Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T04:44:10.704Z Has data issue: false hasContentIssue false

14 - Bottom-up and top-down interactions across ecosystems in an era of global change

from Part III - Patterns and Processes

Published online by Cambridge University Press:  05 May 2015

Kimberly J. La Pierre
Affiliation:
University of California
Torrance C. Hanley
Affiliation:
Northeastern University
Torrance C. Hanley
Affiliation:
Northeastern University, Boston
Kimberly J. La Pierre
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Trophic Ecology
Bottom-up and Top-down Interactions across Aquatic and Terrestrial Systems
, pp. 365 - 406
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akçay, E. and Simms, E. L. (2011). Negotiation, sanctions, and context dependency in the legume-Rhizobium mutualism. The American Naturalist, 178, 1–14.CrossRefGoogle ScholarPubMed
Altieri, A. H., van Wesenbeeck, B. K., Bertness, M. D. and Silliman, B. R. (2010). Facilitation cascade drives positive relationship between native biodiversity and invasion success. Ecology, 91, 1269–1275.CrossRefGoogle ScholarPubMed
Andersen, T., Carstensen, J., Hernández-García, E. and Duarte, C. M. (2009). Ecological thresholds and regime shifts: approaches to identification. Trends in Ecology and Evolution, 24, 49–57.CrossRefGoogle ScholarPubMed
Avolio, M. L., Beaulieu, J. M. and Smith, M. D. (2013). Genetic diversity of a dominant C4 grass is altered with increased precipitation variability. Oecologia, 171, 571–81.CrossRefGoogle ScholarPubMed
Avolio, M. L., Koerner, S. E., La Pierre, K. J., et al. (2014). Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in a tallgrass prairie. Journal of Ecology, 102(6), 1649–1660.CrossRefGoogle Scholar
Ayres, M. P. and Lombardero, M. J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. The Science of the Total Environment, 262, 263–286.CrossRefGoogle ScholarPubMed
Baillie, J. E. M., Hilton-Taylor, C. and Stuart, S. N. (eds.) (2004). 2004 IUCN Red List of Threatened Species: A Global Species Assessment. Cambridge, UK: IUCN Publications Services Unit.Google Scholar
Bálint, M., Domisch, S., Engelhardt, C. H. M., et al. (2011). Cryptic biodiversity loss linked to global climate change. Nature Climate Change, 1, 313–318.CrossRefGoogle Scholar
Balmford, A. and Bond, W. (2005). Trends in the state of nature and their implications for human well-being. Ecology Letters, 8, 1218–1234.CrossRefGoogle ScholarPubMed
Balvanera, P., Pfisterer, A. B., Buchmann, N., et al. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146–1156.CrossRefGoogle ScholarPubMed
Barton, B. T. (2010). Climate warming and predation risk during herbivore ontogeny. Ecology, 91, 2811–2818.CrossRefGoogle ScholarPubMed
Baum, J. K. and Worm, B. (2009). Cascading top-down effects of changing oceanic predator abundances. The Journal of Animal Ecology, 78, 699–714.CrossRefGoogle ScholarPubMed
Baxter, C. V., Fausch, K. D., Murakami, M. and Chapman, P. L. (2004). Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology, 85, 2656–2663.CrossRefGoogle Scholar
Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. and Reid, P. C. (2003). Plankton effect on cod recruitment in the North Sea. Nature, 426, 661–664.CrossRefGoogle ScholarPubMed
Bertness, M. D. and Coverdale, T. C. (2013). An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod. Ecology, 94, 1937–1943.CrossRefGoogle ScholarPubMed
Blankinship, J. C., Niklaus, P. A. and Hungate, B. A. (2011). A meta-analysis of responses of soil biota to global change. Oecologia, 165, 553–565.CrossRefGoogle ScholarPubMed
Blenckner, T., Adrian, R., Livingstone, D. M., et al. (2007). Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology, 13, 1314–1326.CrossRefGoogle Scholar
Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. and Finnegan, S. (2013). Climate change and the past, present, and future of biotic interactions. Science, 341, 499–504.Google ScholarPubMed
Bobbink, R., Hicks, K., Galloway, J., Spranger, T., et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30–59.CrossRefGoogle ScholarPubMed
Borer, E. T., Seabloom, E. W., Shurin, J. B., et al. (2005). What determines the strength of a trophic cascade? Ecology, 86, 528–537.CrossRefGoogle Scholar
Borer, E. T., Seabloom, E. W., Gruner, D. S., et al. (2014). Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 508(7497), 517–520.CrossRefGoogle ScholarPubMed
Bradshaw, W. E. and Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science, 312, 1477–1478.CrossRefGoogle ScholarPubMed
Bracken, M. E. S. and Low, N. H. N. (2012). Realistic losses of rare species disproportionately impact higher trophic levels. Ecology Letters, 15, 461–467.CrossRefGoogle ScholarPubMed
Brock, W. A. and Carpenter, S. R. (2006). Variance as a leading indicator of regime shift in ecosystem services. Ecology and Society, 11, 217–231.CrossRefGoogle Scholar
