Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T04:49:44.935Z Has data issue: false hasContentIssue false

7 - Bottom-up and top-down interactions in coastal interface systems

from Part II - Ecosystems

Published online by Cambridge University Press:  05 May 2015

Jan P. Bakker
Affiliation:
University of Groningen
Karina J. Nielsen
Affiliation:
Sonoma State University
Juan Alberti
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC)
Francis Chan
Affiliation:
Oregon State University
Sally D. Hacker
Affiliation:
Oregon State University
Oscar O. Iribarne
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC)
Dries P. J. Kuijper
Affiliation:
Polish Academy of Sciences
Bruce A. Menge
Affiliation:
Oregon State University
Maarten Schrama
Affiliation:
University of Manchester
Brian R. Silliman
Affiliation:
Duke University
Torrance C. Hanley
Affiliation:
Northeastern University, Boston
Kimberly J. La Pierre
Affiliation:
University of California, Berkeley
Get access

Summary

General introduction of rocky intertidal and salt marsh systems

The land–sea margin encompasses a variety of hard and soft-bottom habitats where organisms are exposed to a dynamic range of aquatic and atmospheric conditions dependent on a rhythm set by the tides. In this chapter, we focus on rocky intertidal and salt marsh ecosystems, which have been extensively studied on many continents. Both rocky shore and salt marsh communities exhibit strong and consistent patterns of intertidal zonation over relatively compressed spatial scales, making them excellent systems for understanding the context-dependency of species interactions. Hard-bottomed rocky intertidal communities are dominated by marine macroalgae and sessile marine invertebrates extending their reach to the furthest edge of the influence of sea spray, while soft-bottomed salt marsh communities are anchored by terrestrial plants with adaptations or tolerance to inundation by salty and brackish waters. Rocky shore communities may be battered by the full force of large ocean waves or gently lapped with seawater on more protected shorelines. In contrast, salt marshes are restricted to quiet waters where sediment accretion by plants is the main mechanism for habitat creation. Both communities may experience very large tidal excursions or only minimal ones, depending on the local dynamics of the tides, with corresponding consequences for the spatial extent of these communities across the shoreline. The steep environmental gradients and distinctive biological zonation patterns that characterize both rocky shore and salt marsh ecosystems (Fig. 7.1) have provided ecologists with accessible and highly tractable ecosystems for investigating the role of bottom-up and top-down factors along environmental gradients.

Bottom-up and top-down interactions in rocky intertidal systems

Introduction to rocky intertidal systems

Rocky intertidal communities have been the subject of intensive study world-wide, especially at temperate latitudes. The typically broad tidal range and relatively moderate atmospheric conditions create a wide zone of intertidal habitat that is generally hospitable to rocky intertidal species, while also readily accessible to investigators for hours at a time during periods of low tide and calm sea state.

Type
Chapter
Information
Trophic Ecology
Bottom-up and Top-down Interactions across Aquatic and Terrestrial Systems
, pp. 157 - 200
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, K. F., Jefferies, R. L. and Alisauskas, R. T. (2005). The dynamics of landscape change and snow geese in mid-continent North America. Global Change Biology, 11, 841–855.CrossRefGoogle Scholar
Adam, P. (2002). Saltmarshes in a time of change. Environmental Conservation, 29, 39–61.CrossRefGoogle Scholar
Alberti, J., Escapa, M., Iribarne, O., Silliman, B. and Bertness, M. (2008). Crab herbivory regulates plant facilitative and competitive processes in Argentinean marshes. Ecology, 89, 155–164.CrossRefGoogle ScholarPubMed
Alberti, J., Escapa, M., Daleo, P., Méndez Casariego, A. and Iribarne, O. (2010a). Crab bioturbation and herbivory reduce pre- and post-germination success of Sarcocornia perennis in bare patches of SW Atlantic salt marshes. Marine Ecology Progress Series, 400, 55–61.CrossRefGoogle Scholar
Alberti, J., Méndez Casariego, A., Daleo, P., et al. (2010b). Abiotic stress mediates top-down and bottom-up control in a Southwestern Atlantic salt marsh. Oecologia, 163, 181–191.CrossRefGoogle Scholar
Alberti, J., Canepuccia, A., Pascual, J., Pérez, C. and Iribarne, O. (2011). Joint control by rodent herbivory and nutrient availability of plant diversity in a salt marsh-salty steppe transition zone. Journal of Vegetation Science, 22, 216–224.CrossRefGoogle Scholar
Altieri, A. H., Bertness, M. D., Coverdale, T. C., Herrmann, N. C. and Angelini, C. (2012). A trophic cascade triggers collapse of a salt marsh ecosystem with intensive recreational fishing. Ecology, 93, 1402–1410.CrossRefGoogle ScholarPubMed
Aquilino, K. M., Bracken, M. E., Faubel, M. N. and Stachowicz, J. J. (2009). Local-scale nutrient regeneration facilitates seaweed growth on wave-exposed rocky shores in an upwelling system. Limnology and Oceanography, 54, 309–317.CrossRefGoogle Scholar
Bakker, J. P., de Leeuw, J., Dijkema, K. S., et al. (1993). Salt marshes along the coast of The Netherlands. Hydrobiologia, 265, 73–95.CrossRefGoogle Scholar
