Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T10:53:10.916Z Has data issue: false hasContentIssue false

10 - Titan's upper atmosphere/exosphere, escape processes, and rates

Published online by Cambridge University Press:  05 January 2014

D. F. Strobel
Affiliation:
Johns Hopkins University
J. Cui
Affiliation:
Nanjing University
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

10.1 Introduction

The focus of this chapter is primarily on Titan's exosphere, escape processes, and rates. The composition and structure of the exosphere are intimately linked to the flow of mass, momentum, and energy from the thermosphere as well documented by analyses of the Cassini Ion Neutral Mass Spectrometer (INMS) data (de la Haye et al., 2007a; Cui et al., 2011; Westlake et al., 2011). In addition to the direct in-situ INMS measurements of exospheric densities, these densities are also remotely sensed by their interaction with the energetic ions. Energetic neutral atoms (ENAs) are created and imaged by the Ion and Neutral Camera (INCA) sensor of the Magnetosphere Imaging Instrument (MIMI) (Garnier et al., 2007; Brandt et al., 2012). For the extended exosphere of Titan – that is, for altitudes above ~ 10,000 km where direct detection is not feasible – the ENA method is the only one capable of detecting these populations (Brandt et al., 2012).

A review of basic observational facts on Titan's thermosphere is also necessary to understand the coupling of these two regions. The transition from the thermosphere to the exosphere represents a transition from a region where the atmosphere can be treated as a fluid, because the mean free path, the distance a molecule or atom travels before making a collision, is shorter than the smallest macroscopic length scale, which is the pressure scale height H, that characterizes the exponential decay of pressure with altitude, to a quasi-collisionless region known as the exosphere where the mean free path exceeds the atmospheric scale height.

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 355 - 375
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ågren, K., Wahlund, J.-E., Garnier, P., Modolo, R., et al. 2009. On the Ionospheric Structure of Titan. Planet. Space Sci., 57(Dec.), 1821–1827. doi:10.1016/j.pss.2009.04.012.Google Scholar
Aamodt, R. E., and Case, K. M. 1962. Density in a Simple Model of the Exosphere. Physics of Fluids, 5(Sept.), 1019–1021. doi:10.1063/1.1724466.Google Scholar
Ajello, J. M., Stevens, M. H., Stewart, I., Larsen, K., et al. 2007. Titan Airglow Spectra from Cassini Ultraviolet Imaging Spectrograph (UVIS): EUV Analysis. Geophys. Res. Lett., 34(Dec.), 24204. doi:10.1029/2007GL031555.Google Scholar
Bell, J. M., Bougher, S. W., Waite, J. H. Jr., Ridley, A. J., et al. 2010. Simulating the One-Dimensional Structure of Titan's Upper Atmosphere: 2. Alternative Scenarios for Methane Escape. J. Geophys. Res. (Planets), 115(E14), 12018. doi:10.1029/2010JE003638.Google Scholar
Bell, J. M., Westlake, J., and Waite, J. H. Jr. 2011. Simulating the Time-Dependent Response of Titan's Upper Atmosphere to Periods of Magnetospheric Forcing. Geophys. Res. Lett., 38(Mar.), 6202. doi:10.1029/2010GL046420.Google Scholar
Bird, G.A. 1994. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Engineering Science Series. Clarendon Press.
Brandt, P. C., Dialynas, K., Dandouras, I., Mitchell, D. G., et al. 2012. The Distribution of Titan's High-Altitude (Out to 50,000 km) Exosphere from Energetic Neutral Atom (ENA) Measurements by Cassini/INCA. Planet. Space Sci., 60(Jan.), 107–114. doi:10.1016/j.pss.2011.04.014.Google Scholar
Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., Holberg, J. B., et al. 1981. Extreme Ultraviolet Observations from Voyager 1 Encounter with Saturn. Science, 212(Apr.), 206–211. doi:10.1126/science.212.4491.206.Google Scholar
Chamberlain, J. W. 1963. Planetary Coronae and Atmospheric Evaporation. Planet. Space Sci., 11(Aug.), 901. doi:10.1016/0032-0633(63)90122-3.Google Scholar
Chapman, S., and Cowling, T. G. 1970. The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge Mathematical Library. Cambridge University Press.
