Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T13:03:06.795Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 April 2022

Ruth E. Kastner
Affiliation:
University of Maryland, Baltimore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Transactional Interpretation of Quantum Mechanics
A Relativistic Treatment
, pp. 236 - 246
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerhalt, K., and Rzążewski, J. R. (1975). “Heisenberg-picture operator perturbation theory.” Physics Review 12:6, 2549.Google Scholar
Afshar, S. S. (2005). “Violation of the principle of complementarity, and its implications.” Proceedings of SPIE 5866, 229–44.Google Scholar
Akhiezer, A. I., and Berestetskii, V. B. (1965). Quantum Electrodynamics. New York: Interscience.Google Scholar
Allison, W. W. M., and Cobb, J. H. (1980). “Relativistic charged particle identification by energy loss.” Annual Review of Nuclear and Particle Science 30, 253–98.Google Scholar
Anandan, J. (1997). “Classical and quantum physical geometry.” In Cohen, R. S., Horne, M. and Stachel, J. (eds.), Potentiality, Entanglement and Passion-at-a-Distance: Quantum Mechanical Studies for Abner Shimony, vol. 2. Dordrecht: Kluwer, pp. 3152. Preprint: http://arxiv.org/PS_cache/gr-qc/pdf/9712/9712015v1.pdf.Google Scholar
Arndt, M., and Zeilinger, A. (2003). “Buckeyballs and the dual-slit experiment.” In Al-Khalili, J. (ed.), Quantum: A Guide for the Perplexed. London: Weidenfeld & Nicolson.Google Scholar
Auyang, S. (1995). How Is Quantum Field Theory Possible? New York: Oxford University Press.Google Scholar
Bacciagaluppi, G. (2016). “The role of decoherence in quantum mechanics.” In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Fall 2016 edition). https://plato.stanford.edu/archives/fall2016/entries/qm-decoherence/.Google Scholar
Bacciagaluppi, G., and Crull, E. (2009). “Heisenberg (and Schrödinger, and Pauli) on hidden variables.” http://philsci-archive.pitt.edu/archive/00004759/01/SHPMP_paper_07_%2010_09.pdf.Google Scholar
Barbour, J. B. (1982). “Relational concepts of space and time.” British Journal for the Philosophy of Science 33, 251–74.Google Scholar
Barnum, H. (1990). “Dieks’ realistic interpretation of quantum mechanics: a comment.” Preprint: philsci-archive.pitt.edu/2649/1/dieks.pdf.Google Scholar
Bell, J. S. (1990). “Against measurement.” Physics World, August, 33–41.Google Scholar
Bennett, C. L. (1987). “Precausal quantum mechanics.” Physical Review A 36, 4139–48.Google Scholar
Berestetskii, V., Lifschitz, E., and Petaevskii, L. (1971). Quantum Electrodynamics. Landau and Lifshitz Course of Theoretical Physics, vol. 4. Amsterdam: Elsevier.Google Scholar
Berestetskii, V., Lifschitz, E., and Petaevskii, L. (2004). Quantum Electrodynamics, 2nd ed. Landau and Lifshitz Course of Theoretical Physics, vol. 4. Amsterdam: Elsevier.Google Scholar
Berkovitz, J. (2002). “On causal loops in the quantum realm.” In Placek, T. and Butterfield, J. (eds.), Proceedings of the NATO Advanced Research Workshop on Modality, Probability and Bell’s Theorems. Dordrecht: Kluwer, pp. 233–55.Google Scholar
Bethe, H. (1930). “Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie.” Annalen der Physik 397, 325400.Google Scholar
Bialynicki-Birula, I. (1996). Coherence and Quantum Optics VII, ed. Eberly, J., Mandel, L., and Wolf, E.. New York: Plenum Press, p. 313.Google Scholar
Bjorken, J., and Drell, S. (1965). Relativistic Quantum Fields. New York: McGraw-Hill.Google Scholar
Bohr, A., Mottelson, B., and Ulfbeck, O. (2003). “The principle underlying quantum mechanics.” Foundations of Physics 34, 405–17.Google Scholar
Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. (1987). “Spacetime as a causal set.” Physics Review Letters 59, 521–24.Google Scholar
Bouchard, F., Harris, J., Mand, H., Bent, N., Santamato, E., Boyd, R. W., and Karimi, E. (2015). “Observation of quantum recoherence of photons by spatial propagation.” Scientific Reports 5, https://doi.org/10.1038/srep15330.Google Scholar
Braddon-Mitchell, D. (2004). “How do we know it is now now?Analysis 64, 199203.Google Scholar
Breitenbach, G. Schiller, S., and Mlynek, J. (1997). “Measurement of the quantum states of squeezed light.” Nature 387, 471.Google Scholar
Breuer, H.-P., and Petruccioni, F. (2000). Relativistic Quantum Measurement and Decoherence: Lectures of a Workshop Held at the Institute Italiano per gli Studi Filosofici. Berlin: Springer.Google Scholar
Broad, C. D. (1923). Scientific Thought. New York: Harcourt, Brace and Co.Google Scholar
Brown, H. (2002). Physical Relativity. Oxford: Oxford University Press.Google Scholar