Bakker, J. P., Bunje, J., Dijkema, K. S., et al. (2005a). Salt marshes. In Wadden Sea Quality Status Report 2004. Wadden Sea Ecosystem No 19, ed. Essink, K., Dettmann, C., Farke, H., Lüerssen, G., Marencic, H., and Wiersinga, W.. Wilhelmshaven, Germany: Trilateral Monitoring and Assessment Group, Common Wadden Sea Secretariat, pp. 163–179.Google Scholar
Bakker, J. P., Bouma, T. J. and Van Wijnen, H. J. (2005b). Interactions between microorganisms and intertidal plant communities. In Interactions Between Macro- and Microorganisms in Marine Sediments: Coastal and Estuarine Studies 60, ed. Kristensen, K., Kostka, J. E. and Haese, R. R.. Washington: American Geophysical Union, pp. 179–198.Google Scholar
Bakker, J. P., Kuijper, D. P. J. and Stahl, J. (2009). Community ecology and management of salt marshes. In Community Ecology Processes, Models and Applications, ed. Verhoef, H. A. and Morin, P. J.. Oxford: Oxford University Press, pp. 131–147.Google Scholar
Berlow, E. L. (1997). From canalization to contingency: historical effects in a successional rocky intertidal community. Ecological Monographs, 67, 435–460.CrossRefGoogle Scholar
Bertness, M. D. (1985). Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology, 66, 1042–1055.CrossRefGoogle Scholar
Bertness, M. D., Leonard, G. H., Levine, J. M. and Bruno, J. F. (1999). Climate-driven interactions among rocky intertidal organisms caught between a rock and a hot place. Oecologia, 120, 446–450.Google Scholar
Bertness, M. D., Crain, C. M., Silliman, B. R., et al. (2006). The community structure of western Atlantic Patagonian rocky shores. Ecological Monographs, 76, 439–460.CrossRefGoogle Scholar
Bertness, M. D., Crain, C., Holdredge, C. and Sala, N. (2008). Eutrophication and consumer control of New England salt marsh primary productivity. Conservation Biology, 22, 131–139.CrossRefGoogle ScholarPubMed
Bertness, M. D., Holdredge, C. and Altieri, A. H. (2009). Substrate mediates consumer control of salt marsh cordgrass on Cape Cod, New England. Ecology, 90, 2108–2117.CrossRefGoogle ScholarPubMed
Bertness, M. D., Bruno, J. F., Silliman, B. R. and Stachowicz, J. J. (2014). A short history of marine community ecology. In Marine Community Ecology and Conservation, ed. Bertness, M. D., Bruno, J. F., Silliman, B. R. and Stachowicz, J. J.. Sunderland, MA: Sinauer Associates, pp. 2–8.Google Scholar
Bortolus, A. and Iribarne, O. (1999). Effects of the SW Atlantic burrowing crab Chasmagnathus granulata on a Spartina salt marsh. Marine Ecology Progress Series, 178, 79–88.CrossRefGoogle Scholar
Bos, D., Bakker, J. P., De Vries, Y. and Van Lieshout, S. (2002). Long-term vegetation changes in experimentally grazed and ungrazed back-barrier marshes in the Wadden Sea. Applied Vegetation Science, 5, 45–54.Google Scholar
Bos, D., Van De Koppel, J. and Weissing, F. J. (2004). Dark-bellied Brent geese aggregate to cope with increased levels of primary production. Oikos, 107, 485–496.CrossRefGoogle Scholar
Bos, D., Loonen, M., Stock, M., et al. (2005). Utilisation of Wadden Sea salt marshes by geese in relation to livestock grazing. Journal for Nature Conservation, 15, 1–15.Google Scholar
Bosman, A. L. and Hockey, P. A. R. (1986). Seabird guano as a determinant of rocky intertidal community structure. Marine Ecology Progress Series, 32, 247–257.CrossRefGoogle Scholar
Bosman, A. L., Hockey, P. A. R. and Siegfried, W. R. (1987). The influence of coastal upwelling on the functional structure of rocky intertidal communities. Oecologia, 72, 226–232.CrossRefGoogle ScholarPubMed
Bracken, M. E. and Nielsen, K. J. (2004). Diversity of intertidal macroalgae increases with nitrogen loading by invertebrates. Ecology, 85, 2828–2836.CrossRefGoogle Scholar
Bracken, M. E., Jones, E. and Williams, S. L. (2011). Herbivores, tidal elevation, and species richness simultaneously mediate nitrate uptake by seaweed assemblages. Ecology, 92, 1083–1093.CrossRefGoogle ScholarPubMed
Broitman, B. R. and Kinlan, B. P. (2006). Spatial scales of benthic and pelagic producer biomass in a coastal upwelling ecosystem. Marine Ecology Progress Series, 327, 15–25.CrossRefGoogle Scholar
Broitman, B. R., Navarrete, S. A., Smith, F. and Gaines, S. D. (2001). Geographic variation of southeastern Pacific intertidal communities. Marine Ecology Progress Series, 224, 21–34.CrossRefGoogle Scholar
Broitman, B. R., Blanchette, C. A., Menge, B. A., et al. (2008). Spatial and temporal patterns of invertebrate recruitment along the west coast of the United States. Ecological Monographs, 78, 403–421.CrossRefGoogle Scholar
Bromberg Gedan, K., Crain, C. M. and Bertness, M. D. (2009a). Small-mammal herbivore control of secondary succession in New England tidal marshes. Ecology, 90, 430–440.Google Scholar
Bromberg Gedan, K., Silliman, B. R. and Bertness, M. D. (2009b). Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science, 1, 117–141.Google Scholar
Bruno, J. F. (2000). Facilitation of cobble beach plant communities through habitat modification by Spartina alterniflora. Ecology, 81, 1179–1192.CrossRefGoogle Scholar
Burdick, D. M. and Mendelssohn, I. A. (1987). Waterlogging responses in dune, swale and marsh populations of Spartina patens under field conditions. Oecologia, 74, 321–329.CrossRefGoogle ScholarPubMed
Burnaford, J. L. (2004). Habitat modification and refuge from sublethal stress drive a marine plant-herbivore association. Ecology, 85, 2837–2849.CrossRefGoogle Scholar
Bustamante, R. H., Branch, G. M. and Eekhout, S. (1995). Maintenance of an exceptional intertidal grazer biomass in South Africa: subsidy by subtidal kelps. Ecology, 76, 2314–2329.CrossRefGoogle Scholar
