (1993a). Epiphyte communities of tropical montane rain forests in the northern Andes. II. Upper montane communities. Phytocoenologia 22: 53–103.CrossRefGoogle Scholar
Wolf, J. H. D. (1993b). Ecology of epiphytes and epiphyte communities in montane rain forests, Colombia. Ph.D. dissertation, Amsterdam: University of Amsterdam.
Wolf, J. H. D. (1993c). Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of the Missouri Botanical Garden 80: 928–960.CrossRefGoogle Scholar
Wolf, J. H. D., and Flamenco-Sandoval, A. (2003). Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. Journal of Biogeography 30: 1689–1707.CrossRefGoogle Scholar
Yates, D. J., and Hutley, L. B. (1995). Foliar uptake of water by wet leaves of Sloanea woollsii, an Australian subtropical rainforest tree. Australian Journal of Botany 43: 157–167.CrossRefGoogle Scholar
Zotz, G. (1999). Altitudinal changes in diversity and abundance of non-vascular epiphytes in the tropics: an ecophysiological explanation. Selbyana 20: 256–260.Google Scholar
Zotz, G. (2004). The resorption of phosphorus is greater than that of nitrogen in senescing leaves of vascular epiphytes from lowland Panama. Journal of Tropical Ecology 20: 693–696.CrossRefGoogle Scholar
Zotz, G. (2005). Vascular epiphyte in the temperate zones: a review. Plant Ecology 176: 173–183.CrossRefGoogle Scholar
Zotz, G., and Andrade, J. L. (2001). Ecología de epífitas y hemiepífitas. In Ecología de bosques lluviosos Neotropicales, eds. Guariguata, M. and Kattan, G., pp. 271–296. San José, Costa Rica: IICA.Google Scholar
Zotz, G., and Bader, M. Y. (2009). Epiphytic plants in a changing world: global change effects on vascular and non-vascular epiphytes. Progress in Botany 70: 147–170.Google Scholar
Zotz, G., and Büche, M. (2000). The epiphytic filmy ferns of a tropical lowland forest: species occurrence and habitat preferences. Ecotropica 6: 203–206.Google Scholar
Zotz, G., and Hietz, P. (2001). The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany 52: 2067–2078.CrossRefGoogle Scholar
Zotz, G., and Richter, A. (2006). Changes in carbohydrate and nutrient contents throughout a reproductive cycle indicate that phosphorus is a limiting nutrient in the epiphytic bromeliad, Werauhia sanguinolenta. Annals of Botany 97: 745–754.CrossRefGoogle ScholarPubMed
Zotz, G., Hietz, P., and Schmidt, G. (2001). Small plants, large plants: the importance of plant size for the physiological ecology of vascular epiphytes. Journal of Experimental Botany 52: 2051–2056.CrossRefGoogle ScholarPubMed
Zotz, G., Reichling, P., and Valladares, F. (2003). A simulation study on the importance of size-related changes in leaf morphology and physiology for carbon gain in an epiphytic bromeliad. Annals of Botany 90: 1–7.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×