Brown, H. R., and Wallace, D. (2005). “Solving the measurement problem: de Broglie–Bohm loses out to Everett.” Foundations of Physics 35, 517–40.Google Scholar
Brush, S. (1976). The Kind of Motion We Call Heat: History of the Kinetic Theory of Gases in the Nineteenth Century. Amsterdam: Elsevier.Google Scholar
Bub, J. (1997). Interpreting the Quantum World. Cambridge: Cambridge University Press.Google Scholar
Bub, J. (2017). “Why Bohr was (mostly) right.” Preprint. https://arxiv.org/pdf/1711.01604.pdf.Google Scholar
Bub, J., Clifton, R., and Monton, B. (1997). “The bare theory has no clothes.” In Healey, R. and Hellman, G. (eds.), Minnesota Studies in Philosophy of Science XVII. Minneapolis: University of Minnesota Press.Google Scholar
Butterfield, J. (2011). “On time chez Dummett.” Preprint: http://philsci-archive.pitt.edu/8848/1/ChezDummettJNB.pdf. (A shorter version is forthcoming in a special issue of European Journal of Analytical Philosophy in honor of Michael Dummett.)Google Scholar
Callender, C. (2002). “Thermodynamic asymmetry in time.” In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Spring 2002 edition). http://plato.stanford.edu/%20archives/win2001/entries/time-thermo/.Google Scholar
Callender, C. (2010). “Is time an illusion?Scientific American 302:6, 5865.Google Scholar
Chakravartty, A. (2011). “Scientific realism.” In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2011 edition), http://plato.stanford.edu/archives/sum2011/entries/scientific-realism/.Google Scholar
Chiatti, L. (1995). “The path integral and transactional interpretation.” Foundations of Physics 25, 481–90.Google Scholar
Clifton, R., and Halvorsen, H. (2000). “Are Rindler quanta real? Inequivalent concepts in quantum field theory.” Preprint: http://philsci-archive.pitt.edu/73/1/rindler.pdf.Google Scholar
Clifton, R., and Monton, B. (1999). “Losing your marbles in wavefunction collapse theories.” British Journal of Philosophical Science 50:4, 697717.Google Scholar
Cramer, J. G. (1980). “Generalized absorber theory and the Einstein–Podolsky–Rosen paradox.” Physical Review D 22, 362–76.Google Scholar
Cramer, J. G. (1983). “The arrow of electromagnetic time and the generalized absorber theory.” Foundations of Physics 13, 887902.Google Scholar
Cramer, J. G. (1986). “The transactional interpretation of quantum mechanics.” Reviews of Modern Physics 58, 647–88.Google Scholar
Cramer, J. G. (1988). “An overview of the transactional interpretation.” International Journal of Theoretical Physics 27, 227.Google Scholar
Cramer, J. G. (2005). “The quantum handshake: a review of the transactional interpretation of quantum mechanics.” Presented at “Time-Symmetry in Quantum Mechanics” Conference, Sydney, Australia, July 23, 2005. Available at: http://faculty/washington.%20edu/jcramer/PowerPoint/Sydney/_20050723/_a.ppt.Google Scholar
Davies, P. C. W. (1970). “A quantum theory of Wheeler–Feynman electrodynamics.” Proceedings of the Cambridge Philosophical Society 68, 751.Google Scholar
Davies, P. C. W. (1971). “Extension of Wheeler–Feynman quantum theory to the relativistic domain I. Scattering processes.” Journal of Physics A: General Physics 6, 836.Google Scholar
Davies, P. C. W. (1972). “Extension of Wheeler–Feynman quantum theory to the relativistic domain II. Emission processes.” Journal of Physics A: General Physics 5, 1025–36.Google Scholar
Davisson, C. J. (1928). “Are electrons waves?Franklin Institute Journal 205, 597.Google Scholar
de Broglie, L. (1923). Comptes Rendues 177, 507–10.Google Scholar
de Broglie, L. (1925). “Recherches sur la théorie des quanta.” Annales de Physique, 10th series, 3 (January–February).Google Scholar
Descartes, R. (1664). Le Monde, ou Traite de la Lumiere. Paris: Chez Michel Bobin.Google Scholar
Deutsch, D. (1999). “Quantum theory of probability and decisions.” Proceedings of the Royal Society of London A455, 3129–37.Google Scholar
Devitt, M. (1991). Realism and Truth, 2nd ed. Oxford: Blackwell.Google Scholar
DeWitt, B. (1970). “Quantum mechanics and reality: could the solution to the dilemma of indeterminism be a universe in which all possible outcomes of an experiment actually occur?Physics Today 23, 3040.Google Scholar
DeWitt, B. (2003). The Global Approach to Quantum Field Theory, vol. 2. Oxford: Oxford University Press.Google Scholar
Dirac, P. A. M. (1927). “The quantum theory of the emission and absorption of radiation.” Proceedings of the Royal Society, Series A 114, 243–65.Google Scholar
Dirac, P. A. M. (1938). Proceedings of the Royal Society, Series A 167, 148–68.Google Scholar
Dolce, D. (2011). “De Broglie deterministic dice and emerging relativistic quantum mechanics.” Journal of Physics: Conference Series 306, 012049.Google Scholar