Canepuccia, A. D., Fanjul, M. S., Fanjul, E., Botto, F. and Iribarne, O. O. (2008). The intertidal burrowing crab Neohelice (= Chasmagnathus) granulata positively affects foraging of rodents in south western Atlantic salt marshes. Estuaries and Coasts, 31, 920–930.CrossRefGoogle Scholar
Canepuccia, A. D., Alberti, J., Daleo, P., Farina, J. L. and Iribarne, O. O. (2010a). Ecosystem engineering by burrowing crabs increases cordgrass mortality caused by stem-boring insects. Marine Ecology Progress Series, 404, 151–159.CrossRefGoogle Scholar
Canepuccia, A. D., Alberti, J., Pascual, J., et al. (2010b). ENSO episodes modify plant/terrestrial-herbivore interactions in a southwestern Atlantic salt marsh. Journal of Experimental Marine Biology and Ecology, 396, 42–47.CrossRefGoogle Scholar
Castilla, J. C. and Duran, L. R. (1985). Human exclusion from the rocky intertidal zone of central Chile: the effects on Concholepas concholepas (Gastropoda). Oikos, 45, 391–399.CrossRefGoogle Scholar
Castillo, J. M., Fernández-Baco, L., Castellanos, E. M., et al. (2000). Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances. Journal of Ecology, 88, 801–812.CrossRefGoogle Scholar
Colman, J. (1933). The nature of the intertidal zonation of plants and animals. Journal of the Marine Biological Association of the United Kingdom, 18, 435–476.CrossRefGoogle Scholar
Connell, J. H. (1961). The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology, 42, 710–723.CrossRef
Connolly, S. R. and Roughgarden, J. (1998). A latitudinal gradient in northeast Pacific intertidal community structure: evidence for an oceanographically based synthesis of marine community theory. The American Naturalist, 151, 311–326.CrossRefGoogle ScholarPubMed
Connolly, S. R., Menge, B. A. and Roughgarden, J. (2001). A latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology, 82, 1799–1813.CrossRefGoogle Scholar
Crain, C. M., Silliman, B. R., Bertness, S. L. and Bertness, M. D. (2004). Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology, 85, 2539–2549.CrossRefGoogle Scholar
Cubit, J. D. (1984). Herbivory and the seasonal abundance of algae on a high intertidal rocky shore. Ecology, 65, 1904–1917.CrossRefGoogle Scholar
Daleo, P. and Iribarne, O. (2009). Beyond competition: the stress-gradient hypothesis tested in plant–herbivore interactions. Ecology, 90, 2368–2374.CrossRefGoogle ScholarPubMed
Daleo, P., Fanjul, E., Méndez Casariego, A., et al. (2007). Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecology Letters, 10, 902–908.CrossRefGoogle ScholarPubMed
Daleo, P., Alberti, J. and Iribarne, O. (2011). Crab herbivory regulates re-colonization of disturbed patches in a southwestern Atlantic salt marsh. Oikos, 120, 842–847.CrossRefGoogle Scholar
Daleo, P., Alberti, J., Pascual, J., Canepuccia, A. and Iribarne, O. (2014). Asexual reproduction, herbivory and disturbance recovery of SW Atlantic salt marsh plant communities. Oecologia, 175, 335–343.CrossRef
Davy, A. J., Bakker, J. P. and Figueroa, M. E. (2009). Human modification of European salt marshes. In Human Impacts on Salt Marshes: A Global Perspective, ed. Silliman, B. R., Bertness, M. D. and Strong, D.. California: University of California Press.Google Scholar
Davy, A., Brown, M. J. H., Mossman, H. L. and Grant, A. (2011). Colonization of a newly developing salt marsh: disentangling independent effects of elevation and redox potential on halophytes. Journal of Ecology, 99, 1350–1357.CrossRefGoogle Scholar
Dayton, P. K. (1975). Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecological Monographs, 45, 137–159.CrossRefGoogle Scholar
De Leeuw, J., De Munck, W., Olff, H. and Bakker, J. P. (1993). Does zonation reflect the succession of salt marsh vegetation? A comparison of an estuarine and a coastal bar island marsh in the Netherlands. Acta Botanica Neerlandica, 42, 435–445.CrossRefGoogle Scholar
Deegan, L. A., Johnson, D. S., Warren, R. S., et al. (2012). Coastal eutrophication as a driver of salt marsh loss. Nature, 490, 388–392.CrossRefGoogle ScholarPubMed
Denny, M. W. and Paine, R. T. (1998). Celestial mechanics, sea-level changes, and intertidal ecology. The Biological Bulletin, 194, 108–115.CrossRefGoogle ScholarPubMed
Dethier, M. N. and Duggins, D. O. (1984). An “indirect commensalism” between marine herbivores and the importance of competitive hierarchies. The American Naturalist, 124, 205–219.CrossRefGoogle Scholar
Díaz-Tapia, P., Bárbara, I. and Díez, I. (2013). Multi-scale spatial variability in intertidal benthic assemblages: differences between sand-free and sand-covered rocky habitats. Estuarine, Coastal and Shelf Science, 133, 97–108.CrossRefGoogle Scholar
Dugan, J. E., Hubbard, D. M., McCrary, M. D. and Pierson, M. O. (2003). The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuarine, Coastal and Shelf Science, 58, 25–40.CrossRefGoogle Scholar
Dugdale, R. C., Wilkerson, F. P. and Morel, A. (1990). Realization of new production in coastal upwelling areas: a means to compare relative performance. Limnology and Oceanography, 35, 822–829.CrossRefGoogle Scholar
Duggins, D. O. and Dethier, M. N. (1985). Experimental studies of herbivory and algal competition in a low intertidal habitat. Oecologia, 67, 183–191.CrossRefGoogle Scholar
Duran, L. R. and Castilla, J. C. (1989). Variation and persistence of the middle rocky intertidal community of central Chile, with and without human harvesting. MarineBiology, 103, 555–562.Google Scholar