Cravens, T. E., Robertson, I. P., Clark, J., Wahlund, J.-E., et al. 2005. Titan's Ionosphere: Model Comparisons with Cassini Ta Data. Geophys. Res. Lett., 32(June), 12108. doi:10.1029/2005GL023249.Google Scholar
Cravens, T. E., Yelle, R. V, Wahlund, J.-E., Shemansky, D. E., et al. 2009a. Composition and Structure of the Ionosphere and Thermosphere. Pages 259–295 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978-1-4020-9215-2_4.
Cravens, T. E., Robertson, I. P., Waite, J. H., Yelle, R. V, et al. 2009b. Model-Data Comparisons for Titan's Nightside Ionosphere. Icarus, 199(Jan.), 174–188. doi:10.1016/j.icarus.2008.09.005.Google Scholar
Cui, J., Yelle, R. V, and Volk, K. 2008. Distribution and Escape of Molecular Hydrogen in Titan's Thermosphere and Exosphere. J. Geophys. Res. (Planets), 113(E12), 10004. doi:10.1029/2007JE003032.Google Scholar
Cui, J., Yelle, R. V, Vuitton, V, Waite, J. H., et al. 2009. Analysis of Titan's Neutral Upper Atmosphere from Cassini Ion Neutral Mass Spectrometer Measurements. Icarus, 200(Apr.), 581–615. doi:10.1016/j.icarus.2008.12.005.Google Scholar
Cui, J., Yelle, R. V, Strobel, D. F., et al., 2012. The CH4 Structure in Titan's Upper Atmosphere Revisited. J. Geophys. Res. (Planets), 117 (E11), doi:10.1029/2012JE004222.Google Scholar
Cui, J., Yelle, R. V, Müller-Wodarg, I. C. F., Lavvas, P. P., et al. 2011. The Implications of the H2 Variability in Titan's Exosphere. J. Geophys. Res. (Space Physics), 116(A15), 11324. doi:10.1029/2011JA016808.Google Scholar
de la Haye, V., Waite, J. H., Johnson, R. E., Yelle, R. V., et al. 2007a. Cassini Ion and Neutral Mass Spectrometer Data in Titan's Upper Atmosphere and Exosphere: Observation of a Suprathermal Corona. J. Geophys. Res. (Space Physics), 112(A11), 7309. doi:10.1029/2006JA012222.Google Scholar
de la Haye, V, Waite, J. H., Cravens, T. E., Nagy, A. F., et al. 2007b. Titan's Corona: The Contribution of Exothermic Chemistry. Icarus, 191(Nov.), 236–250. doi:10.1016/j.icarus.2007.04.031.Google Scholar
Fulchignoni, M., Ferri, F., Angrilli, F., Ball, A. J., etal. 2005. In Situ Measurements of the Physical Characteristics of Titan's Environment. Nature, 438(Dec.), 785–791. doi:10.1038/nature04314.Google Scholar
Galand, M., Yelle, R. V, Coates, A. J., Backes, H., et al. 2006. Electron Temperature of Titan's Sunlit Ionosphere. Geophys. Res. Lett., 33(Nov.), 21101. doi:10.1029/2006GL027488.Google Scholar
Garnier, P., Dandouras, I., Toublanc, D., Brandt, P. C., et al. 2007. The Exosphere of Titan and Its Interaction with the Kronian Magnetosphere: MIMI Observations and Modeling. Planet. Space Sci., 55(Jan.), 165–173. doi:10.1016/j.pss.2006.07.006.Google Scholar
Garnier, P., Dandouras, I., Toublanc, D., Roelof, E. C., et al. 2008. The Lower Exosphere of Titan: Energetic Neutral Atoms Absorption and Imaging. J. Geophys. Res. (Space Physics), 113(A12), 10216. doi:10.1029/2008JA013029.Google Scholar
Garnier, P., Dandouras, I., Toublanc, D., Roelof, E. C., et al. 2010. Statistical Analysis of the Energetic Ion and ENA Data for the Titan Environment. Planet. Space Sci., 58(Dec.), 1811–1822. doi:10.1016/j.pss.2010.08.009.Google Scholar
