Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Introduction
- 2 Effects of fisheries on ecosystems: just another top predator?
- 3 Physical forcing in the southwest Atlantic: ecosystem control
- 4 The use of biologically meaningful oceanographic indices to separate the effects of climate and fisheries on seabird breeding success
- 5 Linking predator foraging behaviour and diet with variability in continental shelf ecosystems: grey seals of eastern Canada
- 6 Distribution and foraging interactions of seabirds and marine mammals in the North Sea: multispecies foraging assemblages and habitat-specific feeding strategies
- 7 Spatial and temporal variation in the diets of polar bears across the Canadian Arctic: indicators of changes in prey populations and environment
- 8 Biophysical influences on seabird trophic assessments
- 9 Consequences of prey distribution for the foraging behaviour of top predators
- 10 Identifying drivers of change: did fisheries play a role in the spread of North Atlantic fulmars?
- 11 Monitoring predator–prey interactions using multiple predator species: the South Georgia experience
- 12 Impacts of oceanography on the foraging dynamics of seabirds in the North Sea
- 13 Foraging energetics of North Sea birds confronted with fluctuating prey availability
- 14 How many fish should we leave in the sea for seabirds and marine mammals?
- 15 Does the prohibition of industrial fishing for sandeels have any impact on local gadoid populations?
- 16 Use of gannets to monitor prey availability in the northeast Atlantic Ocean: colony size, diet and foraging behaviour
- 17 Population dynamics of Antarctic krill Euphausia superba at South Georgia: sampling with predators provides new insights
- 18 The functional response of generalist predators and its implications for the monitoring of marine ecosystems
- 19 The method of multiple hypotheses and the decline of Steller sea lions in western Alaska
- 20 Modelling the behaviour of individuals and groups of animals foraging in heterogeneous environments
- 21 The Scenario Barents Sea study: a case of minimal realistic modelling to compare management strategies for marine ecosystems
- 22 Setting management goals using information from predators
- 23 Marine reserves and higher predators
- 24 Marine management: can objectives be set for marine top predators?
- Index
- References
12 - Impacts of oceanography on the foraging dynamics of seabirds in the North Sea
Published online by Cambridge University Press: 31 July 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Introduction
- 2 Effects of fisheries on ecosystems: just another top predator?
- 3 Physical forcing in the southwest Atlantic: ecosystem control
- 4 The use of biologically meaningful oceanographic indices to separate the effects of climate and fisheries on seabird breeding success
- 5 Linking predator foraging behaviour and diet with variability in continental shelf ecosystems: grey seals of eastern Canada
- 6 Distribution and foraging interactions of seabirds and marine mammals in the North Sea: multispecies foraging assemblages and habitat-specific feeding strategies
- 7 Spatial and temporal variation in the diets of polar bears across the Canadian Arctic: indicators of changes in prey populations and environment
- 8 Biophysical influences on seabird trophic assessments
- 9 Consequences of prey distribution for the foraging behaviour of top predators
- 10 Identifying drivers of change: did fisheries play a role in the spread of North Atlantic fulmars?
- 11 Monitoring predator–prey interactions using multiple predator species: the South Georgia experience
- 12 Impacts of oceanography on the foraging dynamics of seabirds in the North Sea
- 13 Foraging energetics of North Sea birds confronted with fluctuating prey availability
- 14 How many fish should we leave in the sea for seabirds and marine mammals?
- 15 Does the prohibition of industrial fishing for sandeels have any impact on local gadoid populations?
- 16 Use of gannets to monitor prey availability in the northeast Atlantic Ocean: colony size, diet and foraging behaviour
- 17 Population dynamics of Antarctic krill Euphausia superba at South Georgia: sampling with predators provides new insights
- 18 The functional response of generalist predators and its implications for the monitoring of marine ecosystems
- 19 The method of multiple hypotheses and the decline of Steller sea lions in western Alaska
- 20 Modelling the behaviour of individuals and groups of animals foraging in heterogeneous environments
- 21 The Scenario Barents Sea study: a case of minimal realistic modelling to compare management strategies for marine ecosystems
- 22 Setting management goals using information from predators
- 23 Marine reserves and higher predators
- 24 Marine management: can objectives be set for marine top predators?
- Index
- References
Summary
Prey densities of at least 100× the average are necessary for profitable foraging by auks
A. G. Gaston (2004)To meet the above requirement, seabirds rely on prey being distributed in patches (Gaston 2004). Oceanography has a profound impact on the distribution of marine life (Miller 2004), and top predators frequently congregate in areas with a high prey biomass (Boyd & Arnbom 1991, Hunt et al. 1999). However, the impact of ocean physics on top-predator foraging behaviour is poorly understood, largely because of the complex trophic linkages involved. In particular, a detailed understanding of the interaction between seabirds and their prey is lacking. Two main methods are currently available to quantify seabird behaviour: animal-borne instrumentation and at-sea observations (see Box 12.1). In this chapter, we examine the impacts of oceanography on the foraging dynamics of North Sea seabirds during the breeding season. The seabirds of the North Sea are primarily piscivorous, with the majority wholly or largely dependent on the lesser sandeel Ammodytes marinus in summer (Furness & Tasker 2000). Using three seabird species with contrasting foraging strategies and dependence on sandeels, we test three specific predictions from the hypothesis that oceanography determines seabird foraging location and behaviour, using data from animal-borne instrumentation, oceanography and primary production collected concurrently. We interpret our findings in the context of the behaviour of seabirds' prey.
- Type
- Chapter
- Information
- Top Predators in Marine EcosystemsTheir Role in Monitoring and Management, pp. 177 - 190Publisher: Cambridge University PressPrint publication year: 2006
References
- 5
- Cited by