Ellis, J. C., Shulman, M. J., Wood, M., Witman, J. D. and Lozyniak, S. (2007). Regulation of intertidal food webs by avian predators on New England rocky shores. Ecology, 88, 853–863.CrossRefGoogle ScholarPubMed
Elton, C. S. (1927). Animal Ecology. Chicago, IL: University of Chicago Press.Google Scholar
Emery, N. C., Ewanchuk, P. J. and Bertness, M. D. (2001). Competition and salt-marsh plant zonation: stress tolerators may be dominant competitors. Ecology, 82, 2471–2485.CrossRefGoogle Scholar
Esselink, P., Helder, G. J. F., Aerts, B. A. and Gerdes, K. (1997). The impact of grubbing greylag geese Anser anser on vegetation dynamics of a tidal marsh. Aquatic Botany, 55, 261–279.CrossRefGoogle Scholar
Fa, D. A. (2008). Effects of tidal amplitude on intertidal resource availability and dispersal pressure in prehistoric human coastal populations: the Mediterranean–Atlantic transition. Quaternary Science Reviews, 27, 2194–2209.CrossRefGoogle Scholar
Fishlyn, D. A. and Phillips, D. W. (1980). Chemical camouflaging and behavioral defenses against a predatory seastar by three species of gastropods from the surfgrass Phyllospadix community. The Biological Bulletin, 158, 34–48.CrossRefGoogle Scholar
Freidenburg, T. L., Menge, B. A., Halpin, P., Webster, M. A. and Sutton-Grier, A. (2007). Cross-scale variation in top-down and bottom-up control of algal abundance. Journal of Experimental Marine Biology and Ecology, 347, 8–29.CrossRefGoogle Scholar
Fretwell, S. D. (1987). Food chain dynamics: the central theory of ecology?Oikos, 50, 291–301.CrossRefGoogle Scholar
Gaines, S. and Roughgarden, J. (1985). Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proceedings of the National Academy of Sciences of the USA, 82, 3707–3711.CrossRefGoogle Scholar
Gaines, S. D., White, C., Carr, M. H. and Palumbi, S. R. (2010). Designing marine reserve networks for both conservation and fisheries management. Proceedings of the National Academy of Sciences of the USA, 107, 18286–18293.CrossRefGoogle ScholarPubMed
Galst, C. A. and Anderson, T. W. (2008). Fish–habitat associations and the role of disturbance in surfgrass beds. Marine Ecology Progress Series, 365, 177–186.CrossRefGoogle Scholar
Guerry, A. D., Menge, B. A. and Dunmore, R. A. (2009). Effects of consumers and enrichment on abundance and diversity of benthic algae in a rocky intertidal community. Journal of Experimental Marine Biology and Ecology, 369, 155–164.CrossRefGoogle Scholar
Hacker, S. D. and Bertness, M. D. (1995a). A herbivore paradox: why salt marsh aphids live on poor-quality plants. American Naturalist, 145, 192–210.CrossRefGoogle Scholar
Hacker, S. D. and Bertness, M. D. (1995b). Morphological and physiological consequences of a positive plant interaction. Ecology, 76, 2165–2175.CrossRefGoogle Scholar
Hacker, S. D. and Bertness, M. D. (1996). Trophic consequences of a positive plant interaction. The American Naturalist, 148, 559–575.CrossRefGoogle Scholar
Hacker, S. D. and Gaines, S. D. (1997). Some implications of direct positive interactions for community species diversity. Ecology, 78, 1990–2003.CrossRefGoogle Scholar
Hairston, N. G., Smith, F. E. and Slobodkin, L. B. (1960). Community structure, population control, and competition. The American Naturalist, 100, 421–425.Google Scholar
Hall, S. J. G. (2008). A comparative analysis of the habitat of the extinct aurochs and other prehistoric mammals in Britain. Ecography, 31, 187–190.CrossRefGoogle Scholar
Hanski, I. and Gilpin, M. (1991). Metapopulation Dynamics: Empirical and Theoretical Investigations. San Diego, CA: Academic Press.Google Scholar
Hockey, P. A. R. (1994). Man as a component of the littoral predator spectrum: a conceptual overview. In Rocky Shores: Exploitation in Chile and South Africa, ed. Siegfried, W. R.. Berlin: Springer, pp. 17–31.Google Scholar
Holbrook, S. J., Reed, D. C., Hansen, K. and Blanchette, C. A. (2000). Spatial and temporal patterns of predation on seeds of the surfgrass Phyllospadix torreyi. Marine Biology, 136, 739–747.CrossRefGoogle Scholar
Hunter, M. D. and Price, P. W. (1992). Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology, 73, 723–732.Google Scholar
Hurd, C. L. (2000). Water motion, marine macroalgal physiology, and production. Journal of Phycology, 36, 453–472.CrossRefGoogle Scholar
Isacch, J. P., Costa, C. S. B., Rodríguez-Gallego, L., et al. (2006). Distribution of salt marsh plant communities associated with environmental factors along a latitudinal gradient on the South-West Atlantic coast. Journal of Biogeography, 33, 888–900.CrossRefGoogle Scholar
Kavanaugh, M. T., Nielsen, K. J., Chan, F. T., et al. (2009). Experimental assessment of the effects of shade on an intertidal kelp: do phytoplankton blooms inhibit growth of open-coast macroalgae?Limnology and Oceanography, 54, 276–288.CrossRefGoogle Scholar
Kiehl, K., Esselink, P. and Bakker, J. P. (1997). Nutrient limitation and plant species composition in temperate salt marshes. Oecologia, 111, 325–330.CrossRefGoogle ScholarPubMed
Kinlan, B. P. and Gaines, S. D. (2003). Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology, 84, 2007–2020.CrossRefGoogle Scholar
Kolb, G. S., Ekholm, J.and Hambäck, P. A. (2010). Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters. Marine Ecology Progress Series, 417, 287–300.CrossRefGoogle Scholar
Kraufvelin, P., Salovius, S., Christie, H., et al. (2006). Eutrophication-induced changes in benthic algae affect the behaviour and fitness of the marine amphipod Gammarus locusta. Aquatic Botany, 84, 199–209.CrossRef