Dorato, M., and Felline, L. (2011). “Scientific explanation and scientific structuralism.” In Bokulich, A. and Bokulich, P. (eds.), Scientific Structuralism. Boston Studies in Philosophy of Science. Berlin: Springer. Preprint: http://philsciarchive.pitt.edu/5095/%201/Structural_Explanationsfinal.pdf.Google Scholar
Dowe, P. (2000). Physical Causation. New York: Cambridge University Press.Google Scholar
Dugić, M., and Jeknić-Dugić, J. (2012). “Parallel decoherence in composite quantum systems.” Pramana 79, 199.Google Scholar
Dummett, M. (1964). “Bringing about the past.” Philosophical Review 73:3, 338–59.Google Scholar
Dyson, F. (2009). “Birds and frogs.” AMS Einstein Lecture. Notices of the AMS 56, 212–23.Google Scholar
Earman, J. (1986). “Why space is not a substance (at least not to first degree).” Pacific Philosophical Quarterly 67, 225–44.Google Scholar
Earman, J. (2008). “Reassessing the prospects for a growing block model of the universe.” International Studies in Philosophy of Science 22, 135–64.Google Scholar
Eddingtion, A. S. (1960). The Mathematical Theory of Relativity. Cambridge: Cambridge University Press.Google Scholar
Einstein, A. (1952). Relativity and the Problem of Space: The Special and the General Theory. 5th ed. (English trans.: 1954). Available at: www.relativitybook.com/resources/Einstein_space.html.Google Scholar
Einstein, A. (2010). Sidelights on Relativity. Whitefish, MT: Kessinger.Google Scholar
Einstein, A., Podolsky, B., and Rosen, N. (1935). “Can quantum-mechanical description of physical reality be considered complete?Physical Review 47:10, 777–80.Google Scholar
Eisberg, R., and Resnick, R. (1974). Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles. New York: John Wiley & Sons.Google Scholar
Ellerman, D. (2015). “Why delayed choice experiments do not imply retrocausality.” Quantum Studies: Mathematics and Foundations 2:2, 183–99.Google Scholar
Elitzur, A. C., and Vaidman, L. (1993). “Quantum mechanical interaction-free measurements.” Foundations of Physics 23, 987–97.Google Scholar
Ellis, G., and Rothman, T. (2010). “Time and spacetime: the crystallizing block universe.” International Journal of Theoretical Physics 49, 9881003.Google Scholar
Englert, F., and Brout, R. (1964). “Broken symmetry and the mass of gauge vector mesons.” Physical Review Letters 13, 321–23.Google Scholar
Everett, H. (1957). “Relative state formulation of quantum mechanics.” Reviews of Modern Physics 29, 454–62.Google Scholar
Falkenburg, B. (2010). Particle Metaphysics. Berlin: Springer.Google Scholar
Fearn, H. (2016). “A delayed choice quantum eraser explained by the transactional interpretation of quantum mechanics.” Foundations of Physics 46, 4469. DOI 10.1007/s10701-015-9956-8.Google Scholar
Feynman, R. P. (1950). “Mathematical formulation of the quantum theory of electromagnetic interaction.” Physical Review 80, 440–57.Google Scholar
Feynman, R. P. (1966). “The development of the space-time view of quantum electrodynamics.” Nobel Prize Lecture. Physics Today 19:8, 31. https://doi.org/10.1063/1.3048404.Google Scholar
Feynman, R. P. (1985). QED: The Strange Theory of Light and Matter. Princeton, NJ: Princeton University Press.Google Scholar
Feynman, R. P. (1998). Theory of Fundamental Processes. Boulder, CO: Westview Press.Google Scholar
Feynman, R. P., and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals. New York: McGraw-Hill.Google Scholar
Feynman, R. P., Leighton, R., and Sands, M. (1964). The Feynman Lectures on Physics, vol. 3. New York: Addison-Wesley.Google Scholar
Fields, C. (2011). “Classical system boundaries cannot be determined within quantum Darwinism.” Physics Essays 24, 518–22.Google Scholar
Forrest, P. (2004). “The real but dead past: a reply to Braddon–Mitchell.” Analysis 64, 358–62.Google Scholar
Frauchiger, D., and Renner, R. (2018). “Quantum theory cannot consistently describe the use of itself.” Nature Communications 9, article number 3711.Google Scholar
Friedman, M. (1986). Foundations of Space-Time Theories. Princeton, NJ: Princeton University Press.Google Scholar
Frigg, R. (2005). “Review of Kuhlman, Lyre and Wayne (2002).” Philosophy of Science 72, 511–14.Google Scholar
Ghirardi, G. C., Rimini, A., and Weber, T. (1986). “Unified dynamics for microscopic and macroscopic systems.” Physical Review D 34, 470.Google Scholar
Gisin, N. (2010). “The free will theorem, stochastic quantum dynamics and true becoming in relativistic quantum physics.” arXiv:1002.1392v1 (quant-ph).Google Scholar
Gisin, N. (2017). “Collapse. What else?” arXiv:1701.08300.Google Scholar