Brown, C. J., Saunders, M. I., Possingham, H. P. and Richardson, A. J. (2013). Managing for interactions between local and global stressors of ecosystems. PLoS One, 8, e65765.CrossRefGoogle ScholarPubMed
Bulling, M. T., Hicks, N., Murray, L., et al. (2010). Marine biodiversity-ecosystem functions under uncertain environmental futures. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365, 2107–2116.CrossRefGoogle ScholarPubMed
Butchart, S. H. M., Walpole, M., Collen, B., et al. (2010). Global biodiversity: indicators of recent declines. Science, 328, 1164–1168.CrossRefGoogle ScholarPubMed
Caraco, N. F., Cole, J. J., Raymond, P. A., et al. (1997). Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology, 78, 588–602.CrossRefGoogle Scholar
Cardinale, B. J., Srivastava, D. S., Duffy, J. E., et al. (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989–992.CrossRefGoogle ScholarPubMed
Cardinale, B. J., Duffy, J. E., Gonzalez, A., et al. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67.CrossRefGoogle ScholarPubMed
Carpenter, S. R., Fisher, S. G., Grimm, N. B. and Kitchell, J. F. (1992). Global change and freshwater ecosystems. Annual Review of Ecology and Systematics, 23, 119–139.CrossRefGoogle Scholar
Carpenter, S. R., Cole, J. J., Pace, M. L., et al. (2011). Early warnings of regime shifts: a whole-ecosystem experiment. Science, 332, 1079–1082.CrossRefGoogle ScholarPubMed
Cebrian, J., Shurin, J. B., Borer, E. T., et al. (2009). Producer nutritional quality controls ecosystem trophic structure. PLoS One, 4.CrossRefGoogle ScholarPubMed
Chapin, F. S. (1997). Biotic control over the functioning of ecosystems. Science, 277, 500–504.Google Scholar
Chapin, F. S. (2003). Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Annals of Botany, 91, 455–463.CrossRefGoogle ScholarPubMed
Chapin, F. S., Zavaleta, E. S., Eviner, V. T., et al. (2000). Consequences of changing biodiversity. Nature, 405, 234–242.Google ScholarPubMed
Christensen, M. R., Graham, M. D., Vinebrooke, R. D., et al. (2006). Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Global Change Biology, 12, 2316–2322.CrossRefGoogle Scholar
Clark, C. M., Cleland, E. E., Collins, S. L., et al. (2007). Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters, 10, 596–607.CrossRefGoogle ScholarPubMed
Clark, C. M., Hobbie, S. E., Venterea, R. and Tilman, D. (2009). Long-lasting effects on nitrogen cycling 12 years after treatments cease despite minimal long-term nitrogen retention. Global Change Biology, 15, 1755–1766.CrossRefGoogle Scholar
Clark, G. F., Stark, J. S., Johnston, E. L., et al. (2013). Light-driven tipping points in polar ecosystems. Global Change Biology, 19, 3749–3761.CrossRefGoogle ScholarPubMed
Cleland, E. E. and Harpole, W. S. (2010). Nitrogen enrichment and plant communities. In Year in Ecology and Conservation Biology 2010, Vol 1195. Oxford:Blackwell Publishing, pp. 46–61.Google Scholar
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. and Schwartz, M. D. (2007). Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22, 357–365.CrossRefGoogle ScholarPubMed
Cleland, E. E., Allen, J. M., Crimmins, T. M., et al. (2012). Phenological tracking enables positive species responses to climate change. Ecology, 93, 1765–1771.CrossRefGoogle ScholarPubMed
Coors, A. and De Meester, L. (2008). Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of Applied Ecology, 45, 1820–1828.CrossRefGoogle Scholar
Courchamp, F., Chapuis, J.-L. and Pascal, M. (2003). Mammal invaders on islands: impact, control and control impact, Biological Reviews, 78, 347–383.CrossRefGoogle ScholarPubMed
Cox, J. G. and Lima, S. L. (2006). Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends in Ecology and Evolution, 21, 674–680.CrossRefGoogle ScholarPubMed
Crain, C. M., Kroeker, K. and Halpern, B. S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11, 1304–1315.CrossRefGoogle ScholarPubMed
Crawford, K. M. and Rudgers, J. A. (2013). Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community. Ecology, 94, 1025–1035.CrossRefGoogle Scholar
Crutsinger, G. M., Collins, M. D., Fordyce, J. A., et al. (2006). Plant genotypic diversity predicts community structure and governs an ecosystem process. Science, 313, 966–968.CrossRefGoogle ScholarPubMed
Cushing, D. H. (1990). Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. In Advances in Marine Biology, ed. Blaxter, J. H. S. and Southward, A. J.. London:Academic Press, pp. 249–293Google Scholar
D'Antonio, C. M. and Vitousek, P. M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics, 23, 63–87.CrossRefGoogle Scholar
Darling, E. S. and Côté, I. M. (2008). Quantifying the evidence for ecological synergies. Ecology Letters, 11, 1278–1286.CrossRefGoogle ScholarPubMed
Daskalov, G. M., Grishin, A. N., Rodionov, S. and Mihneva, V. (2007). Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proceedings of the National Academy of Sciences of the USA, 104, 10518–10523.CrossRefGoogle ScholarPubMed
