Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T01:40:39.408Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2022

Annette Huber
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Gisbert Wüstholz
Affiliation:
Eidgenössische Technische Hochschule Zürich
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[ABV15]Ayoub, Joseph and Barbieri-Viale, Luca. Nori 1-motives. Math. Ann., 361(1–2):367402, 2015.Google Scholar
[ABVB20]Andreatta, F., Barbieri-Viale, L. and Bertapelle, A.. Motivic periods and Grothendieck arithmetic invariants. Adv. Math., 359:106880 (50pp), 2020. With an appendix by B. Kahn.CrossRefGoogle Scholar
[AEWH15]Ancona, Giuseppe, Enright-Ward, Stephen and Huber, Annette. On the motive of a commutative algebraic group. Doc. Math., 20:807858, 2015.Google Scholar
[Ahl53]Ahlfors, Lars V.. Complex analysis: An introduction to the theory of analytic functions of one complex variable. McGraw, New York, 1953.Google Scholar
[And96]André, Yves. G-fonctions et transcendance. J. Reine Angew. Math., 476:95125, 1996.Google Scholar
[And04]André, Yves. Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses] 17. Société Mathématique de France, Paris, 2004.Google Scholar
[And17]André, Yves. Groupes de Galois motiviques et périodes. Astérisque, (390):Exp. No. 1104, 126, 2017. Séminaire Bourbaki. Vol. 2015/2016. Exposés 1104–1119.Google Scholar
[And19]André, Yves. Letter to C. Bertolin, 2019. Appendix to: C. Bertolin, Third kind elliptic integrals and 1-motives. J. Pure Appl. Alg., 224(10):106396, 2020.Google Scholar
[And21]André, Yves. A note on 1-motives. Int. Math. Res. Not. IMRN, (3):2074–2080, 2021.CrossRefGoogle Scholar
[AO18]Asakura, Masanori and Otsubo, Noriyuki. CM periods, CM regulators and hypergeometric functions, I. Canad. J. Math., 70(3):481514, 2018.Google Scholar
[Apé79]Apéry, Roger. Irrationalité de ζ2 et ζ3. Astérisque, 61:1113, 1979. Luminy Conference on Arithmetic.Google Scholar
[Arc03a]Archinard, Natália. Exceptional sets of hypergeometric series. J. Number Theory, 101(2):244269, 2003.CrossRefGoogle Scholar
[Arc03b]Archinard, Natália. Hypergeometric abelian varieties. Canad. J. Math., 55(5):897932, 2003.Google Scholar
[Arn90]Arno’d, V. I.. Huygens and Barrow, Newton and Hooke: Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals. Birkhäuser, Basel, 1990. Trans. Eric J. F. Primrose.Google Scholar
[Ayo10]Ayoub, Joseph. Note sur les opérations de Grothendieck et la réalisation de Betti. J. Inst. Math. Jussieu, 9(2):225263, 2010.CrossRefGoogle Scholar
[Ayo14a]Ayoub, J.. Periods and the conjectures of Grothendieck and Kontsevich-Zagier. Eur. Math. Soc. Newsl., 91:1218, 2014.Google Scholar
[Ayo14b]Ayoub, Joseph. La réalisation étale et les opérations de Grothendieck. Ann. Sci. Éc. Norm. Supér. (4), 47(1):1145, 2014.CrossRefGoogle Scholar
[Ayo15]Ayoub, J.. Une version relative de la conjecture des périodes de Kontsevich-Zagier. Ann. of Math. (2), 181(3):905992, 2015.CrossRefGoogle Scholar
[Bak66]Baker, A.. Linear forms in the logarithms of algebraic numbers I, II, III. Mathematika, 13 (1966):204216; 14 (1967), 102–107; 14 (1967), 220–228; 1966.Google Scholar
[Bak69]Baker, A.. On the quasi-periods of the Weierstrass ζ-function. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1969:145157, 1969.Google Scholar
[Bar55]Barsotti, Iacopo. Un teorema di struttura per le varietà gruppali. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 18:4350, 1955.Google Scholar
[Ber76]Bertrand, Daniel. Séries d’Eisenstein et transcendance. Bull. Soc. Math. France, 104(3):309321, 1976.Google Scholar
[Ber02]Bertolin, Cristiana. Périodes de 1-motifs et transcendance. J. Number Theory, 97(2):204221, 2002.CrossRefGoogle Scholar
[Ber20]Bertolin, Cristiana. Third kind elliptic integrals and 1-motives. J. Pure Appl. Algebra, 224(10):106396, 28pp, 2020. With a letter of Y. André and an appendix by M. Waldschmidt.Google Scholar
[Bos21]Bostan, Alin. A proof of Archinard's identity, 2020/21. Email to the authors.Google Scholar