Grangier, P., Aspect, A., and Vigué, J. (1985). “Quantum interference effect for two atoms radiating a single photon.” Physics Review Letters 54:5, 418–21.Google Scholar
Greaves, H. (2004). “Understanding Deutsch’s probability in a deterministic multiverse.” Studies in History and Philosophy of Modern Physics 35, 423–56.Google Scholar
Grunbaum, A. (1973). Philosophical Problems of Space and Time. Dordrecht: Kluwer.Google Scholar
Gründler, G. (2015). “Remarks on Wheeler–Feynman absorber theory.” Preprint: https://arxiv.org/pdf/1501.03516.pdf.Google Scholar
Guralnik, G. S., Hagen, C. R., and Kibble, T. W. B. (1964). “Global conservation laws and massless particles.” Physical Review Letters 13, 585–87.Google Scholar
Hacking, I. (1983). Representing and Intervening: Introductory Topics in the Philosophy of Natural Science. Cambridge: Cambridge University Press.Google Scholar
Hardy, L. (1992a). “Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories.” Physical Review Letters 68:20, 2981–84.Google Scholar
Hardy, L. (1992b). “On the existence of empty waves in quantum theory.” Physical Letters A 167, 1116.Google Scholar
Heathwood, C. (2005). “The real price of the dead past: a reply to Forrest and to Braddon–Mitchell.” Analysis 65, 249–51.Google Scholar
Heisenberg, W. (1958). Physics and Philosophy. New York: Harper Row.Google Scholar
Heisenberg, W. (2007). Physics and Philosophy. Harper Perennial Modern Classics edition. New York: HarperCollins.Google Scholar
Hellwig, K. E., and Kraus, K. (1970). “Formal description of measurements in local quantum field theory.” Physical Review D 1, 566–71.Google Scholar
Henson, J. (2015). “How causal is quantum theory?” Talk given at New Directions in Physics Conference, Washington, DC. Sponsored by Committee on Philosophy and the Sciences, UMCP. carnap.umd.edu/philphysics/hensonslides.pptx.Google Scholar
Hestenes, D. (2010). “Electron time, mass and zitter.” Preprint: https://core.ac.uk/display/21250651.Google Scholar
Hestenes, D. (2019). “Quantum mechanics of the electron particle-clock.” Preprint: https://arxiv.org/pdf/1910.10478.pdf.Google Scholar
Higgs, P. W. (1964). “Broken symmetries and the masses of gauge bosons.” Physical Review Letters 13, 508–9.Google Scholar
Hoyle, F., and Narlikar, J. V. (1969). “The quantum mechanical response of the universe.” Annals of Physics 54, 207–39.Google Scholar
Hughes, R. I. G. (1989). The Structure and Interpretation of Quantum Mechanics. Cambridge, MA: Harvard University Press.Google Scholar
Jammer, M. (1993). Concepts of Space: The History of Theories of Space in Physics. New York: Dover.Google Scholar
Jaynes, E. T. (1990). “Probability in quantum theory.” In Zurek, W. H. (ed.), Complexity, Entropy, and the Physics of Information. Redwood City, CA: Addison-Wesley, p. 381. Revised and extended version available at: https://bayes.wustl.edu/etj/articles/prob.in.qm.pdf.Google Scholar
Joos, E. (1986). “Why do we observe a classical spacetime?Physics Letters A 116, 68.Google Scholar
Joos, E., and Zeh, H. D. (1985). “The emergence of classical properties through interaction with the environment.” Zeitschrift für Physik B 59, 223–43.Google Scholar
Kant, I. (1996). Critique of Pure Reason. Indianapolis, IN: Hackett. English translation, Werner Pluha.Google Scholar
Kastner, R. E. (1999). “Time-symmetrized quantum theory, counterfactuals, and ‘advanced action.’Studies in History and Philosophy of Modern Physics 30, 237–59.Google Scholar
Kastner, R. E. (2005). “Why the Afshar experiment does not refute complementarity.” Studies in History and Philosophy of Modern Physics 36:4, 649–58.Google Scholar
Kastner, R. E. (2008). “The transactional interpretation, counterfactuals, and weak values in quantum theory.” Studies in History and Philosophy of Modern Physics 39, 806–18.Google Scholar
Kastner, R. E. (2011a). “On delayed choice and contingent absorber experiments.” ISRN Mathematical Physics 2012, doi:10.5402/%202012/617291.Google Scholar
Kastner, R. E. (2011b). “The broken symmetry of time.” AIP Conference Proceedings 1408, 721. doi:10.1063/1.3663714.Google Scholar
Kastner, R. E. (2011c). “Quantum nonlocality: not eliminated by the Heisenberg picture.” Foundations of Physics 41, 1137–42. https://doi.org/10.1007/s10701-011-9536-5.Google Scholar
Kastner, R. E. (2013). “De Broglie waves as the ‘bridge of becoming’ between quantum theory and relativity.” Foundations of Science 18, 19. doi:10.1007/s10699-011-9273-4.Google Scholar
Kastner, R. E. (2014a). “Maudlin’s challenge refuted: reply to Lewis.” Studies in History and Philosophy of Modern Physics 47, 1520.Google Scholar
Kastner, R. E. (2014b). “Einselection of pointer observables: the new H-theorem?Studies in History and Philosophy of Modern Physics 48, 5658. Preprint: http://philsci-archive.pitt.edu/10757/.Google Scholar
