Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T11:26:42.022Z Has data issue: false hasContentIssue false

4 - The general circulation of Titan's lower and middle atmosphere

Published online by Cambridge University Press:  05 January 2014

S. Lebonnois
Affiliation:
Lawrence Livermore National Laboratory
F. M. Flasar
Affiliation:
NASA/Goddard Space Flight Center
T. Tokano
Affiliation:
Universität Zu Köln
C. E. Newman
Affiliation:
Ashima Research
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

4.1 Introduction

The atmosphere of Titan shares a specific circulation feature with the atmosphere of Venus, the so-called superrotation. Most of the middle and lower atmosphere rotates significantly faster than the underlying solid body, with maximum zonal winds in the winter stratosphere of ~200 m/s. This chapter focuses on this dominant feature, through discussions of all aspects of Titan's atmospheric dynamics. In such a complex system, interactions are strong among atmospheric circulation, temperature structure, composition of the atmosphere, and clouds and haze distributions. Therefore, close links are made with other chapters of this book: Chapter 3 for temperature structure, Chapter 5 for composition, and Chapters 6 and 8 for clouds and haze distributions.

The altitude region covered by this chapter goes from the surface to the detached haze layer, a peculiar feature located at the top of the haze completely covering Titan (see Chapter 8), at an altitude of roughly 500 km. This region includes the troposphere, the stratosphere, and the lower mesosphere (see Chapter 3). The troposphere goes from the surface up to ~40 km (the tropopause), where the coldest temperatures are found on Titan. In this region, the atmospheric system includes the cycle of methane, presenting features similar to the hydrological system in the Earth atmosphere (see Chapters 5 and 6). The stratosphere goes from the tropopause to the stratopause, where temperatures peak, located at altitudes around 250 to 300 km (around 0.1 mbar).