[BR01]Ball, Keith and Rivoal, Tanguy. Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs. Invent. Math., 146(1):193207, 2001.CrossRefGoogle Scholar
[Bri17]Brion, Michel. Commutative algebraic groups up to isogeny. Doc. Math., 22:679725, 2017.Google Scholar
[Bro12]Brown, F.. Mixed Tate motives over ℤ. Ann. of Math. (2), 175(2):949976, 2012.Google Scholar
[BVK16]Barbieri-Viale, Luca and Kahn, Bruno. On the derived category of 1-motives. Astérisque, 381: 254pp, 2016.Google Scholar
[BW07]Baker, A. and Wüstholz, G.. Logarithmic forms and Diophantine geometry, New Mathematical Monographs 9. Cambridge University Press, Cambridge, 2007.Google Scholar
[Car35]Carlitz, Leonard. On certain functions connected with polynomials in a Galois field. Duke Math. J., 1(2):137168, 1935.Google Scholar
[CC88]Chudnovsky, D. V. and Chudnovsky, G. V.. Approximations and complex multiplication according to Ramanujan. In Ramanujan revisited (Urbana-Champaign, Ill., 1987), pp. 375472. Academic Press, Boston, MA, 1988.Google Scholar
[Cha85]Chandrasekharan, K.. Elliptic functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 281. Springer-Verlag, Berlin, 1985.Google Scholar
[Cha17]Chang, Chieh-Yu. Periods, logarithms and multiple zeta values, 2017. To appear: Proceedings of first annual meeting of ICCM.Google Scholar
[Che60]Chevalley, C.. Une démonstration d’un théorème sur les groupes algébriques. J. Math. Pures Appl. (9), 39:307317, 1960.Google Scholar
[Chu80]Chudnovsky, G. V.. Algebraic independence of values of exponential and elliptic functions. In Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 339350. Acad. Sci. Fennica, Helsinki, 1980.Google Scholar
[CPTY10]Chang, Chieh-Yu, Papanikolas, Matthew A., Thakur, Dinesh S. and Yu, Jing. Algebraic independence of arithmetic gamma values and Carlitz zeta values. Adv. Math., 223(4):11371154, 2010.Google Scholar
[CY07]Chang, Chieh-Yu and Yu, Jing. Determination of algebraic relations among special zeta values in positive characteristic. Adv. Math., 216(1):321345, 2007.Google Scholar
[Del71]Deligne, Pierre. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math., 40:557, 1971.Google Scholar
[Del72]Deligne, Pierre. Les intersections complètes de niveau de Hodge un. Invent. Math., 15:237250, 1972.CrossRefGoogle Scholar
[Del74]Deligne, Pierre. Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math., 44:577, 1974.Google Scholar
[DG70]Demazure, Michel and Gabriel, Pierre. Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970. Avec un appendice, Corps de classes local par Michiel Hazewinkel.Google Scholar
[DG05]Deligne, P. and Goncharov, A. B.. Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. École Norm. Sup. (4), 38(1):156, 2005.Google Scholar
[DM82]Deligne, P. and Milne, J.. Tannakian categories. In Deligne, Pierre, Milne, James S., Ogus, Arthur and Shih, Kuang-yen (eds), Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics 900, pp. 101228. Springer-Verlag, Berlin–New York, 1982.Google Scholar
[Fri11]Fricke, Robert. Die elliptischen Funktionen und ihre Anwendungen. Erster Teil. Die funktionentheoretischen und analytischen Grundlagen. Springer, Heidelberg, 2011. Reprint of the 1916 original, With a foreword by the editors of Part III: Clemens Adelmann, Jürgen Elstrodt and Elena Klimenko.Google Scholar
[Gel34]Gelfond, A.O.. Sur le septième problème de Hilbert. Dokl. Akad. Nauk 2, Izvest. Akad. Nauk SSSR, pp. 623630, 1934.Google Scholar
[GH78]Griffiths, P. and Harris, J.. Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience, New York, 1978.Google Scholar
[GR78]Gross, Benedict H. and Rohrlich, David E.. Some results on the Mordell– Weil group of the Jacobian of the Fermat curve. Invent. Math., 44(3):201224, 1978.CrossRefGoogle Scholar
[Gro66]Grothendieck, Alexandre. On the de Rham cohomology of algebraic varieties. Inst. Hautes Études Sci. Publ. Math., 29:95103, 1966.Google Scholar
[Gro79]Gross, B. H.. On an identity of Chowla and Selberg. J. Number Theory, 11(3):344348, 1979.Google Scholar
[Gro20]Gross, Benedict H.. On the periods of Abelian varieties. ICCM Not., 8(2):1018, 2020.CrossRefGoogle Scholar