Kuijper, D. P. J. and Bakker, J. P. (2005). Top-down control of small herbivores on salt-marsh vegetation along a productivity gradient. Ecology, 86, 914–923.CrossRefGoogle Scholar
Kuijper, D. P. J. and Bakker, J. P. (2008). Unpreferred plants affect patch choice and spatial distribution of brown hares. Acta Oecologica, 4, 339–344.Google Scholar
Kuijper, D. P. J. and Bakker, J. P. (2012). Vertebrate below- and above-ground herbivory and abiotic factors alternate in shaping salt-marsh plant communities. Journal of Experimental Marine Biology and Ecology, 432–433, 17–28.Google Scholar
Kuijper, D. P. J., Nijhoff, D. J. and Bakker, J. P. (2004). Herbivory and competition slow down invasion of a tall grass along a productivity gradient. Oecologia, 141, 452–459.CrossRefGoogle ScholarPubMed
Kuijper, D. P. J., Beek, P., Van Wieren, S. E. and Bakker, J. P. (2008). Time-scale effects in the interaction between a large and a small herbivore. Basic and Applied Ecology, 9, 126–134.CrossRefGoogle Scholar
Leendertse, P. C., Roozen, A. J. M. and Rozema, J. (1997). Long-term changes (1953–1990) in the salt marsh vegetation at the Boschplaat on Terschelling in relation to sedimentation and flooding. Plant Ecology, 132, 49–58.CrossRefGoogle Scholar
Leroux, S. J. and Loreau, M. (2008).Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecology Letters, 11, 1147–1156.CrossRefGoogle ScholarPubMed
Lester, S. E., Gaines, S. D. and Kinlan, B. P. (2007). Reproduction on the edge: large-scale patterns of individual performance in a marine invertebrate. Ecology, 88, 2229–2239.CrossRefGoogle Scholar
Levine, J. M., Hacker, S. D., Harley, C. D. G. and Bertness, M. D. (1998). Nitrogen effects on an interaction chain in a salt marsh community. Oecologia, 117, 266–272.CrossRefGoogle Scholar
Lewis, J. R. (1964). The Ecology of Rocky Shores. London, UK: English University Press.Google Scholar
Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399–417.CrossRefGoogle Scholar
Linthurst, R. A. and Seneca, E. D. (1981). Aeration, nitrogen and salinity as determinants of Spartina alterniflora Loisel growth response. Estuaries, 4, 53–63.CrossRefGoogle Scholar
Loreau, M., Mouquet, N. and Holt, R. D. (2003). Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecology Letters, 6, 673–679.CrossRefGoogle Scholar
Lotka, A. J. (1925). Elements of Physical Biology. Baltimore: Williams and Wilkins.Google Scholar
Lubchenco, J. (1978). Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. The American Naturalist, 112, 23–39.CrossRefGoogle Scholar
Marsh, C. P. (1986). Rocky intertidal community organization: the impact of avian predators on mussel recruitment. Ecology, 67, 771–786.CrossRefGoogle Scholar
McLeod, K. and Leslie, H. (eds.). (2009). Ecosystem-Based Management for the Oceans. Washington: Island Press, pp. 3–6.Google Scholar
Menge, B. A. (1976). Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecological Monographs, 46, 355–393.CrossRefGoogle Scholar
Menge, B. A. (1991). Relative importance of recruitment and other causes of variation in rocky intertidal community structure. Journal of Experimental Marine Biology and Ecology, 146, 69–100.CrossRefGoogle Scholar
Menge, B. A. (1992). Community regulation: under what conditions are bottom-up factors important on rocky shores? Ecology, 73, 755–765.CrossRefGoogle Scholar
Menge, B. A. (1995). Indirect effects in marine rocky intertidal interaction webs: patterns and importance. Ecological Monographs, 65, 21–74.CrossRefGoogle Scholar
Menge, B. A. (2000). Top-down and bottom-up community regulation in marine rocky intertidal habitats. Journal of Experimental Marine Biology and Ecology, 250, 257–289.CrossRefGoogle ScholarPubMed
Menge, B. A. and Lubchenco, J. (1981). Community organization in temperate and tropical rocky intertidal habitats: prey refuges in relation to consumer pressure gradients. Ecological Monographs, 51, 429–450.CrossRefGoogle Scholar
Menge, B. A. and Menge, D. N. L. (2013). Dynamics of coastal meta-ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecological Monographs, 83, 283–310.CrossRefGoogle Scholar
Menge, B. A. and Olson, A. M. (1990).Role of scale and environmental factors in regulation of community structure. Trends in Ecology and Evolution, 5, 52–57.CrossRefGoogle ScholarPubMed
Menge, B. A. and Sutherland, J. P. (1976). Species diversity gradients: synthesis of the roles of predation, competition, and temporal heterogeneity. The American Naturalist, 110, 351–369.CrossRefGoogle Scholar
Menge, B. A. and Sutherland, J. P. (1987). Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. The American Naturalist, 130, 730–757.CrossRefGoogle Scholar
Menge, B. A., Berlow, E. L., Blanchette, C. A., Navarrete, S. A. and Yamada, S. B. (1994). The keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecological Monographs, 64, 249–286.CrossRefGoogle Scholar
Menge, B. A., Daley, B. A., Wheeler, P. A., et al. (1997). Benthic–pelagic links and rocky intertidal communities: bottom-up effects on top-down control? Proceedings of the National Academy of Sciences of the USA, 94, 14530–14535.CrossRefGoogle ScholarPubMed
Menge, B. A., Lubchenco, J., Bracken, M. E. S., et al. (2003). Coastal oceanography sets the pace of rocky intertidal community dynamics. Proceedings of the National Academy of Sciences of the USA, 100, 12229–12234.CrossRefGoogle ScholarPubMed
Menge, B. A., Gouhier, T. C., Hacker, S. D., et al. (in press). Are meta-ecosystems organized hierarchically? A model and test in rocky intertidal habitats. Ecological Monographs.