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 122 - 157
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, M. C., Manney, G. L., Gunson, M. R., Abbas, M. M., et al. 1996a. ATMOS/ATLAS-3 Observations of Long-Lived Tracers and Descent in the Antarctic Vortex in November 1994. Geophys. Res. Lett., 23, 2341–2344. doi: 10.1029/96GL00705.Google Scholar
Abrams, M. C., Manney, G. L., Gunson, M. R., Abbas, M. M., et al. 1996b. Trace Gas Transport in the Arctic Vortex Inferred from ATMOS ATLAS-2 Observations during April 1993. Geophys. Res. Lett., 23, 2345–2348. 10.1029/96GL00704.Google Scholar
Achterberg, R. K., Conrath, B. J., Gierasch, P. J., Flasar, F. M., et al. 2008a. Titan's Middle-Atmospheric Temperatures and Dynamics Observed by the Cassini Composite Infrared Spectrometer. Icarus, 194, 263–277. doi: 10.1016/j.icarus.2007.09.029.Google Scholar
Achterberg, R. K., Conrath, B. J., Gierasch, P. J., Flasar, F. M., et al. 2008b. Observation of a Tilt of Titan's Middle-Atmospheric Superrotation. Icarus, 197, 549–555. doi: 10.1016/j.icarus.2008.05.014.Google Scholar
Achterberg, R. K., Gierasch, P. J., Conrath, B. J., Flasar, F. M., et al. 2011. Temporal Variations of Titan's Middle Atmospheric Temperatures from 2004 to 2009 Observed by Cassini/CIRS. Icarus, 211, 686–698. doi: 10.1016/j.icarus.2010.08.009.Google Scholar
Andrews, D. G., Holton, J. R., and Leovy, C. B. 1987. Middle Atmosphere Dynamics. New York: Academic Press.
Barth, E. L. 2010. Cloud Formation along Mountain Ridges on Titan. Planet. Space Sci., 58, 1740–1747.Google Scholar
Belcher, S. E., and Hunt, J. C. R., 1998. Turbulent Flow over Hills. Annu. Rev. Fluid Mech., 30, 507–538.Google Scholar
Bird, M. K., Allison, M., Asmar, S. W., Atkinson, D. H. et al. 2005. The Vertical Profile of Winds on Titan. Nature, 438, 1–3. doi:10.1038/nature04060.Google Scholar
Bouchez, A. H. 2004. Seasonal Trends in Titan's Atmosphere: Haze, Wind, and Clouds. Ph.D. thesis, California Institute of Technology.
Brown, M. E., Bouchez, A. H., and Griffith, C. A. 2002. Direct Detection of Variable Tropospheric Clouds near Titan's South Pole. Nature, 420, 795–797.Google Scholar
Brown, M. E., Roberts, J. E., and Schaller, E. L. 2010. Clouds on Titan during the Cassini Prime Mission: A Complete Analysis of the VIMS Data. Icarus, 205, 571–580. doi:10.1016/j.icarus.2009.08.024.Google Scholar
Brunt, D. 1939. Physical and Dynamical Meteorology, 2nd ed. Cambridge University Press.
Chapman, S., and Lindzen, R. S. 1970. Atmospheric Tides. Dordrecht: Reidel.
Charnay, B., and Lebonnois, S. 2012. Thermal Structure and Dynamics of Titan's Lower Troposphere. Nature Geosci., 5, 106–109. doi: 10.1038/ngeo1374.Google Scholar
Charney, J. G., and Stern, M. E. 1962. On the Stability of Internal Baroclinic Jets in a Rotating Atmosphere. J. Atm. Sci., 19, 159–172. doi: 10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.Google Scholar
Cottini, V., Nixon, C. A., Jennings, D. E., de Kok, R., etal. 2012. Spatial and Temporal Variations in Titan's Surface Temperatures from Cassini CIRS Observations. Planet. Space Sci., 60, 62–71. doi:10.1016/j.pss.2011.03.015.Google Scholar
Coustenis, A., and Bezard, B. 1995. Titan's Atmosphere from Voyager Infrared Observations. IV. Latitudinal Variations of Temperature and Composition. Icarus, 115, 126–140.Google Scholar
Coustenis, A., Salama, A., Lellouch, E., Encrenaz, T., et al. 1998. Evidence for Water Vapor in Titan's Atmosphere from ISO/SWS Data. Astron. Astrophys., 336, L85.Google Scholar
Coustenis, A., Schmitt, B., Khanna, R. K., and Trotta, F. 1999. Plausible Condensates in Titan's Stratosphere from Voyager Infrared Spectra. Planet. Space Sci., 47, 1305–1329. doi:10.1016/S0032-0633(99)00053-7.Google Scholar