Díaz, S., Fargione, J., Chapin III, F. S. and Tilman, D. (2006). Biodiversity loss threatens human well-being, PLoS Biology, 4, e277.CrossRefGoogle ScholarPubMed
Diffenbaugh, N. S., Pal, J. S., Trapp, R. J. and Giorgi, F. (2005). Fine-scale processes regulate the response of extreme events to global climate change. Proceedings of the National Academy of Sciences of the USA, 102, 15774–15778.CrossRefGoogle ScholarPubMed
Dobson, A., Lodge, D., Alder, J., et al. (2006). Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology, 87, 1915–1924.CrossRefGoogle ScholarPubMed
Douglass, J. G., Duffy, J. E. and Bruno, J. F. (2008). Herbivore and predator diversity interactively affect ecosystem properties in an experimental marine community. Ecology Letters, 11, 598–608.CrossRefGoogle Scholar
Downing, J. A., Osenberg, C. W. and Sarnelle, O. (1999). Meta-analysis of marine nutrient-enrichment experiments: variation in the magnitude of nutrient limitation. Ecology, 80, 1157–1167.CrossRefGoogle Scholar
Downing, A. L., Brown, B. L. and Leibold, M. A. (2014). Multiple diversity-stability mechanisms enhance population and community stability in aquatic food webs. Ecology, 95, 173–184.CrossRefGoogle ScholarPubMed
Duffy, J. E. (2003). Biodiversity loss, trophic skew and ecosystem functioning. Ecology Letters, 6, 680–687.CrossRefGoogle Scholar
Duffy, J. E., Cardinale, B. J., France, K. E., et al. (2007). The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters, 10, 522–538.CrossRefGoogle ScholarPubMed
Dupont, S., Dorey, N. and Thorndyke, M. (2010). What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuarine, Coastal and Shelf Science, 89, 182–185.CrossRefGoogle Scholar
Dyer, L. A. and Coley, P. D. (2001). Latitudinal gradients in tri-trophic interactions. In Multitrophic Level Interactions, ed. Tscharntke, T. and Hawkins, B. A.. Cambridge, UK: Cambridge University Press, pp. 67–88.Google Scholar
Ellis, E. C. (2011). Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions A: Mathematical, Physical, and Engineering Sciences, 369, 1010–1035.CrossRefGoogle ScholarPubMed
Ellner, S. P. (2013). Rapid evolution: from genes to communities, and back again? Functional Ecology, 27, 1087–1099.CrossRefGoogle Scholar
Elmhagen, B. and Rushton, S. P. (2007). Trophic control of mesopredators in terrestrial ecosystems: top-down or bottom-up? Ecology Letters, 10, 197–206.CrossRefGoogle ScholarPubMed
Elser, J. J., Bracken, M. E. S., Cleland, E. E., et al. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135–1142.CrossRefGoogle Scholar
Emmerson, M., Martijn Bezemer, T., Hunter, M., et al. (2004). How does global change affect the strength of trophic interactions? Basic and Applied Ecology, 5, 505–514.CrossRefGoogle Scholar
Engel, S. (1987). The impact of submerged macrophytes on largemouth bass and bluegills. Lake and Reservoir Management, 3, 227–234.CrossRefGoogle Scholar
Estes, J. A. (1998). Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science, 282, 473–476.CrossRefGoogle ScholarPubMed
Estes, J. A., Terborgh, J., Brashares, J. S., et al. (2011). Trophic downgrading of planet earth. Science, 333, 301–306.CrossRefGoogle ScholarPubMed
FAO. (2012). The State of World Fisheries and Aquaculture (SOFIA). Rome: FAO Fisheries and Aquaculture Department.
Field, J. G., Harris, R. P., Hofmann, E. E., Perry, R. I. and Werner, F. E. (eds.) (2010). Marine Ecosystems and Global Change. Oxford: Oxford University Press.Google Scholar
Flynn, D. F., Mirotchnick, N., Jain, M., Palmer, M. I. and Naeem, S. (2011). Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology, 92, 1573–1581.CrossRefGoogle ScholarPubMed
Foley, J. A., Defries, R., Asner, G. P., et al. (2005). Global consequences of land use. Science, 309, 570–574.CrossRefGoogle ScholarPubMed
Folt, C. L., Chen, C. Y., Moore, M. V. and Burnaford, J. (1999). Synergism and antagonism among multiple stressors. Limnology and Oceanography, 44, 864–877.CrossRefGoogle Scholar
Frank, K. T., Petrie, B., Fisher, J. A. D. and Leggett, W. C. (2011). Transient dynamics of an altered large marine ecosystem. Nature, 477, 86–89.CrossRefGoogle ScholarPubMed
Fridley, J. D., Stachowicz, J. J., Naeem, S., et al. (2007). The invasion paradox: reconciling pattern and process in species invasions. Ecology, 88, 3–17.CrossRefGoogle ScholarPubMed
Fukami, T., Wardle, D. A., Bellingham, P. J. et al. (2006). Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecology Letters, 9, 1299–1307.CrossRefGoogle ScholarPubMed
Giller, P. S., Hillebrand, H., Berninger, U.-G., et al. (2004). Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos, 104, 423–436.CrossRefGoogle Scholar
Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. and Holt, R. D. (2010). A framework for community interactions under climate change. Trends in Ecology and Evolution, 25, 325–331.CrossRefGoogle ScholarPubMed