Kastner, R. E. (2015). “Haag’s theorem as a reason to reconsider direct-action theories.” International Journal of Quantum Foundations 1:2, 5664. arXiv:1502.03814.Google Scholar
Kastner, R. E. (2016a). “Antimatter in the direct-action theory of fields.” Quanta 5:1, 1218. arXiv:1509.06040.Google Scholar
Kastner, R. E. (2016b). “Beyond complementarity.” In Kastner, R. E., Jeknic-Dugic, J., and Jaroszkiewicz, G. (eds.), Quantum Structural Studies. Singapore: World Scientific.Google Scholar
Kastner, R. E. (2016c). “The Born Rule and free will.” In DeRonde, C. et al. (eds.), Probing the Meaning of Quantum Mechanics: Superposition, Dynamics, Semantics and Identity. Singapore: World Scientific, pp. 231–43. Preprint: http://philsci-archive.pitt.edu/11893.Google Scholar
Kastner, R. E. (2017). “On quantum collapse as a basis for the second law of thermodynamics.” Entropy 2017, 19:3, 106. https://doi.org/10.3390/e19030106.Google Scholar
Kastner, R. E. (2018). “On the status of the measurement problem: recalling the relativistic transactional interpretation.” International Journal of Quantum Foundations 4:1, 128–41.Google Scholar
Kastner, R. E. (2019a). “The relativistic transactional interpretation: immune to the Maulin challenge.” In de Ronde, C. et al. (eds.), Probing the Meaning of Quantum Mechanics: Information, Contextuality, Relationalism and Entanglement. Singapore: World Scientific. arXiv:1610.04609.Google Scholar
Kastner, R. E. (2019b). “The delayed choice quantum eraser neither erases nor delays.” Foundations of Physics 49, 717. Preprint: https://arxiv.org/abs/1905.03137.Google Scholar
Kastner, R. E. (2019c). Adventures in Quantumland: Exploring Our Unseen Reality. Singapore: World Scientific.Google Scholar
Kastner, R. E. (2020a). “Decoherence in the Transactional Interpretation.” International Journal of Quantum Foundations 6:2, 2439.Google Scholar
Kastner, R. E. (2020b). “Unitary-only quantum theory cannot consistently describe the use of itself: on the Frauchiger–Renner paradox.” Foundations of Physics 50, 441–56. https://doi.org/10.1007/s10701-020-00336-6.Google Scholar
Kastner, R. E., and Cramer, J. G. (2018). “Quantifying absorption in the Transactional Interpretation.” International Journal of Quantum Foundations 4:3, 210–22.Google Scholar
Kastner, R. E., Kauffman, S., and Epperson, M. (2018). “Taking Heisenberg’s potentia seriously.” International Journal of Quantum Foundations 4:2, 158–72.Google Scholar
Kent, A. (2010). “One world versus many: the inadequacy of Everettian accounts of evolution, probability, and scientific confirmation.” In Saunders, S., Barrett, J., Kent, A., and Wallace, D. (eds.), Many Worlds? Everett, Quantum Theory and Reality. Oxford: Oxford University Press.Google Scholar
Kiefer, C., and Joos, E. (1999). “Decoherence: concepts and examples.” In Blanchard, P. and Jadczyk, A. (eds.), Quantum Future from Volta and Como to the Present and Beyond. Lecture Notes in Physics, vol. 517. Berlin: Springer.Google Scholar
Kim, Y.-H., Yu, R., Kulik, S. P., Shih, Y. H., and Scully, M. (2000). “A delayed choice quantum eraser.” Physical Review Letters 84, 15.Google Scholar
Kokorowski, D., Cronin, A. D., Roberts, T. D., and Pritchard, D. E. (2000). “From single to multiple-photon decoherence in an atom interferometer.” Physics Review Letters 86:11. DOI: 10.1103/PhysRevLett.86.2191. Preprint: arxiv:quant-ph/0009044.Google Scholar
Kondo, J. (1964). “Resistance minimum in dilute magnetic alloys.” Progress of Theoretical Physics 32, 37.Google Scholar
Konopinski, E. J. (1980). Electromagnetic Fields and Relativistic Particles. New York: McGraw-Hill.Google Scholar
Knuth, K., and Bahreyni, N. (2012). “A potential foundation for emergent space-time.” Journal of Mathematical Physics 55, 112501.Google Scholar
Ladyman, J. (2009). “Structural realism.” In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2009 edition). http://plato.stanford.edu/archives/%20sum2009/entries/structural-realism/.Google Scholar
Lamb, W., and Retherford, R. (1947). “Fine structure of the hydrogen atom by a microwave method.” Physical Review 72:3, 241–43.Google Scholar
Landau, L. D., and Peierls, R. (1931). “Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie.” Zeitschrift für Physik 69, 56.Google Scholar
Lewis, D. (1986). On the Plurality of Worlds. Oxford: Blackwell.Google Scholar
Mach, E. (1914). The Analysis of Sensations, and the Relation of the Physical to the Psychical. Open Court.Google Scholar
MacKinnon, E. (2005). “Generating ontology: from quantum mechanics to quantum field theory.” Preprint: http://philsci-archive.pitt.edu/2467/1/Ontology.pdf.Google Scholar