[Har75]Hartshorne, R.. On the de Rham cohomology of algebraic varieties. Inst. Hautes Études Sci. Publ. Math., 45:599, 1975.Google Scholar
[Har16]Harrer, Daniel. Comparison of the categories of motives defined by Voevodsky and Nori. PhD thesis, Albert-Ludwigs-Universität Freiburg, 2016. arXiv:1609.05516.Google Scholar
[Hat02]Hatcher, A.. Algebraic topology. Cambridge University Press, Cambridge, 2002.Google Scholar
[HMS17]Huber, Annette and Müller-Stach, Stefan. Periods and Nori motives, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 65. Springer, Cham, 2017. With contributions by Benjamin Friedrich and Jonas von Wangenheim.Google Scholar
[Hör21]Hörmann, Fritz. A note on formal periods, 2021. arXiv:2106.03803.Google Scholar
[Hub95]Huber, Annette. Mixed motives and their realization in derived categories, Lecture Notes in Mathematics 1604. Springer-Verlag, Berlin, 1995.Google Scholar
[Hub00]Huber, Annette. Realization of Voevodsky's motives. J. Algebraic Geom., 9(4):755799, 2000.Google Scholar
[Hub04]Huber, Annette. Corrigendum to: ‘Realization of Voevodsky's motives’ [J. Algebraic Geom. 9(4):755–799, 2000; MR1775312]. J. Algebraic Geom., 13(1):195207, 2004.CrossRefGoogle Scholar
[Hub20]Huber, Annette. Galois theory of periods. Münster J. Math., 13(2):573596, 2020.Google Scholar
[IKSY91]Iwasaki, Katsunori, Kimura, Hironobu, Shimomura, Shun, and Yoshida, Masaaki. From Gauss to Painlevé: A modern theory of special functions, Aspects of Mathematics 16. Friedr. Vieweg & Sohn, Braunschweig, 1991.CrossRefGoogle Scholar
[Kle81]Klein, Felix. Vorlesungen über die hypergeometrische Funktion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 39. Springer-Verlag, Berlin–New York, 1981. Reprint of the 1933 original.Google Scholar
[Kon99]Kontsevich, Maxim. Operads and motives in deformation quantization. Lett. Math. Phys., 48(1):3572, 1999.Google Scholar
[KS90]Kashiwara, M. and Schapira, P.. Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 292. Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel.Google Scholar
[KZ01]Kontsevich, Maxim and Zagier, Don. Periods. In Engquist, Björn and Schmid, Wilfried (eds), Mathematics unlimited – 2001 and beyond, pp. 771808. Springer, Berlin, 2001.Google Scholar
[Mil08]Milne, J.. Abelian varieties, 2008. Available at www.jmilne.org/math/CourseNotes/AV.pdf.Google Scholar
[Mum70]Mumford, David. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics 5. Published for the Tata Institute of Fundamental Research, Bombay. Oxford University Press, London, 1970.Google Scholar
[MW93]Masser, David and Wüstholz, Gisbert. Isogeny estimates for abelian varieties, and finiteness theorems. Ann. of Math. (2), 137(3):459472, 1993.Google Scholar
[Org04]Orgogozo, Fabrice. Isomotifs de dimension inférieure ou égale à un. Manuscripta Math., 115(3):339360, 2004.Google Scholar
[Sch34a]Schneider, Th.. Transzendenzuntersuchungen periodischer Funktionen II. Transzendenzeigenschaften elliptischer Funktionen. J. Reine Angew. Math., 172:7074, 1934.Google Scholar
[Sch34b]Schneider, Theodor. Transzendenzuntersuchungen periodischer Funktionen I. Transzendenz von Potenzen. J. Reine Angew. Math., 172:6569, 1934.Google Scholar
[Sch37]Schneider, Theodor. Arithmetische Untersuchungen elliptischer Integrale. Math. Ann., 113(1):113, 1937.CrossRefGoogle Scholar
[Sch57]Schneider, Theodor. Einführung in die transzendenten Zahlen, Vol. 81. Springer, Berlin, 1957.Google Scholar
[Ser60]Serre, Jean-Pierre. Morphismes universels et différentielles de troisième espèce. Séminaire Claude Chevalley 4 (19581959): 18, 1960. Available at <http://eudml.org/doc/110340>.Google Scholar
[Ser88]Serre, Jean-Pierre. Algebraic groups and class fields, Graduate Texts in Mathematics 117. Springer-Verlag, New York, 1988. Translated from the French.Google Scholar
[Sie32]Siegel, C. L.. Über die Perioden elliptischer Funktionen. J. Reine Angew. Math., 167:6269, 1932.Google Scholar