Green, P. T., O'Dowd, D. J., Abbott, K. L., et al. (2011). Invasional meltdown: invader-invader mutualism facilitates a secondary invasion. Ecology, 92, 1758–1768.CrossRefGoogle ScholarPubMed
Greig, H. S., Kratina, P., Thompson, P. L., et al. (2012). Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems. Global Change Biology, 18, 504–514.CrossRefGoogle Scholar
Gruber, N. and Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293–296.CrossRefGoogle ScholarPubMed
Gruner, D. S., Smith, J. E., Seabloom, E. W., et al. (2008). A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecology Letters, 11, 740–755.CrossRefGoogle ScholarPubMed
Guttal, V. and Jayaprakash, C. (2008). Changing skewness: an early warning signal of regime shifts in ecosystems. Ecology Letters, 11, 450–460.CrossRefGoogle ScholarPubMed
Haddad, N. M., Crutsinger, G. M., Gross, K., et al. (2009). Plant species loss decreases arthropod diversity and shifts trophic structure. Ecology Letters, 12, 1029–1039.CrossRefGoogle ScholarPubMed
Haddad, N. M., Crutsinger, G. M., Gross, K., Haarstad, J. and Tilman, D. (2011). Plant diversity and the stability of foodwebs. Ecology Letters, 14, 42–46.CrossRefGoogle ScholarPubMed
Halaj, J. and Wise, D. H. (2001). Terrestrial trophic cascades: How much do they trickle? The American Naturalist, 157, 262–281.CrossRefGoogle ScholarPubMed
Hall, S. R., Smith, V. H., Lytle, D. A. and Leibold, M. A. (2005). Constraints on primary producer N:P stoichiometry along N:P supply ratio gradients. Ecology, 86, 1894–1904.CrossRefGoogle Scholar
Hallock, P. (2001). Coral reefs, carbonate sediments, nutrients, and global change. In The History and Sedimentology of Ancient Reef Systems, ed. Stanley, G. D.. New York, NY: Kluwer Academic/Plenum Publishers, pp. 388–422.Google Scholar
Harmon, L. J., Matthews, B., Des Roches, S., et al. (2009). Evolutionary diversification in stickleback affects ecosystem functioning. Nature, 458, 1167–1170.CrossRefGoogle Scholar
Harrington, R., Woiwod, I. and Sparks, T. (1999). Climate change and trophic interactions. Trends in Ecology and Evolution, 14, 146–150.CrossRefGoogle ScholarPubMed
Hautier, Y., Seabloom, E. W., Borer, E. T., et al. (2014). Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 508(7497), 521–525.CrossRefGoogle ScholarPubMed
Hendriks, I. E., Duarte, C. M. and Álvarez, M. (2010). Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine, Coastal and Shelf Science, 86, 157–164.CrossRefGoogle Scholar
Hillebrand, H., Gruner, D. S., Borer, E. T., et al. (2007). Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proceedings of the National Academy of Sciences of the USA, 104, 10904–10909.CrossRefGoogle ScholarPubMed
Hillebrand, H., Borer, E. T., Bracken, M. E. S., et al. (2009). Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecology Letters, 12, 516–527.CrossRefGoogle ScholarPubMed
HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. and Theobald, E. J. (2013). How will biotic interactions influence climate change-induced range shifts? Annals of the New York Academy of Sciences, 1297, 112–125.Google ScholarPubMed
Hoffmann, A. A. and Sgro, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470, 479–485.CrossRefGoogle ScholarPubMed
Hofmann, G. E. and Todgham, A. E. (2010). Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology, 72, 127–145.CrossRefGoogle ScholarPubMed
Holt, R. and Loreau, M. (2001). Biodiversity and ecosystem functioning: the role of trophic interactions and the importance of system openness. In The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions, ed. Kinzig, A. P., Pacala, S. W. and Tilman, D.. Princeton, NJ: Princeton University Press, pp. 246–262.Google Scholar
Hooper, D. U., Adair, E. C., Cardinale, B. J., et al. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105–108.CrossRefGoogle ScholarPubMed
Hughes, A. R. and Stachowicz, J. J. (2004). Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proceedings of the National Academy of Sciences of the USA, 101, 8998–9002.CrossRefGoogle ScholarPubMed
Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. and Vellend, M. (2008). Ecological consequences of genetic diversity. Ecology Letters, 11, 609–623.CrossRefGoogle ScholarPubMed
Hughes, T. P., Carpenter, S., Rockström, J., Scheffer, M. and Walker, B. (2013). Multiscale regime shifts and planetary boundaries. Trends in Ecology and Evolution, 28, 389–395.CrossRefGoogle ScholarPubMed
Hulme, P. E., Pyšek, P., Jarošík, V., Pergl, J., Schaffner, U. and Vilà, M. (2013). Bias and error in understanding plant invasion impacts. Trends in Ecology and Evolution, 28, 212–218.CrossRefGoogle ScholarPubMed
IPCC. (2013). In Climate Change 2013: The Physical Basis, ed. Stocker, T. F., Qin, D., Plattner, G.-K., et al. Cambridge, UK: Cambridge University Press.