Mandel, L. (1966). “Configuration-space photon number operators in quantum optics.” Physical Review 144, 1071.Google Scholar
Mandl, F., and Shaw, G. (1990). Quantum Field Theory. New York: John Wiley & Sons.Google Scholar
Marchildon, L. (2006). “Causal loops and collapse in the transactional interpretation of quantum mechanics.” Physics Essays 19, 422.Google Scholar
Marchildon, L. (2008). “On relativistic element of reality.” Foundations of Physics 38, 804–17.Google Scholar
Martin, E. (1991). “The egg and the sperm: how science has constructed a romance based on stereotypical male/female roles.” Signs 16, 485501. https://web.stanford.edu/~eckert/PDF/Martin1991.pdf.Google Scholar
Maudlin, T. (1995). “Why Bohm’s theory solves the measurement problem.” Philosophy of Science 62, 479–83.Google Scholar
Maudlin, T. (2002). Quantum Nonlocality and Relativity: Metaphysical Intimations of Modern Physics, 2nd ed. Oxford: Wiley-Blackwell.Google Scholar
McMullin, E. (1984). “A case for scientific realism.” In Leplin, J. (ed.), Scientific Realism. Berkeley: University of California Press.Google Scholar
McTaggart, J. E. (1908). “The unreality of time.” Mind: A Quarterly Review of Psychology and Philosophy 17, 456–73.Google Scholar
Mermin, D. (1989). “What’s wrong with this pillow?Physics Today 42:4, 9.Google Scholar
Mueller, T. M. (2015). “The Boussinesq debate: reversibility, instability, and free will.” Science in Context 28:4, 613–35.Google Scholar
Narlikar, J. (1968). “On the general correspondence between field theories and the theories of direct particle interaction.” Mathematical Proceedings of the Cambridge Philosophical Society 64, 1071.Google Scholar
Neihardt, J. G. (1972). Black Elk Speaks. New York: Washington Square Press.Google Scholar
Norton, J. (2010). “Time really passes.” Humana Mente: Journal of Philosophical Studies 13, 2334.Google Scholar
Omnès, R. (1997). “General theory of the decoherence effect in quantum mechanics.” Physics Review A 56, 3383–94.Google Scholar
Orozco, L. (2002). “A double-slit quantum eraser experiment.” http://grad.physics.sunysb.edu/~amarch/.Google Scholar
Pauli, W. (1928). Festschrift zum 60sten Geburtstag A. Sommerfelds. Leipzig: Hirzel, p. 30.Google Scholar
Pearle, P. (1997). ‘True collapse and false collapse.” In Feng, Da Hsuan and Hu, Bei Lok (eds.), Quantum Classical Correspondence: Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, Philadelphia, PA, USA, September 8–11, 1994. Cambridge, MA: International Press, pp. 5168.Google Scholar
Pegg, D. T. (1975). “Absorber theory of radiation.” Reports on Progress in Physics 38, 1339.Google Scholar
Penrose, R. (1989). The Emperor’s New Mind: Concerning Computers, Minds, and Laws of Physics. Oxford: Oxford University Press.Google Scholar
Petersen, A. (1963). “The philosophy of Niels Bohr.” Bulletin of the Atomic Scientists 19:7.Google Scholar
Price, H. (1996). Time’s Arrow and Archimedes’ Point. Oxford: Oxford University Press.Google Scholar
Psillos, S. (1999). Scientific Realism: How Science Tracks Truth. London: Routledge.Google Scholar
Psillos, S. (2003). Causation and Explanation. Montreal: McGill-Queens University Press.Google Scholar
Pusey, M., Barrett, J., and Rudolph, T. (2011). “The quantum state cannot be interpreted statistically.” Preprint: quant-ph/1111.3328.Google Scholar
Putnam, H. (1967). “Time and physical geometry.” Journal of Philosophy 64, 240–47. (Reprinted in Putnam’s Collected Papers, vol. 1 [Cambridge: Cambridge University Press, 1975].)Google Scholar
Quine, W. (1953). From a Logical Point of View. Boston: Harvard University Press.Google Scholar
Redhead, M. (1995). “More ado about nothing.” Foundations of Physics 25, 123–37.Google Scholar
Reichenbach, H. (1953). “La signification philosophique du dualism ondes-corpuscles.” In George, Andre (ed.), Louis de Broglie, Physicien et Penseur. Paris: Michel Albin, p. 133.Google Scholar
Reichenbach, H. (1958). The Philosophy of Space and Time. Trans. Reichenbach, M. and Freund, J.. New York: Dover.Google Scholar
Rietdijk, C. W. (1966). “A rigorous proof of determinism derived from the special theory of relativity.” Philosophy of Science 33, 341–44.Google Scholar
Rohrlich, F. (1973). “The electron: development of the first elementary particle theory.” In Mehra, J. (ed.), The Physicist’s Conception of Nature. Dordrecht: D. Reidel, pp. 331–69.Google Scholar
Rovelli, C. (1996). “Relational quantum mechanics.” International Journal of Theoretical Physics 35:8, 1637–78.Google Scholar
Russell, B. (1913). “On the notion of cause.” Proceedings of the Aristotelian Society 13, 126.Google Scholar