[Sie49]Siegel, Carl Ludwig. Transcendental numbers. Annals of Mathematics Studies 16. Princeton University Press, Princeton, NJ, 1949.Google Scholar
[Spa66]Spanier, E. H.. Algebraic topology. McGraw-Hill, New York, 1966.Google Scholar
[Tre17]Tretkoff, Paula. Periods and special functions in transcendence. Advanced Textbooks in Mathematics. World Scientific, Hackensack, NJ, 2017.CrossRefGoogle Scholar
[Tsi18]Tsimerman, Jacob. The André–Oort conjecture for 𝒜g. Ann. of Math. (2), 187(2):379390, 2018.Google Scholar
[VdP71]Van der Poorten, A. J.. On the arithmetic nature of definite integrals of rational functions. Proc. Amer. Math. Soc., 29:451456, 1971.Google Scholar
[Voe00]Voevodsky, Vladimir. Triangulated categories of motives over a field. In Voevodsky, Vladimir, Suslin, Andrei and Firedlander, Eric M. (eds), Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies 143, pp. 188238. Princeton University Press, Princeton, NJ, 2000.Google Scholar
[Wad46]Wade, L. I.. Transcendence properties of the Carlitz ψ-functions. Duke Math. J., 13:7985, 1946.Google Scholar
[War83]Warner, F. W.. Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics 94. Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition.CrossRefGoogle Scholar
[Wei85]Weierstrass, C.. Zu Lindemann's Abhandlung: ‘Über die Ludolph'sche Zahl’. Berl. Ber., 1885:10671086, 1885.Google Scholar
[Wel17]Wells, Raymond O. Jr. Differential and complex geometry: Origins, abstractions and embeddings. Springer, Cham, 2017.Google Scholar
[Wol88]Wolfart, Jürgen. Werte hypergeometrischer Funktionen. Invent. Math., 92(1):187216, 1988.Google Scholar
[Wüs84a]Wüstholz, G.. Recent progress in transcendence theory. In Number theory (Noordwijkerhout, 1983), Lecture Notes in Mathematics 1068, pp. 280296. Springer, Berlin, 1984.Google Scholar
[Wüs84b]Wüstholz, Gisbert. Transzendenzeigenschaften von Perioden elliptischer Integrale. J. Reine Angew. Math., 354:164174, 1984.Google Scholar
[Wüs87]Wüstholz, Gisbert. Algebraic groups, Hodge theory, and transcendence. In Proceedings of the International Congress of Mathematicians, Vols 1, 2 (Berkeley, Calif., 1986), pp. 476483. American Mathematical Society, Providence, RI, 1987.Google Scholar
[Wüs89]Wüstholz, Gisbert. Algebraische Punkte auf analytischen Untergruppen algebraischer Gruppen. Ann. of Math. (2), 129(3):501517, 1989.CrossRefGoogle Scholar
[Wüs12]Wüstholz, Gisbert. Leibniz’ conjecture, periods and motives. In Colloquium De Giorgi 2009, Colloquia 3, pp. 3342. Edizioni della Normale, Pisa, 2012.Google Scholar
[Wüs21]Wüstholz, Gisbert. Elliptic and abelian period spaces. Acta Arithmetica, 189:329357, 2021.Google Scholar
[WW85]Wolfart, Jürgen and Wüstholz, Gisbert. Der Überlagerungsradius gewisser algebraischer Kurven und die Werte der Betafunktion an rationalen Stellen. Math. Ann., 273(1):115, 1985.CrossRefGoogle Scholar
[Yu97]Yu, Jing. Analytic homomorphisms into Drinfeld modules. Ann. of Math. (2), 145(2):215233, 1997.CrossRefGoogle Scholar
[Zud01]Zudilin, V. V.. One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational. Uspekhi Mat. Nauk, 56(4(340)):149150, 2001.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Annette Huber, Albert-Ludwigs-Universität Freiburg, Germany, Gisbert Wüstholz, Eidgenössische Technische Hochschule Zürich
  • Book: Transcendence and Linear Relations of 1-Periods
  • Online publication: 05 May 2022
  • Chapter DOI: https://doi.org/10.1017/9781009019729.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Annette Huber, Albert-Ludwigs-Universität Freiburg, Germany, Gisbert Wüstholz, Eidgenössische Technische Hochschule Zürich
  • Book: Transcendence and Linear Relations of 1-Periods
  • Online publication: 05 May 2022
  • Chapter DOI: https://doi.org/10.1017/9781009019729.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Annette Huber, Albert-Ludwigs-Universität Freiburg, Germany, Gisbert Wüstholz, Eidgenössische Technische Hochschule Zürich
  • Book: Transcendence and Linear Relations of 1-Periods
  • Online publication: 05 May 2022
  • Chapter DOI: https://doi.org/10.1017/9781009019729.028
Available formats
×