Isbell, F., Tilman, D., Polasky, S., Binder, S. and Hawthorne, P. (2013). Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecology Letters, 16, 454–460.CrossRefGoogle ScholarPubMed
Ives, A. R. and Carpenter, S. R. (2007). Stability and diversity of ecosystems. Science, 317, 58–62.CrossRefGoogle ScholarPubMed
Jain, M., Flynn, D. F. B., Prager, C. M., et al. (2014). The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecology and Evolution, 4, 104–112.CrossRefGoogle ScholarPubMed
Jamieson, M. A., Trowbridge, A. M., Raffa, K. F. and Lindroth, R. L. (2012). Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiology, 160, 1719–1727.CrossRefGoogle ScholarPubMed
Jeppesen, E., Merrhoff, M., Holmgren, K., et al. (2010). Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia, 646, 73–90.CrossRefGoogle Scholar
Johnson, N. C., Angelard, C., Sanders, I. R. and Kiers, E. T. (2013). Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters, 16, 140–153.CrossRefGoogle ScholarPubMed
Johnston, E. L. and Roberts, D. A. (2009). Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environmental Pollution, 157, 1745–1752.CrossRefGoogle ScholarPubMed
Keane, R. M. and Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution, 17, 164–170.CrossRefGoogle Scholar
Kimbro, D. L., Grosholz, E. D., Baukus, A. J., et al. (2009). Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades. Oecologia, 160, 563–575.CrossRefGoogle ScholarPubMed
Kimbro, D. L., Cheng, B. S. and Grosholz, E. D. (2013). Biotic resistance in marine environments. Ecology Letters, 16, 821–833.CrossRefGoogle ScholarPubMed
Knapp, A. K., Smith, M. D., Hobbie, S. E., et al. (2012). Past, present, and future roles of long-term experiments in the lter network. BioScience, 62, 377–389.CrossRefGoogle Scholar
Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A. and Holt, R. D. (2005). Trophic cascades across ecosystems. Nature, 437, 880–883.CrossRefGoogle ScholarPubMed
Knops, J. M. H., Naeem, S. and Reich, P. B. (2007). The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Global Change Biology, 13, 1960–1971.CrossRefGoogle Scholar
Kratina, P., Greig, H. S., Thompson, P. L., Carvalho-Pereira, T. S. A. and Shurin, J. B. (2012). Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology, 93, 1421–1430.CrossRefGoogle ScholarPubMed
Krauss, J., Bommarco, R., Guardiola, M., et al. (2010). Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecology Letters, 13, 597–605.CrossRefGoogle ScholarPubMed
Kroeker, K. J., Kordas, R. L., Crim, R. N. and Singh, G. G. (2010). Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13, 1419–1434.CrossRefGoogle ScholarPubMed
La Pierre, K. J. and Smith, M. D. (2014). Functional trait expression of grassland species shift with short- and long-term nutrient additions. Plant Ecology, DOI: 10.1007/511258–014–0438–4.Google Scholar
La Pierre, K. J., Harpole, W. S. and Suding, K. N. (2010). Strong feeding preference of an exotic generalist herbivore for an exotic forb: a case of invasional antagonism. Biological Invasions, 12, 3025–3031.CrossRefGoogle Scholar
Larson, A. J. and Paine, R. T. (2007). Ungulate herbivory: indirect effects cascade into the treetops. Proceedings of the National Academy of Sciences of the USA, 104, 5–6.CrossRefGoogle ScholarPubMed
Layman, C. A., Quattrochi, J. P., Payer, C. M. and Allgeier, J. E. (2007). Niche width collapse in a resiliant top predator following ecosystem fragmentation. Ecology Letters, 10, 937–944.CrossRefGoogle Scholar
Lee, M., Manning, P., Rist, J., Power, S. A. and Marsh, C. (2010). A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365, 2047–2056.CrossRefGoogle ScholarPubMed
Lenton, T. M. (2011). Early warning of climate tipping points. Nature Climate Change, 1, 201–209.CrossRefGoogle Scholar
Leroux, S. J. and Loreau, M. (2008). Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecology Letters, 11, 1147–1156.CrossRefGoogle ScholarPubMed
Leroux, S. J., Larrivée, M., Boucher-Lalonde, V., et al. (2013). Mechanistic models for the spatial spread of species under climate change. Ecological Applications, 23, 815–828.CrossRefGoogle ScholarPubMed
Levine, J. M., Adler, P. B. and Yelenik, S. G. (2004). A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters, 7, 975–989.CrossRefGoogle Scholar
Lindenmayer, D. B., Likens, G. E., Krebs, C. J. and Hobbs, R. J. (2010). Improved probability of detection of ecological “surprises.” Proceedings of the National Academy of Sciences of the USA, 107, 21957–21962.CrossRefGoogle Scholar
Lindroth, R. L. (2010). Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology, 36, 2–21.CrossRefGoogle ScholarPubMed
Loreau, M., Naeem, S., Inchausti, P., et al. (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804–808.CrossRefGoogle ScholarPubMed
Lyons, S., Smith, F. and Brown, J. (2004). Of mice, mastodons and men: human-mediated extinctions on four continents. Evolutionary Ecology Research, 6, 339–358.Google Scholar
Mantyka-Pringle, C. S., Martin, T. G. and Rhodes, J. R. (2011). Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology, 18, 1239–1252.Google Scholar
Marczak, L. B., Thompson, R. M. and Richardson, J. S. (2007). Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology, 88, 140–148.CrossRefGoogle ScholarPubMed