Russell, B. (1948). Human Knowledge. New York: Simon and Schuster.Google Scholar
Russell, B. (1959). The Problems of Philosophy. Oxford: Oxford University Press.Google Scholar
Saari, P. (2011). “Photon localization.” In Lyagushyn, S. (ed.), Quantum Optics and Laser Experiments. Rijeka: InTech Open, p. 49.Google Scholar
Sakurai, J. J. (1973). Advanced Quantum Mechanics, 4th ed. New York: Addison-Wesley.Google Scholar
Sakurai, J. J. (1984). Modern Quantum Mechanics. New York: Addison-Wesley.Google Scholar
Salmon, W. (1984). Scientific Explanation and the Causal Structure of the World. Princeton, NJ: Princeton University Press.Google Scholar
Salmon, W. (1997). “Causality and explanation: a reply to two critiques.” Philosophy of Science 64:3, 461–77.Google Scholar
Savitt, S. (2008). “Being and becoming in modern physics.” In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2008 edition). http://plato.stanford.edu/%20archives/win2008/entries/spacetime-bebecome/.Google Scholar
Schatten, G., and Schatten, H. (1984). “The energetic egg.” Medical World News 23 (January 23).Google Scholar
Schlosshauer, M., and Fine, A. (2003). “On Zurek’s derivation of the Born Rule.” Foundations of Physics 35:2, 197213.Google Scholar
Schrödinger, E. (1935). “The present situation in quantum mechanics.” Proceedings of the American Philosophical Society 124, 323–38.Google Scholar
Seiberg, N. (2007). “Emergent spacetime.” In Gross, D., Henneaux, M., and Sevrin, A. (eds.), The Quantum Structure of Space and Time: Proceedings of the 23rd Solvay Conference. Singapore: World Scientific, pp. 163213.Google Scholar
Seibt, Johanna. (2020). “Process philosophy.” In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2020 edition). https://plato.stanford.edu/archives/sum2020/entries/process-philosophy/.Google Scholar
Shimony, A. (2009). “Bell’s theorem.” In E. N. Zalta (ed.), Stanford Encyclopedia of Philosophy (Summer 2009 edition). https://plato.stanford.edu/archives/sum2009/entries/bell-theorem/.Google Scholar
Silberstein, M., Stuckey, W. M., and Cifone, M. (2008). “Why quantum mechanics favors adynamical and acausal interpretations such as relational blockworld over backwardly causal and time-symmetric rivals.” Studies in History and Philosophy of Modern Physics 39, 736–51.Google Scholar
Sklar, L. (1974). Space, Time and Spacetime. Berkeley: University of California Press.Google Scholar
Sklar, L. (2015). “Philosophy of statistical mechanics.” In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Fall 2015 edition). http://plato.stanford.edu/archives/fall2015/entries/statphys-statmech/.Google Scholar
Sorkin, R. D. (2003). “Causal sets: discrete gravity (notes for the Valdivia Summer School).” In A. Gomberoff and D. Marolf (eds.), Proceedings of the Valdivia Summer School. Preprint version.Google Scholar
Spekkens, R. (2007). “Evidence for the epistemic view of quantum states: a toy theory.” Physical Review A 75, 032110.Google Scholar
Stapp, H. (2011). “Retrocausal effects as a consequence of orthodox quantum mechanics refined to accommodate the principle of sufficient reason.” Preprint: http://arxiv.org/%20abs/1105.2053.Google Scholar
Stein, H. (1968). “On Einstein–Minkowski space-time.” The Journal of Philosophy 65, 523.Google Scholar
Stein, H. (1991). “On relativity theory and openness of the future.” Philosophy of Science 58, 147–67.Google Scholar
Stewart, I., and Golubitsky, M. (1992). Fearful Symmetry: Is God a Geometer? Oxford: Blackwell.Google Scholar
Sutherland, R. (2008). “Causally symmetric Bohm model.” Studies in History and Philosophy of Modern Physics 39, 782805.Google Scholar
Teller, P. (1997). An Interpretive Introduction to Quantum Field Theory. Princeton, NJ: Princeton University Press.Google Scholar
Teller, P. (2002). “So what is the quantum field?” In Kuhlman, M., Lyre, H., and Wayne, A. (eds.), Ontological Aspects of Quantum Field Theory. Singapore: World Scientific, pp. 145–60.Google Scholar
Tipler, F. (1975). “Direct-action electrodynamics and magnetic monopoles.” Il Nuovo Cimento B 28:2, 446–52 (197508).Google Scholar
Tooley, M. (1997). Time, Tense and Causation. Oxford: Clarendon Press.Google Scholar
Toral, R. (2015). “Introduction to master equations.” Preprint: https://ifisc.uib-csic.es/raul/CURSOS/SP/Introduction_to_master_equations.pdf.Google Scholar
Tumulka, R. (2006). “Collapse and relativity.” In Bassi, A., Duerr, D., Weber, T., and Zanghi, N. (eds.), Quantum Mechanics: Are There Quantum Jumps? AIP Conference Proceedings 844. College Park, MD: American Institute of Physics, pp. 340–52. Preprint: http://arxiv.org/%20PS_cache/quant-ph/pdf/0602/0602208v2.pdf.Google Scholar
