Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Introduction
- 2 Effects of fisheries on ecosystems: just another top predator?
- 3 Physical forcing in the southwest Atlantic: ecosystem control
- 4 The use of biologically meaningful oceanographic indices to separate the effects of climate and fisheries on seabird breeding success
- 5 Linking predator foraging behaviour and diet with variability in continental shelf ecosystems: grey seals of eastern Canada
- 6 Distribution and foraging interactions of seabirds and marine mammals in the North Sea: multispecies foraging assemblages and habitat-specific feeding strategies
- 7 Spatial and temporal variation in the diets of polar bears across the Canadian Arctic: indicators of changes in prey populations and environment
- 8 Biophysical influences on seabird trophic assessments
- 9 Consequences of prey distribution for the foraging behaviour of top predators
- 10 Identifying drivers of change: did fisheries play a role in the spread of North Atlantic fulmars?
- 11 Monitoring predator–prey interactions using multiple predator species: the South Georgia experience
- 12 Impacts of oceanography on the foraging dynamics of seabirds in the North Sea
- 13 Foraging energetics of North Sea birds confronted with fluctuating prey availability
- 14 How many fish should we leave in the sea for seabirds and marine mammals?
- 15 Does the prohibition of industrial fishing for sandeels have any impact on local gadoid populations?
- 16 Use of gannets to monitor prey availability in the northeast Atlantic Ocean: colony size, diet and foraging behaviour
- 17 Population dynamics of Antarctic krill Euphausia superba at South Georgia: sampling with predators provides new insights
- 18 The functional response of generalist predators and its implications for the monitoring of marine ecosystems
- 19 The method of multiple hypotheses and the decline of Steller sea lions in western Alaska
- 20 Modelling the behaviour of individuals and groups of animals foraging in heterogeneous environments
- 21 The Scenario Barents Sea study: a case of minimal realistic modelling to compare management strategies for marine ecosystems
- 22 Setting management goals using information from predators
- 23 Marine reserves and higher predators
- 24 Marine management: can objectives be set for marine top predators?
- Index
- References
15 - Does the prohibition of industrial fishing for sandeels have any impact on local gadoid populations?
Published online by Cambridge University Press: 31 July 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Introduction
- 2 Effects of fisheries on ecosystems: just another top predator?
- 3 Physical forcing in the southwest Atlantic: ecosystem control
- 4 The use of biologically meaningful oceanographic indices to separate the effects of climate and fisheries on seabird breeding success
- 5 Linking predator foraging behaviour and diet with variability in continental shelf ecosystems: grey seals of eastern Canada
- 6 Distribution and foraging interactions of seabirds and marine mammals in the North Sea: multispecies foraging assemblages and habitat-specific feeding strategies
- 7 Spatial and temporal variation in the diets of polar bears across the Canadian Arctic: indicators of changes in prey populations and environment
- 8 Biophysical influences on seabird trophic assessments
- 9 Consequences of prey distribution for the foraging behaviour of top predators
- 10 Identifying drivers of change: did fisheries play a role in the spread of North Atlantic fulmars?
- 11 Monitoring predator–prey interactions using multiple predator species: the South Georgia experience
- 12 Impacts of oceanography on the foraging dynamics of seabirds in the North Sea
- 13 Foraging energetics of North Sea birds confronted with fluctuating prey availability
- 14 How many fish should we leave in the sea for seabirds and marine mammals?
- 15 Does the prohibition of industrial fishing for sandeels have any impact on local gadoid populations?
- 16 Use of gannets to monitor prey availability in the northeast Atlantic Ocean: colony size, diet and foraging behaviour
- 17 Population dynamics of Antarctic krill Euphausia superba at South Georgia: sampling with predators provides new insights
- 18 The functional response of generalist predators and its implications for the monitoring of marine ecosystems
- 19 The method of multiple hypotheses and the decline of Steller sea lions in western Alaska
- 20 Modelling the behaviour of individuals and groups of animals foraging in heterogeneous environments
- 21 The Scenario Barents Sea study: a case of minimal realistic modelling to compare management strategies for marine ecosystems
- 22 Setting management goals using information from predators
- 23 Marine reserves and higher predators
- 24 Marine management: can objectives be set for marine top predators?
- Index
- References
Summary
Industrial fisheries remove large quantities of small fish from the North Sea ecosystem each year. Since these small fish constitute the prey of marine top predators, such activities are considered to pose a potential threat to marine food-web dynamics. The risk to seabird and marine mammal communities has in the past received most attention, but more recently concern has been expressed regarding the possible consequences of industrial fishing for piscivorous fish populations, often the target of fisheries for human consumption. These concerns are addressed in this chapter. A major industrial fishery for sandeels opened on the Wee Bankie in the northwestern North Sea in the early 1990s. Subsequently, in 2000, this fishery was closed in response to concern over its possible impact on local seabird populations. The effect of this closure on the abundance of sandeels in the area – and on local gadoid population abundance, diet, food consumption rates and body condition – are described to examine the effects of the sandeel fishery on these piscivorous, predatory-fish populations. Although closing the sandeel fishery resulted in an immediate increase in the local abundance of sandeels, no beneficial effect on local gadoid populations was detected. Gadoid predators in the area prey almost entirely on 0-group sandeels (fish‘born’ in the current year), while the fishery took predominantly older-aged sandeels. Thus these two consumers appear not to have directly competed for the same resource.
- Type
- Chapter
- Information
- Top Predators in Marine EcosystemsTheir Role in Monitoring and Management, pp. 223 - 235Publisher: Cambridge University PressPrint publication year: 2006
References
- 2
- Cited by