Milligan, K. L. D. (1998). Effects of wave-exposure on an intertidal kelp speciesHedophyllum sessile (Agardh, C.) Setchell: demographics and biomechanics. PhD dissertation, University of British Columbia, Vancouver.Google Scholar
Moreno, C. A. (2001). Community patterns generated by human harvesting on Chilean shores: a review. Aquatic Conservation: Marine and Freshwater Ecosystems, 11, 19–30.CrossRefGoogle Scholar
Morgan, S. G. and Fisher, J. L. (2010). Larval behavior regulates nearshore retention and offshore migration in an upwelling shadow and along the open coast. Marine Ecology Progress Series, 404, 109–126.CrossRefGoogle Scholar
Moulton, O. M. and Hacker, S. D. (2011). Congeneric variation in surfgrasses and ocean conditions influence macroinvertebrate community structure. Marine Ecology Progress Series, 433, 53–63.CrossRefGoogle Scholar
Navarrete, S. A. and Castilla, J. C. (2003). Experimental determination of predation intensity in an intertidal predator guild: dominant versus subordinate prey. Oikos, 100, 251–262.CrossRefGoogle Scholar
Navarrete, S. A. and Menge, B. A. (1996). Keystone predation and interaction strength: interactive effects of predators on their main prey. Ecological Monographs, 66, 409–429.CrossRefGoogle Scholar
Nielsen, K. J. (2001). Bottom-up and top-down forces in tide pools: test of a food chain model in an intertidal community. Ecological Monographs, 71, 187–217.CrossRefGoogle Scholar
Nielsen, K. J. (2003). Nutrient loading and consumers: agents of change in open-coast macrophyte assemblages. Proceedings of the National Academy of Sciences of the USA, 100, 7660–7665.CrossRefGoogle ScholarPubMed
Nielsen, K. J. and Navarrete, S. A. (2004). Mesoscale regulation comes from the bottom-up: intertidal interactions between consumers and upwelling. Ecology Letters, 7, 31–41.CrossRefGoogle Scholar
Odum, W. E. (1988). Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics, 19, 147–176.CrossRefGoogle Scholar
Ojeda, F. P. and Muñoz, A. A. (1999). Feeding selectivity of the herbivorous fish Scartichthys viridis: effects on macroalgal community structure in a temperate rocky intertidal coastal zone. Marine Ecology Progress Series, 184, 219–229.CrossRefGoogle Scholar
Oksanen, L. and Oksanen, T. (2000). The logic and realism of the hypothesis of exploitation ecosystems. The American Naturalist, 155, 703–723.CrossRefGoogle ScholarPubMed
Oksanen, L., Fretwell, S. D., Arruda, J. and Niemela, P. (1981). Exploitation ecosystems in gradients of primary productivity. The American Naturalist, 118, 240–261.CrossRefGoogle Scholar
Olff, H., De Leeuw, J., Bakker, J. P., et al. (1997). Vegetation succession and herbivory on a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. Journal of Ecology, 85, 799–814.CrossRefGoogle Scholar
Paine, R. T. (1966). Food web complexity and species diversity. The American Naturalist, 100, 65–75.CrossRefGoogle Scholar
Paine, R. T. (1974). Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia, 15, 93–120.CrossRefGoogle ScholarPubMed
Paine, R. T. (1979). Disaster, catastrophe, and local persistence of the sea palm Postelsia palmaeformis. Science, 205, 685–687.CrossRefGoogle ScholarPubMed
Paine, R. T. (1992). Food-web analysis through field measurement of per capita interaction strength. Nature, 355, 73–75.CrossRefGoogle Scholar
Paine, R. T. and Levin, S. A. (1981). Intertidal landscapes: disturbance and the dynamics of pattern. Ecological Monographs, 51, 145–178.CrossRefGoogle Scholar
Paine, R. T. and Palmer, A. R. (1978). Sicyases sanguineus: a unique trophic generalist from the Chilean intertidal zone. Copeia, 1978, 75–81.CrossRefGoogle Scholar
Paine, R. T. and Vadas, R. L. (1969). The effects of grazing by sea urchins, Strongylocentrotus spp., on benthic algal populations. Limnology and Oceanography, 14, 710–719.CrossRefGoogle Scholar
Pather, S., Pfister, C. A., Post, D. M. and Altabet, M. A. (2014). Ammonium cycling in the rocky intertidal: remineralization, removal, and retention. Limnography and Oceanography 59, 361–372.Google Scholar
Pennings, S. C. and Bertness, M. D. (2001). Salt marsh communities. In Marine Community Ecology, ed. Bertness, M. D., Gaines, S. D. and Hay, M.. Sunderland, MA: Sinauer Associates, pp. 289–316.Google Scholar
Pennings, S. C., Grant, M. B. and Bertness, M. D. (2005). Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology, 93, 159–167.CrossRefGoogle Scholar
Polis, G. A., Anderson, W. B. and Holt, R. D. (1997). Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289–316.CrossRefGoogle Scholar
Poore, A. G., Campbell, A. H., Coleman, R. A., et al. (2012). Global patterns in the impact of marine herbivores on benthic primary producers. Ecology Letters, 15, 912–922.CrossRefGoogle ScholarPubMed
Raimondi, P. T., Forde, S. E., Delph, L. F. and Lively, C. M. (2000). Processes structuring communities: evidence for trait-mediated indirect effects through induced polymorphisms. Oikos, 91, 353–361.CrossRefGoogle Scholar
Robles, C. and Desharnais, R. (2002). History and current development of a paradigm of predation in rocky intertidal communities. Ecology, 83, 1521–1536.CrossRefGoogle Scholar