Grad, H. 1949. On the Kinetic Theory of Rarefied Gases. Comm. Pure Appl. Math., 2(4), 331–407. doi:10.1002/cpa.31600-20403.Google Scholar
Hartle, R. E., Sittler, E. C., Neubauer, F. M., Johnson, R. E., et al. 2006. Initial Interpretation of Titan Plasma Interaction as Observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1. Planet. Space Sci., 54(Oct.), 1211–1224. doi:10.1016/j.pss.2006.05.029.Google Scholar
Hedelt, P., Ito, Y., Keller, H. U., Reulke, R., et al. 2010. Titan's Atomic Hydrogen Corona. Icarus, 210(Nov.), 424–435. doi:10.1016/j.icarus.2010.06.012.Google Scholar
Herring, J., and Kyle, L. 1961. Density in a Planetary Exosphere. J. Geophys. Res., 66(June), 1980–1982. doi:10.1029/JZ066i006p01980.Google Scholar
Hunten, D. M. 1973. The Escape of H2 from Titan. J. Atmos. Sci., 30(4), 726–732. doi:10.1175/1520-0469(1973).Google Scholar
Hunten, D. M. 1982. Thermal and Nonthermal Escape Mechanisms for Terrestrial Bodies. Planet. Space Sci., 30(Aug.), 773–783. doi:10.1016/0032-0633(82)90110-6.Google Scholar
Johnson, R. E., Combi, M. R., Fox, J. L., Ip, W.-H., et al. 2008. Exospheres and Atmospheric Escape. Space Sci. Rev., 139(Aug.), 355–397. doi:10.1007/s11214-008-9415-3.Google Scholar
Johnson, R. E., Tucker, O. J., Michael, M., Sittler, E. C., et al. 2009. Mass Loss Processes in Titan's Upper Atmosphere. Pages 373–392 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978- 1-4020-9215-2_5.
Kliore, A. J., Nagy, A. F., Cravens, T. E., Richard, M. S., et al. 2011. Unusual Electron Density Profiles Observed by Cassini Radio Occultations in Titan's Ionosphere: Effects of Enhanced Magnetospheric Electron Precipitation?J. Geophys. Res. (Space Physics), 116(A15), 11318. doi:10.1029/2011JA016694.Google Scholar
Krasnopolsky, V. A. 1999. Hydrodynamic Flow of N2 from Pluto. J. Geophys. Res., 104(Mar.), 5955–5962. doi:10.1029/1998JE900052.Google Scholar
Krasnopolsky, V. A. 2010. The Photochemical Model of Titan's Atmosphere and Ionosphere: A Version without Hydrodynamic Escape. Planet. Space Sci., 58(Oct.), 1507–1515. doi:10.1016/j.pss.2010.07.010.Google Scholar
Lellouch, E., Coustenis, A., Gautier, D., Raulin, F., et al. 1989. Titan's Atmosphere and Hypothesized Ocean -A Reanalysis of the Voyager 1 Radio-Occultation and IRIS 7.7-Micron Data. Icarus, 79(June), 328–349. doi:10.1016/0019-1035(89)90081-X.Google Scholar
Lemaire, J. 1966. Evaporation and Hydrodynamical Atmospheric Models. Annales d'Astrophysique, 29(Feb.), 197.Google Scholar
Michael, M., and Johnson, R. E. 2005. Energy Deposition of Pickup Ions and Heating of Titan's Atmosphere. Planet. Space Sci., 53(Dec.), 1510–1514. doi:10.1016/j.pss.2005.08.001.Google Scholar
Michael, M., Johnson, R. E., Leblanc, F., Liu, M., etal. 2005. Ejection of Nitrogen from Titan's Atmosphere by Magnetospheric Ions and Pick-Up Ions. Icarus, 175(May), 263–267. doi:10.1016/j.icarus.2004.11.004.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V, Cui, J., and Waite, J. H. 2008. Horizontal Structures and Dynamics of Titan's Thermosphere. J. Geophys. Res. (Planets), 113(E12), 10005. doi:10.1029/2007JE003033.Google Scholar
Németh, Z., Szego, K., Bebesi, Z., Erdos, G., et al. 2011. Ion Distributions of Different Kronian Plasma Regions. J. Geophys. Res. (Space Physics), 116(A15), 9212. doi:10.1029/2011JA016585.Google Scholar