Coustenis, A., Salama, A., Schulz, B., Ott, S., et al. 2003. Titan's Atmosphere from ISO Mid-Infrared Spectroscopy. Icarus, 161, 383–403.Google Scholar
Covey, C., Pitcher, E. J., and Brown, J. P. 1986. General Circulation Model Simulations of Superrotation in Slowly Rotating Atmospheres - Implications for Venus. Icarus, 66, 380–396. doi: 10.1016/0019-1035(86)90166-1.Google Scholar
Crespin, A., Lebonnois, S., Vinatier, S., Bezard, B., et al. 2008. Diagnostics of Titan's Stratospheric Dynamics using Cassini/CIRS Data and the IPSL General Circulation Model. Icarus, 197, 556–571. doi:10.1016/j.icarus.2008.05.010.Google Scholar
Del Genio, A. D., and Suozzo, R. J. 1987. A Comparative Study of Rapidly and Slowly Rotating Dynamical Regimes in a Terrestrial General Circulation Model. J. Atm. Sci., 44, 973–986. doi:10.1175/1520-0469(1987)044<0973:ACSORA>2.0.CO;2.Google Scholar
Del Genio, A. D., and Zhou, W. 1996. Simulations of Superrotation on Slowly Rotation Planets: Sensitivity to Rotation and Initial Conditions. Icarus, 120, 332–343.Google Scholar
Del Genio, A. D., Zhou, W., and Eichler, T. P. 1993. Equatorial Superrotation in a Slowly Rotating GCM: Implications for Titan and Venus. Icarus, 101, 1–17.Google Scholar
Dima, I. M., and Wallace, J. M. 2003. On the Seasonality of the Hadley Cell. J. Atm. Sci., 60, 1522–1527. doi:10.1175/1520-0469(2003)060$ ($1522:OTSOTH$)$2.0.CO;2.Google Scholar
Dire, J. R. 2000. Seasonal Photochemical and Meridional Transport Model for the Stratosphere of Titan. Icarus, 145, 428–444.Google Scholar
Fels, S. B., and Lindzen, R. S. 1974. The Interaction of Thermally Excited Gravity Waves with Mean Flows. Geophys. Astrophys. Fl. Dyn., 6, 149–191. doi:10.1080/03091927409365793.Google Scholar
Flasar, F. M. 1998. The Dynamic Meteorology of Titan. Planet. Space Sci., 46(9/10), 1125–1147.Google Scholar
Flasar, F. M., and Achterberg, R. K. 2009. The Structure and Dynamics of Titan's Middle Atmosphere. Phil. Trans. R. Soc. A, 367, 649–664. doi:10.1098/rsta.2008.0242.Google Scholar
Flasar, F. M., and Conrath, B. J. 1990. Titan's Stratospheric Temperatures – A Case for Dynamical Inertia?Icarus, 85, 346–354. doi:10.1016/0019-1035(90)90122-P.Google Scholar
Flasar, F. M., Samuelson, R. E., and Conrath, B. J. 1981. Titan's Atmosphere: Temperature and Dynamics. Nature, 292, 693–698.Google Scholar
Flasar, F. M., Flasar, F. M., Achterberg, R. K., Conrath, B. J., Gierasch, P. J., et al. 2005. Titan's Atmospheric Temperatures, Winds, and Composition. Science, 308, 975–978.Google Scholar
Flasar, F. M., Baines, H. H., Bird, M. K., Tokano, T., et al. 2009. Atmospheric Dynamics and Meteorology. Pages 323–352 of: Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer.
Folkner, W. M., Asmar, S. W., Border, J. S., Franklin, G. W., et al. 2006. Winds on Titan from Ground-Based Tracking of the Huygens Probe. J. Geophys. Res., 111, E07S02. doi:10.1029/2005JE002649.Google Scholar
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., et al. 1999. Improved General Circulation Models of the Martian Atmosphere from the Surface to above 80 km. J. Geophys. Res., 104(E10), 24155–24176.Google Scholar
Friedson, A. J., West, R. A., Wilson, E. H., Oyafuso, F., et al. 2009. A Global Climate Model of Titan's Atmosphere and Surface. Planet. Space Sci., 57, 1931–1949. doi:10.1016/j.pss.2009.05.006.Google Scholar
Frierson, D. M. W., Lu, J., and Chen, G. 2007. Width of the Hadley Cell in Simple and Comprehensive General Circulation Models. Geophys. Res. Lett., 341, L18804. doi: 10.1029/2007GL031115.Google Scholar
Gierasch, P. 1975. Meridional Circulation and the Maintenance of the Venus Atmospheric Rotation. J. Atm. Sci., 32, 1038–1044.Google Scholar