Robles, C., Sherwood-Stephens, R. and Alvarado, M. (1995). Responses of a key intertidal predator to varying recruitment of its prey. Ecology, 76, 565–579.CrossRefGoogle Scholar
Roy, K., Collins, A. G., Becker, B. J., Begovic, E. and Engle, J. M. (2003). Anthropogenic impacts and historical decline in body size of rocky intertidal gastropods in southern California. Ecology Letters, 6, 205–211.CrossRefGoogle Scholar
Salomon, A. K., Tanape Sr, N. M. and Huntington, H. P. (2007). Serial depletion of marine invertebrates leads to the decline of a strongly interacting grazer. Ecological Applications, 17, 1752–1770.CrossRefGoogle ScholarPubMed
Sanford, E. and Menge, B. A. (2007). Reproductive output and consistency of source populations in the sea star Pisaster ochraceus. Marine Ecology Progress Series, 349, 1–12.CrossRefGoogle Scholar
Schrama, M., Berg, M. P. and Olff, H. (2012). Ecosystem assembly rules: the interplay of green and brown webs during salt marsh succession. Ecology, 93, 2353–2364.CrossRefGoogle Scholar
Schrama, M., Jouta, J., Berg, M. P. and Olff, H. (2013a). Food web assembly at the landscape scale: using stable isotopes to reveal changes in trophic structure during succession. Ecosystems, 16, 627–638.CrossRefGoogle Scholar
Schrama, M. J. J., Heijing, P., Van Wijnen, H. J., et al. (2013b). Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia, 172, 231–243.CrossRefGoogle ScholarPubMed
Scrosati, R.and Heaven, C. (2007). Spatial trends in community richness, diversity, and evenness across rocky intertidal environmental stress gradients in eastern Canada. Marine Ecology Progress Series, 342, 1–14.CrossRefGoogle Scholar
Shanks, A. L. (2009). Pelagic larval duration and dispersal distance revisited. The Biological Bulletin, 216, 373–385.CrossRefGoogle ScholarPubMed
Short, F., Carruthers, T., Dennison, W. and Waycott, M. (2007). Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine Biology and Ecology, 350, 3–20.CrossRefGoogle Scholar
Silliman, B. R. and Bertness, M. D. (2002). A trophic cascade regulates salt marsh primary production. Proceedings of the National Academy of Sciences of the USA, 99, 10500–10505.CrossRefGoogle ScholarPubMed
Silliman, B. R. and Bertness, M. D. (2004). Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conservation Biology, 18, 1424–1434.CrossRefGoogle Scholar
Silliman, B. R. and Zieman, J. C. (2001). Top-down control of Spartina alterniflora production by periwinkle grazing in a Virginia salt marsh. Ecology, 82, 2830–2845.CrossRefGoogle Scholar
Silliman, B. R., Layman, C. A., Geyer, K. and Zieman, J. C. (2004). Predation by the black-clawed mud crab, Panopeus herbstii, in Mid-Atlantic salt marshes: further evidence for top-down control of marsh grass production. Estuaries, 27, 188–196.CrossRefGoogle Scholar
Silliman, B. R., Van De Koppel, J., Bertness, M. D., Stanton, L. E. and Mendelssohn, I. A. (2005). Drought, snails and large-scale die-off of Southern U.S. salt marshes. Science, 310, 1803–1806.CrossRefGoogle ScholarPubMed
Silliman, B. R., McCoy, M. W., Angelini, C., et al. (2013). Consumer fronts, global change, and runaway collapse in ecosystems. Annual Review of Ecology, Evolution, and Systematics, 44, 503–538.CrossRefGoogle Scholar
Stahl, J., Bos, D. and Loonen, M. J. J. E. (2002). Foraging along a salinity gradient – the effect of tidal inundation on site choice by Brent and barnacle geese. Ardea, 90, 201–212Google Scholar
Stephenson, T. A. and Stephenson, A. (1949). The universal features of zonation between tide-marks on rocky coasts. The Journal of Ecology, 37, 289–305.CrossRefGoogle Scholar
Suchrow, S., Pohlman, M., Stock, M. and Jensen, K. (2012). Long-term surface elevation change in German North Sea salt marshes. Estuarine, Coastal and Shelf Science, 98, 75–83.CrossRefGoogle Scholar
Taylor, D. I. and Schiel, D. R. (2010). Algal populations controlled by fish herbivory across a wave exposure gradient on southern temperate shores. Ecology, 91, 201–211.CrossRefGoogle ScholarPubMed
Taylor, K. L. and Grace, J. B. (1995). The effects of vertebrate herbivory on plant community structure in the coastal marshes of the Pearl River, Louisiana, USA. Wetlands, 15, 68–73.CrossRefGoogle Scholar
Terrados, J. and Williams, S. L. (1997). Leaf versus root nitrogen uptake by the surfgrass Phyllospadix torreyi. Marine Ecology Progress Series, 149, 267–277CrossRefGoogle Scholar
Thompson, S. A., Knoll, H., Blanchette, C. A. and Nielsen, K. J. (2010). Population consequences of biomass loss due to commercial collection of the wild seaweed Postelsia palmaeformis. Marine Ecology Progress Series, 413, 17–31.CrossRefGoogle Scholar
Trussell, G. C., Ewanchuk, P. J. and Bertness, M. D. (2002). Field evidence of trait-mediated indirect interactions in a rocky intertidal food web. Ecology Letters, 5, 241–245.CrossRefGoogle Scholar
Trussell, G. C., Ewanchuk, P. J., Bertness, M. D. and Silliman, B. R. (2004). Trophic cascades in rocky shore tide pools: distinguishing lethal and nonlethal effects. Oecologia, 139, 427–432.CrossRefGoogle ScholarPubMed