Niemann, H. B., Atreya, S. K., Demick, J. E., Gautier, D., etal. 2010. Composition of Titan's Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment. J. Geophys. Res. (Planets), 115(E14), 12006. doi:10.1029/2010JE003659.Google Scholar
Rymer, A. M., Smith, H. T., Wellbrock, A., Coates, A. J., et al. 2009. Discrete Classification and Electron Energy Spectra of Titan's Varied Magnetospheric Environment. Geophys. Res. Lett., 36(Aug.), 15109. doi:10.1029/2009GL039427.Google Scholar
Schunk, Robert W., and Nagy, Andrew F. 2009. Ionospheres: Physics, Plasma Physics and Chemistry. Second ed. New York: Cambridge University Press.
Shah, M. B., Latimer, C. J., Montenegro, E. C., Tucker, O. J., et al. 2009. The Implantation and Interactions of O+ in Titan's Atmosphere: Laboratory Measurements of Collision-Induced Dissociation of N2 and Modeling of Positive Ion Formation. Astrophys. J., 703(Oct.), 1947–1954. doi:10.1088/0004-637X/703/2/1947.Google Scholar
Shematovich, V I., Johnson, R. E., Michael, M., and Luhmann, J. G. 2003. Nitrogen Loss from Titan. J. Geophys. Res. (Planets), 108(Aug.), 5087. doi:10.1029/2003JE002094.Google Scholar
Sillanpää, I., Kallio, E., Jarvinen, R., and Janhunen, P. 2007. Oxygen Ions at Titan's Exobase in a Voyager 1-Type Interaction from a Hybrid Simulation. J. Geophys. Res. (Space Physics), 112(A11), 12205. doi:10.1029/2007JA012348.Google Scholar
Sittler, E. C., Hartle, R. E., Bertucci, C., Coates, A., etal. 2009. Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere. Pages 393–453 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978- 1-4020-9215-2_6.
Smith, H. T., Johnson, R. E., Sittler, E. C., Shappirio, M., et al. 2007. Enceladus: The Likely Dominant Nitrogen Source in Saturn's Magnetosphere. Icarus, 188(June), 356–366. doi:10.1016/j.icarus. 2006.12.007.Google Scholar
Stevens, M. H., Gustin, J., Ajello, J. M., Evans, J. S., et al. 2011. The Production of Titan's Ultraviolet Nitrogen Airglow. J. Geophys. Res. (Space Physics), 116(A15), 5304. doi:10.1029/2010JA016284.Google Scholar
Strobel, D. F. 1974. The Photochemistry of Hydrocarbons in the Atmosphere of Titan. Icarus, 21(Apr.), 466. doi:10.1016/0019-1035(74)90149-3.Google Scholar
Strobel, D. F. 2008. Titan's Hydrodynamically Escaping Atmosphere. Icarus, 193(Feb.), 588–594. doi:10.1016/j.icarus.2007.08.014.Google Scholar
Strobel, D. F. 2009. Titan's Hydrodynamically Escaping Atmosphere: Escape Rates and the Structure of the Exobase Region. Icarus, 202(Aug.), 632–641. doi:10.1016/j.icarus.2009.03.007.Google Scholar
Strobel, D. F. 2010. Molecular Hydrogen in Titan's Atmosphere: Implications of the Measured Tropospheric and Thermospheric Mole Fractions. Icarus, 208(Aug.), 878–886. doi:10.1016/j.icarus.2010.03.003.Google Scholar
Strobel, D. F. 2012. Hydrogen and Methane in Titan's Atmosphere: Chemistry, Diffusion, Escape and the Hunten Limiting Flux Principle. Can. J. Phys., 90: 795–805. doi:10.1139/p11-131.Google Scholar
Strobel, D. F., Atreya, S. K., Bézard, B., Ferri, F., et al. 2009. Atmospheric Structure and Composition. Pages 235–257 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978-1-4020-9215-2_0.