Valentini, A. (1992). “On the pilot-wave theory of classical, quantum and subquantum physics.” PhD dissertation, International School for Advanced Studies.Google Scholar
van Fraassen, B. (1991). Quantum Mechanics: An Empiricist View. Oxford: Oxford University Press.Google Scholar
van Fraassen, B. (2004). The Empiricist Stance. New Haven, CT: Yale University Press.Google Scholar
von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Julius Springer.Google Scholar
Wallace, D. (2006). “Epistemology quantized: circumstances in which we should come to believe in the Everett interpretation.” British Journal for the Philosophy of Science 57, 655–89.Google Scholar
Walsh, J., and Knuth, K. (2015). “An information physics derivation of equations of geodesic form from the influence network.” Presented at the MaxEnt 2015 Conference, Bayesian Inference and Maximum Entropy Methods in Science and Engineering. https://arxiv.org/abs/1604.08112.Google Scholar
Weingard, R. (1972). “Relativity and the reality of past and future events.” British Journal for the Philosophy of Science 23, 119–21.Google Scholar
Wesley, D., and Wheeler, J. A. (2003). “Towards an action-at-a-distance concept of spacetime.” In Ashtekar, A. et al. (eds.), Revisiting the Foundations of Relativistic Physics: Festschrift in Honor of John Stachel, Boston Studies in the Philosophy and History of Science (Book 234). Dordrecht: Kluwer Academic Publishers, pp. 421–36.Google Scholar
Wesson, P., and Overduin, J. M. (2019). Principles of Space-Time-Matter. Singapore: World Scientific.Google Scholar
Wheeler, J. A. (1978). “The ‘past’ and the ‘delayed-choice double-slit experiment.’” In Marlow, A. R. (ed.), Mathematical Foundations of Quantum Theory. Amsterdam: Academic Press, pp. 948.Google Scholar
Wheeler, J. A. (1990). A Journey into Gravity and Spacetime. Scientific American Library. New York: W. H. Freeman.Google Scholar
Wheeler, J. A., and Feynman, R. P. (1945). “Interaction with the absorber as the mechanism of radiation.” Reviews of Modern Physics 17, 157–61.Google Scholar
Wheeler, J. A., and Feynman, R. P. (1949). “Classical electrodynamics in terms of direct interparticle action.” Reviews of Modern Physics 21, 425–33.Google Scholar
Wheeler, J. A., and Zurek, W. H. (1983). Quantum Theory and Measurement. Princeton Series in Physics. Princeton, NJ: Princeton University Press.Google Scholar
Wilson, K. G. (1971). “Feynman graph expansion for critical exponents.” Physical Review Letters 28, 548.Google Scholar
Wilson, K. G. (1974). “Confinement of quarks.” Physical Review D 10, 2445.Google Scholar
Wilson, K. G. (1975). “The renormalization group: critical phenomena and the Kondo problem.” Reviews of Modern Physics 47, 773840.Google Scholar
Wilzbach, M., Haase, A., Shwartz, M., Heine, D., Wicker, K., Liu, X., Brenner, K.-H., Groth, S., Fernholz, T., Hessmo, B., and Schmiedmayer, J. (2006). “Detecting neutral atoms on an atom chip.” Fortschritte der Physik 54, 746–64. doi:10.1002/prop.200610323.Google Scholar
Worrall, J. (1989). “Structural realism: the best of both worlds?Dialectica 43, 99124.Google Scholar
Zanardi, P. (2001). “Virtual quantum subsystems.” Physics Review Letters 87, 077901.Google Scholar
Zee, A. (2010). Quantum Field Theory in a Nutshell. Princeton, NJ: Princeton University Press.Google Scholar
Zeh, H. D. (1989). The Physical Basis of the Direction of Time. Berlin: Springer-Verlag.Google Scholar
Zeilinger, A. (1996). “On the interpretation and philosophical foundations of quantum mechanics.” In Ketvel, U. et al. (eds.), Vastakohtien todellisuus. Festschrift for K. V. Laurikainen. Helsinki: Helsinki University Press.Google Scholar
Zeilinger, A. (2005). “The message of the quantum.” Nature 438, 743. https://doi.org/10.1038/438743a.Google Scholar
Zurek, W. H. (2003). “Decoherence, einselection, and the quantum origins of the classical.” Reviews of Modern Physics 75, 715–75.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ruth E. Kastner, University of Maryland, Baltimore
  • Book: The Transactional Interpretation of Quantum Mechanics
  • Online publication: 22 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781108907538.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ruth E. Kastner, University of Maryland, Baltimore
  • Book: The Transactional Interpretation of Quantum Mechanics
  • Online publication: 22 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781108907538.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ruth E. Kastner, University of Maryland, Baltimore
  • Book: The Transactional Interpretation of Quantum Mechanics
  • Online publication: 22 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781108907538.011
Available formats
×