Turner, R. E., Swenson, E. M. and Milan, C. S. (2002). Organic and inorganic contributions to vertical accretion in salt marsh sediments. In Concepts and Controversies in Tidal Marsh Ecology, ed. Weinstein, M. P. and Kreeger, D. A.. New York: Kluwer Academic Publishers, pp. 583–594Google Scholar
Turner, T. (1983). Facilitation as a successional mechanism in a rocky intertidal community. The American Naturalist, 121, 729–738.CrossRefGoogle Scholar
Valiela, I., Teal, J. M. and Deuser, W. G. (1978). The nature of growth forms in the salt marsh grass Spartina alterniflora. The American Naturalist, 112, 461–470.CrossRefGoogle Scholar
Valiela, I., Cole, M. L., McClelland, J., et al. (2002). Role of salt marshes as part of coastal landscapes. In Concepts and Controversies in Tidal Marsh Ecology, ed. Weinstein, M. P. and Kreeger, D. A.. New York: Kluwer Academic Publishers, pp. 23–36.Google Scholar
Van De Koppel, J., Huisman, J., Van Der Wal, R. and Olff, H. (1996). Patterns of herbivory along a productivity gradient: an empirical and theoretical investigation. Ecology, 77, 736–745.CrossRefGoogle Scholar
Van Der Graaf, A. J., Coehoorn, P. and Stahl, J. (2006). Sward height and bite size affect the functional response of Branta leucopsis. Journal of Ornithology, 147, 479–484.CrossRefGoogle Scholar
Van Der Wal, R., Van De Koppel, J. and Sagel, M. (1998). On the relation between herbivore foraging efficiency and plant standing crop: an experiment with barnacle geese. Oikos, 82, 123–130.CrossRefGoogle Scholar
Van Der Wal, R., Van Lieshout, S., Bos, D. and Drent, R. H. (2000a). Are spring staging Brent geese evicted by vegetation succession? Ecography, 23, 60–69.CrossRefGoogle Scholar
Van Der Wal, R., Van Wieren, S. E., Van Wijnen, H. J., Beucher, O. and Bos, D. (2000b). On facilitation between herbivores: how Brent geese profit from brown hares. Ecology, 81, 969–980.CrossRefGoogle Scholar
Van Wesenbeeck, B. K., Van De Koppel, J., Herman, P. M. J., Bakker, J. P. and Bouma, T. J. (2007). Biomechanical warfare in ecology: negative interactions between species by habitat modification. Oikos, 116, 742–750.CrossRefGoogle Scholar
Van Wijnen, H. J. and Bakker, J. P. (1999). Nitrogen and phosphorus limitation in a coastal barrier salt marsh: the implications for vegetation succession. Journal of Ecology, 87, 265–272.CrossRefGoogle Scholar
Vandermeer, J. H. (1972). Niche theory. Annual Review of Ecology and Systematics, 3, 107–132.CrossRefGoogle Scholar
Veeneklaas, R. M., Dijkema, K. S., Hecker, N. and Bakker, J. P. (2013). Spatio-temporal dynamics of the invasive salt-marsh plant species Elytrigia atherica on natural salt marshes. Applied Vegetation Science, 16, 205–216.CrossRefGoogle Scholar
Vince, S. W., Valiela, I. and Teal, J. M. (1981). An experimental study of the structure of herbivorous insect communities in a salt marsh. Ecology, 62, 1662–1678.CrossRefGoogle Scholar
Vinueza, L., Post, A., Guarderas, P., Smith, F. and Idrovo, F. (2014). Ecosystem-based management for rocky shores of the Galapagos Islands. In The Galapagos Marine Reserve: A Dynamic Social-Ecological System, ed. Denkinger, J. and Vinueza, L.. New York, NY: Springer International Publishing, pp. 81–107.Google Scholar
Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature, 118, 558–560.CrossRefGoogle Scholar
Wethey, D. S. (1985). Catastrophe, extinction, and species diversity: a rocky intertidal example. Ecology, 66, 445–456.CrossRefGoogle Scholar
Wieters, E. A., Gaines, S. D., Navarrete, S. A., Blanchette, C. A. and Menge, B. A. (2008). Scales of dispersal and the biogeography of marine predator–prey interactions. The American Naturalist, 171, 405–417.CrossRefGoogle ScholarPubMed
Wolters, M., Bakker, J. P., Bertness, M., Jefferies, R. L. and Möller, I. (2005). Salt marsh erosion and restoration in south-east England: squeezing the evidence requires realignment. Journal of Applied Ecology, 42, 844–851.CrossRefGoogle Scholar
Wood, M. (2008). Reproductive output of a keystone predator and its preferred prey: the differential influence of oceanographic regime and local habitat. MS thesis, Sonoma State University, Rohnert Park, CA.Google Scholar
Wootton, J. T. (1991). Direct and indirect effects of nutrients on intertidal community structure: variable consequences of seabird guano. Journal of Experimental Marine Biology and Ecology, 151, 139–153.CrossRefGoogle Scholar
Wootton, J. T. (1993). Indirect effects and habitat use in an intertidal community: interaction chains and interaction modifications. The American Naturalist, 141, 71–89.CrossRefGoogle Scholar
Wootton, J. T. (1997). Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecological Monographs, 67, 45–64.CrossRefGoogle Scholar
Wootton, J. T., Power, M. E., Paine, R. T. and Pfister, C. A. (1996). Effects of productivity, consumers, competitors and El Niño events on food chain patterns in a rocky intertidal community. Proceedings of the National Academy of Sciences of the USA, 93, 13855–13858.CrossRefGoogle Scholar
Worm, B., Lotze, H. and Sommer, U. (2000). Coastal food web structure, carbon storage, and nitrogen retention regulated by consumer pressure and nutrient loading. Limnology and Oceanography, 45, 339–349.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×