Tucker, O. J., and Johnson, R. E. 2009. Thermally Driven Atmospheric Escape: Monte Carlo simulations for Titan's Atmosphere. Planet. Space Sci., 57(Dec.), 1889–1894. doi:10.1016/j.pss.2009.06.003.Google Scholar
Vervack, R. J., Sandel, B. R., and Strobel, D. F. 2004. New Perspectives on Titan's Upper Atmosphere from a Reanalysis of the Voyager 1 UVS Solar Occultations. Icarus, 170(July), 91–112. doi:10.1016/j.icarus.2004.03.005.Google Scholar
Vinatier, S., Bézard, B., Fouchet, T., Teanby, N. A., et al. 2007. Vertical Abundance Profiles of Hydrocarbons in Titan's Atmosphere at 15° S and 80° N Retrieved from Cassini/CIRS Spectra. Icarus, 188(May), 120–138. doi:10.1016/j.icarus.2006.10.031.Google Scholar
Volkov, A. N., Johnson, R. E., Tucker, O. J., and Erwin, J. T. 2011a. Thermally Driven Atmospheric Escape: Transition from Hydrodynamic to Jeans Escape. Astrophys. J., 729(Mar.), L24. doi:10.1088/2041-8205/729/2/L24.Google Scholar
Volkov, A. N., Tucker, O. J., Erwin, J. T., and Johnson, R. E. 2011b. Kinetic Simulations of Thermal Escape from a Single Component Atmosphere. Physics of Fluids, 23(6), 066601. doi:10.1063/1.3592253.Google Scholar
Watson, A. J., Donahue, T. M., and Walker, J. C. G., 1981. The Dynamics of a Rapidly Escaping Atmosphere -Applications to the Evolution of Earth and Venus. Icarus, 48(Nov.), 150–166. doi:10.1016/0019-1035(81)90101-9.Google Scholar
Westlake, J. H., Bell, J. M., Waite, J. H. Jr., Johnson, R. E., et al. 2011. Titan's Thermospheric Response to Various Plasma Environments. J. Geophys. Res. (Space Physics), 116(A15), 3318. doi:10.1029/2010JA016251.Google Scholar
Wulms, V, Saur, J., Strobel, D. F., Simon, S., et al. 2010. Energetic Neutral Atoms from Titan: Particle Simulations in Draped Magnetic and Electric Fields. J. Geophys. Res. (Space Physics), 115(A14), 6310. doi:10.1029/2009JA014893.Google Scholar
Yelle, R. V. 1991. Non-LTE Models of Titan's Upper Atmosphere. Astrophys. J., 383(Dec.), 380–400. doi:10.1086/170796.Google Scholar
Yelle, R. V, Strobell, D. F., Lellouch, E., and Gautier, D. 1997. The Yelle Titan Atmosphere Engineering Models. Page 243 of A., Wilson (ed.), Huygens: Science, Payload and Mission. ESA Special Publication vol. 1177.
Yelle, R. V., Borggren, N., de La Haye, V., Kasprzak, W. T., et al. 2006. The Vertical Structure of Titan's Upper Atmosphere from Cassini Ion Neutral Mass Spectrometer Measurements. Icarus, 182(June), 567–576. doi:10.1016/j.icarus.2005.10.029.Google Scholar
Yelle, R. V, Cui, J., and Müller-Wodarg, I. C. F., 2008. Methane Escape from Titan's Atmosphere. J. Geophys. Res. (Planets), 113(E12), 10003. doi:10.1029/2007JE003031.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×