Matson, P., Lohse, K. A. and Hall, S. J. (2002). The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio, 31, 113–119.CrossRefGoogle ScholarPubMed
Medina, F. M., Bonnaud, E., Vidal, E., et al. (2011). A global review of the impacts of invasive cats on island endangered vertebrates. Global Change Biology, 17, 3503–3510.CrossRefGoogle Scholar
Menge, B. A. and Lubchenco, J. (1981). Community organization in temperate and tropical rocky intertidal habitats: prey refuges in relation to consumer pressure gradients. Ecological Monographs, 51, 429–450.CrossRefGoogle Scholar
Milchunas, D. G. and Lauenroth, W. (1995). Inertia in plant community structure: state changes after cessation of nutrient-enrichment stress. Ecological Applications, 5, 452–458.CrossRefGoogle Scholar
Milner-Gulland, E. J. and Bennett, E. L. (2003). Wild meat: the bigger picture. Trends in Ecology and Evolution, 18, 351–357.CrossRefGoogle Scholar
Mooney, H. A. and Cleland, E. E. (2001). The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences of the USA, 98, 5446–5451.CrossRefGoogle ScholarPubMed
Moore, J. C., Berlow, E. L., Coleman, D. C., et al. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters, 7, 584–600.CrossRefGoogle Scholar
Mouillot, D., Bellwood, D. R., Baraloto, C., et al. (2013). Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biology, 11, e1001569.CrossRefGoogle ScholarPubMed
Murphy, G. E. P. and Romanuk, T. N. (2012). A meta-analysis of community response predictability to anthropogenic disturbances. The American Naturalist, 180, 316–327.CrossRefGoogle ScholarPubMed
Musolin, D. L. (2007). Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Global Change Biology, 13, 1565–1585.CrossRefGoogle Scholar
Myers, R. A. and Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. Nature, 423, 280–283.CrossRefGoogle ScholarPubMed
Norbury, G., Byrom, A., Pech, R., et al. (2013). Invasive mammals and habitat modification interact to generate unforeseen outcomes for indigenous fauna. Ecological Applications, 23, 1707–1721.CrossRefGoogle ScholarPubMed
O'Connor, N. E. and Donohue, I. (2012). Environmental context determines multi-trophic effects of consumer species loss. Global Change Biology, 19, 431–440.Google ScholarPubMed
O'Gorman, E. J., Yearsley, J. M., Crowe, T. P., et al. (2011). Loss of functionally unique species may gradually undermine ecosystems. Proceedings of the Royal Society B: Biological Sciences, 278, 1886–1893.CrossRefGoogle ScholarPubMed
O'Gorman, E. J., Fitch, J. E. and Crowe, T. P. (2012). Multiple anthropogenic stressors and the structural properties of food webs. Ecology, 93, 441–448.CrossRefGoogle ScholarPubMed
Ostfeld, R. S. and Holt, R. D. (2004). Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Frontiers in Ecology and the Environment, 2, 13.CrossRefGoogle Scholar
Ovaskainen, O., Skorokhodova, S., Yakovleva, M., et al. (2013). Community-level phenological response to climate change. Proceedings of the National Academy of Sciences of the USA, 110, 13434–13439.CrossRefGoogle ScholarPubMed
Pace, M. L., Cole, J., Carpenter, S. R. and Kitchell, J. F. (1999). Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution, 14, 483–488.CrossRefGoogle ScholarPubMed
Packer, C., Brink, H., Kissui, B. M., et al. (2011). Effects of trophy hunting on lion and leopard populations in Tanzania. Conservation Biology, 25, 142–153.CrossRefGoogle ScholarPubMed
Paine, R. T., Tegner, M. J. and Johnson, E. A. (1998). Compounded perturbations yield ecological surprises. Ecosystems, 1, 535–545.CrossRefGoogle Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.CrossRefGoogle Scholar
Pauls, S. U., Nowak, C., Bálint, M. and Pfenninger, M. (2013). The impact of global climate change on genetic diversity within populations and species. Molecular Ecology, 22, 925–946.CrossRefGoogle ScholarPubMed
Pejchar, L. and Mooney, H. A. (2009). Invasive species, ecosystem services and human well-being. Trends in Ecology and Evolution, 24, 497–504.CrossRefGoogle ScholarPubMed
Peters, D. P. C., Bestelmeyer, B. T. and Turner, M. G. (2007). Cross–scale interactions and changing pattern–process relationships: consequences for system dynamics. Ecosystems, 10, 790–796.CrossRefGoogle Scholar
Petrin, Z., Englund, G. and Malmqvist, B. (2008). Contrasting effects of anthropogenic and natural acidity in streams: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 275, 1143–1148.CrossRefGoogle ScholarPubMed
Pimentel, D. (ed.) (2011). Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, 2nd edn. Boca Raton, FL: Taylor and Francis Group.CrossRefGoogle Scholar
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. and Levin, S. A. (2013). Marine taxa track local climate velocities. Science, 341, 1239–1242.CrossRefGoogle ScholarPubMed
Power, M. E. (1992). Top-down and bottom-up forces in food webs: do plants have primacy?Ecology, 73, 733–746.CrossRefGoogle Scholar
Ricciardi, A., Hoopes, M. F., Marchetti, M. P. and Lockwood, J. L. (2013). Progress toward understanding the ecological impacts of nonnative species. Ecological Monographs, 83, 263–282.CrossRefGoogle Scholar
Ripple, W. J. and Beschta, R. L. (2012). Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biological Conservation, 145, 205–213.CrossRefGoogle Scholar
