Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T01:18:46.080Z Has data issue: false hasContentIssue false

8 - The Reconstruction Conjectures

Published online by Cambridge University Press:  05 June 2016

Josef Lauri
Affiliation:
University of Malta
Raffaele Scapellato
Affiliation:
Politecnico di Milano
Get access

Summary

The Reconstruction Problem is considered one of the foremost unsolved problems in graph theory. In this chapter we shall define the two principal variants of this problem, and we shall give some of the most basic results related to these two problems. We shall also try to convey the flavour of what it takes to reconstruct a class of graphs and how this is related to important graph theoretic properties of the class.

A look at some of the surveys on the Reconstruction Problem, for example, [31, 32, 140, 203], will show that a considerable number of papers on this topic have been published. Also, many reconstruction proofs involve ad hoc case-by-case analysis; at this stage of our knowledge of the problem, it seems impossible to simplify these proofs significantly. It is therefore not the aim of the remaining chapters of this book to give anything like an exhaustive treatment of these results. The reader can see a more complete coverage of the Reconstruction Problem by consulting surveys such as the ones cited earlier and then going to the papers themselves where the results were obtained.

What we shall do in this chapter is give those basic definitions, techniques and results which can be presented succinctly and which are often used in most work on the reconstruction of graphs. We shall also discuss in some detail the reconstruction of particular classes of graphs. In the next chapter we shall look at variations of the main Reconstruction Problem that have been formulated, and in the final two chapters we shall present two general techniques that have been developed and that allow a systematic treatment of reconstruction rather than an ad hoc one for particular graph classes. In these four chapters we shall also try to emphasise as much as possible those aspects of the reconstruction of graphs that are related to symmetry properties of graphs, and we shall as much as possible try to present results that use ideas and theorems that we have already presented in earlier chapters.

Definitions

Given a graph G, the collection of its vertex-deleted subgraphs Gv for all vV(G) is called the deck of G and is denoted by D(G).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×