Ripple, W. J., Estes, J. A., Beschta, R. L., et al. (2014). Status and ecological effects of the world's largest carnivores. Science, 343, 1241484.CrossRefGoogle ScholarPubMed
Root, T. L., Price, J. T., Hall, K. R., et al. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.CrossRefGoogle ScholarPubMed
Rosa, E. A., York, R. and Dietz, T. (2004). Tracking the anthropogenic drivers of ecological impacts. Ambio, 33, 509–512.CrossRefGoogle ScholarPubMed
Rosenzweig, M. (1971). Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 171, 385–387.CrossRefGoogle ScholarPubMed
Sala, O. E., Chapin, F. S., Armesto, J. J., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.Google ScholarPubMed
Santos, M. J., Anderson, L. W. and Ustin, S. L. (2011). Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional scale. Biological Invasions, 13, 443–457.CrossRefGoogle Scholar
Sardans, J., Rivas-Ubach, A. and Peñuelas, J. (2011). The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14, 33–47.Google Scholar
Sax, D. F., Stachowicz, J. J., Brown, J. H., et al. (2007). Ecological and evolutionary insights from species invasions. Trends in Ecology and Evolution, 22, 465–471.CrossRefGoogle ScholarPubMed
Scheffer, M. and Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution, 18, 648–656.CrossRefGoogle Scholar
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. and Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591–596.CrossRefGoogle ScholarPubMed
Scheffer, M., Bascompte, J., Brock, W. A., et al. (2009). Early-warning signals for critical transitions. Nature, 461, 53–59.CrossRefGoogle ScholarPubMed
Schiffers, K., Bourne, E. C., Lavergne, S., Thuiller, W. and Travis, J. M. J. (2012). Limited evolutionary rescue of locally adapted populations facing climate change. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368, 20120083.CrossRefGoogle Scholar
Schlaepfer, M. A., Sax, D. F. and Olden, J. D. (2011). The potential conservation value of non-native species. Conservation Biology, 25, 428–437.CrossRefGoogle ScholarPubMed
Schmitz, O. J. (2013). Global climate change and the evolutionary ecology of ecosystem functioning. Annals of the New York Academy of Sciences, 1297, 61–72.Google ScholarPubMed
Schmitz, O. J., Hamback, P. A. and Beckerman, A. P. (2000). Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. The American Naturalist, 155, 141–153.CrossRefGoogle ScholarPubMed
Schwarz, D., Matta, B. M., Shakir-Botteri, N. L. and McPheron, B. A. (2005). Host shift to an invasive plant triggers rapid animal hybrid speciation. Nature, 436, 546–549.CrossRefGoogle Scholar
Shurin, J. B., Borer, E. T., Seabloom, E. W., et al. (2002). A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters, 5, 785–791.CrossRefGoogle Scholar
Shurin, J. B., Gruner, D. S. and Hillebrand, H. (2006). All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings of the Royal Society B: Biological Sciences, 273, 1–9.CrossRefGoogle ScholarPubMed
Shurin, J. B., Clasen, J. L., Greig, H. S., Kratina, P. and Thompson, P. L. (2012). Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 3008–3017.CrossRefGoogle ScholarPubMed
Simberloff, D. and Von Holle, B. (1999). Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions, 1, 21–32.CrossRefGoogle Scholar
Simberloff, D., Martin, J.-L., Genovesi, P., et al. (2013). Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution, 28, 58–66.CrossRefGoogle ScholarPubMed
Sistla, S. A. and Schimel, J. P. (2012). Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytologist, 196, 68–78.CrossRefGoogle ScholarPubMed
Smith, M. D., Knapp, A. K. and Collins, S. L. (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279–3289.CrossRefGoogle ScholarPubMed
Srivastava, D. S. and Bell, T. (2009). Reducing horizontal and vertical diversity in a foodweb triggers extinctions and impacts functions. Ecology Letters, 12, 1016–1028.CrossRefGoogle Scholar
Srivastava, D. S. and Vellend, M. (2005). Biodiversity-ecosystem function research: is it relevant to conservation?Annual Review of Ecology, Evolution, and Systematics, 36, 267–294.CrossRefGoogle Scholar
Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G. and Mirotchnick, N. (2012). Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 15, 637–648.CrossRefGoogle ScholarPubMed
Stachowicz, J. J. (2001). Mutualism, facilitation, and the structure of ecological communities. BioScience, 51, 235–246.CrossRefGoogle Scholar
Sterner, R. W. and Elser, J. J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ: Princeton University Press.Google Scholar
Strayer, D. L., Eviner, V. T., Jeschke, J. M. and Pace, M. L. (2006). Understanding the long-term effects of species invasions. Trends in Ecology and Evolution, 21, 645–651.CrossRefGoogle ScholarPubMed
Strong, D. R. and Frank, K. T. (2010). Human involvement in food webs. Annual Review of Environment and Resources, 35, 1–23.CrossRefGoogle Scholar
Suding, K. N. and Hobbs, R. J. (2009). Threshold models in restoration and conservation: a developing framework. Trends in Ecology and Evolution, 24, 271–279.CrossRefGoogle ScholarPubMed
Suding, K. N., Collins, S. L., Gough, L., et al. (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the USA, 102, 4387–4392.CrossRefGoogle ScholarPubMed
Thackeray, S. J., Sparks, T. H., Frederiksen, M., et al. (2010). Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology, 16, 3304–3313.CrossRefGoogle Scholar
Thébault, E. and Loreau, M. (2005). The relationship between biodiversity and ecosystem functioning in food webs. Ecological Research, 21, 17–25.Google Scholar
Theurillat, J.-P. and Guisan, A. (2001). Potential impact of climate change on vegetation in the European Alps: a review. Climatic Change, 50, 77–109.CrossRefGoogle Scholar
Throop, H. L. and Lerdau, M. (2004). Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems, 7, 109–133.CrossRefGoogle Scholar
Tilman, D. (1996). Biodiversity: population versus ecosystem stability. Ecology, 77, 350–363.Google Scholar
Tilman, D., May, R. M., Lehman, C. L. and Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature, 371, 65–66.CrossRefGoogle Scholar
Townsend, C. R., Uhlmann, S. S. and Matthaei, C. D. (2008). Individual and combined responses of stream ecosystems to multiple stressors. Journal of Applied Ecology, 45, 1810–1819.CrossRefGoogle Scholar
Travis, J., Coleman, F. C., Auster, P. J., et al. (2013). Integrating the invisible fabric of nature into fisheries management. Proceedings of the National Academy of Sciences of the USA, 111, 581–584.Google ScholarPubMed
Treseder, K. K. (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 164, 347–355.CrossRefGoogle Scholar
Tylianakis, J. M., Didham, R. K., Bascompte, J. and Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351–1363.CrossRefGoogle ScholarPubMed
van Asch, M. and Visser, M. E. (2007). Phenology of forest caterpillars and their host trees: the importance of synchrony. Annual Review of Entomology, 52, 37–55.CrossRefGoogle Scholar
van der Putten, W. H., Ruiter, P. C. de, Martijn Bezemer, T., et al. (2004). Trophic interactions in a changing world. Basic and Applied Ecology, 5, 487–494.CrossRefGoogle Scholar
van der Putten, W. H., Macel, M. and Visser, M. E. (2010). Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365, 2025–2034.CrossRefGoogle ScholarPubMed
van der Zanden, M. J., Casselman, J. M. and Rasmussen, J. B. (1999). Stable isotope evidence for the food web consequences of species invasions in lakes. Nature, 401, 464–467.CrossRefGoogle Scholar
van Hengstum, T., Hooftman, D. A. P., Oostermeijer, J. G. B. and van Tienderen, P. H. (2014). Impact of plant invasions on local arthropod communities: a meta-analysis. Journal of Ecology, 102, 4–11.CrossRefGoogle Scholar
Vellend, M., Harmon, L. J., Lockwood, J. L., et al. (2007). Effects of exotic species on evolutionary diversification. Trends in Ecology and Evolution, 22, 481–488.CrossRefGoogle ScholarPubMed
Vellend, M., Baeten, L., Myers-Smith, I. H., et al. (2013). Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences of the USA, 110, 19456–19459.CrossRefGoogle ScholarPubMed
Veraart, A. J., Faassen, E. J., Dakos, V., et al. (2012). Recovery rates reflect distance to a tipping point in a living system. Nature, 481, 357–359.CrossRefGoogle Scholar
Vinebrooke, D. R., Cottingham, K. L., Norberg, M. S., et al. (2004). Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos, 104, 451–457.CrossRefGoogle Scholar
Vitousek, P. M., D'Antonio, C. M., Loope, L. L., Rejmanek, M. and Westbrooks, R. (1997a). Introduced species: a significant component of human-caused global change. New Zealand Journal of Ecology, 21, 1–16.Google Scholar
Vitousek, P. M., Mooney, H. A., Lubchenco, J. and Melillo, J. M. (1997b). Human domination of Earth's ecosystems. Science, 277, 494–499.CrossRefGoogle Scholar
Walker, B. (1992). Biodiversity and ecological redundancy. Conservation Biology, 6, 18–23.CrossRefGoogle Scholar
Walker, B., Kinzig, A. and Langridge, J. (1999). Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems, 2, 95–113.CrossRefGoogle Scholar
Walther, G., Post, E., Convey, P. and Menzel, A. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.CrossRefGoogle ScholarPubMed
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., et al. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.CrossRefGoogle ScholarPubMed
Wilbanks, T. J. and Kates, R. W. (1999). Global change in local places: how scale matters. Climatic Change, 43, 601–628.CrossRefGoogle Scholar
Winder, M. and Schindler, D. E. (2004). Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology, 85, 2100–2106.CrossRefGoogle Scholar
Winkler, D. W., Dunn, P. O. and McCulloch, C. E. (2002). Predicting the effects of climate change on avian life-history traits. Proceedings of the National Academy of Sciences of the USA, 99, 13595–13599.CrossRefGoogle ScholarPubMed
Woodward, G., Perkins, D. M. and Brown, L. E. (2010). Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365, 2093–2106.CrossRefGoogle ScholarPubMed
Worm, B. and Duffy, J. E. (2003). Biodiversity, productivity and stability in real food webs. Trends in Ecology and Evolution, 18, 628–632.CrossRefGoogle Scholar
Worm, B., Lotze, H. K., Hillebrand, H. and Sommer, U. (2002). Consumer versus resource control of species diversity and ecosystem functioning. Nature, 417, 848–851.CrossRefGoogle ScholarPubMed
Worm, B., Barbier, E. B., Beaumont, N., et al. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science, 314, 787–790.CrossRefGoogle ScholarPubMed
Xia, J. Y. and Wan, S. (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428–439.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×