Grieger, B., Segschneider, J., Keller, H. U., Rodin, A. V., et al. 2004. Simulating Titan's Tropospheric Circulation with the Portable University Model of the Atmosphere. Adv. Space Res., 34, 1650–1654.Google Scholar
Griffith, C. A., Owen, T., Miller, G. A., and Geballe, T. 1998. Transient Clouds in Titan's Lower Atmosphere. Nature, 395, 575–578. doi:10.1038/26920.Google Scholar
Griffith, C. A., Penteado, P., Rannou, P., Brown, R., et al. 2006. Evidence for a Polar Ethane Cloud on Titan. Science, 313, 1620–1622. doi:10.1126/science.1128245.Google Scholar
Griffith, C. A., McKay, C. P., and Ferri, F. 2008. Titan's Tropical Storms in an Evolving Atmosphere. Astrophys. J. Lett., 687, L41–L44. doi:10.1086/593117.Google Scholar
Hanel, R., Conrath, B., Flasar, F. M., Kunde, V, et al. 1981. Infrared Observations of the Saturnian System from Voyager 1. Science, 212, 192–200. doi:10.1126/science.212.4491.192.Google Scholar
Held, I. M. 2000. The General Circulation of the Atmosphere. In: 2000 Program in Geophysical Fluid Dynamics. Woods Hole Oceanogr. Inst., Woods Hole, MA.
Held, I. M., and Hou, A. Y. 1980. Nonlinear Axially Symmetric Circulations in a Nearly Inviscid Atmosphere. J. Atmos. Sci., 37, 515–533.Google Scholar
Herrnstein, A., and Dowling, T. E. 2007. Effect of Topography on the Spin-Up of a Venus Atmospheric Model. J. Geophys. Res., 112, E04S08. doi:10.1029/2006JE002804.Google Scholar
Hide, R. 1969. Dynamics of the Atmospheres of the Major Planets with an Appendix on the Viscous Boundary Layer at the Rigid Bounding Surface of an Electrically-Conducting Rotating Fluid in the Presence of a Magnetic Field. J. Atm. Sci., 26, 841–853. doi:10.1175/1520-0469(1969)026$($0841: DOTAOT$)$2.0.CO;2.Google Scholar
Hirtzig, M., Tokano, T., Rodriguez, S., LeMouélic, S., etal. 2009. A Review of Titan's Atmospheric Phenomena. Astron. Astrophys. Rev., 17, 105–117. doi: 10.1007/s00159-009-0018-0.Google Scholar
Holton, J. R. 1992. An Introduction to Dynamic Meteorology. International Geophysics Series. San Diego, New York: Academic Press, 3rd ed.
Hou, A. Y., Fels, S. B., and Goody, R. M. 1990. Zonal Superrotation above Venus' Cloud Base Induced by the Semidiurnal Tide and the Mean Meridional Circulation. J. Atmos. Sci., 47, 1894–1901.Google Scholar
Hourdin, F., Le Van, P., Talagrand, O., Courtin, R., et al. 1992. Numerical Simulation of the Circulation of the Atmosphere of Titan. Pages 101–106 of ESA SP 338, Symposium on Titan, 9-12 September 1991, Toulouse, France.
Hourdin, F., Talagrand, O., Sadourny, R., Courtin, R., et al. 1995. Numerical Simulation of the General Circulation of the Atmosphere of Titan. Icarus, 117, 358–374.Google Scholar
Hourdin, F., Lebonnois, S., Luz, D., and Rannou, P. 2004. Titan's Stratospheric Composition Driven by Condensation and Dynamics. J. Geophys. Res., 109(E12), E12005. doi: 10.1029/2004JE002282.Google Scholar
Hubbard, W. B., Porco, C. C., Hunten, D. M., Rieke, G. H., et al. 1993. The Occultation of 28 Sgr by Titan. Astron. Astrophys., 269, 541–563.Google Scholar
Hunt, B. G. 1979. Influence of the Earth's Rotation Rate on the General Circulation of the Atmosphere. J Atm. Sci., 36, 1392–1408. doi: 10.1175/1520-0469(1979)036<1392:TIOTER>2.0.CO;2.Google Scholar
Iskendrian, H., and Salstein, D. A. 1998. Regional Sources of Mountain Torque Variability and High-Frequency Fluctuations in Atmospheric Angular Momentum. Mon. Wea. Rev., 126, 1681–1694.Google Scholar
Jennings, D. E., Flasar, F. M., Kunde, V. G., Samuelson, R. E., et al. 2009. Titan's Surface Brightness Temperatures. Astrophys. J., 691, L103–L105. doi:10.1088/0004-637X/691/2/L103.Google Scholar
Jennings, D. E., Cottini, V., Nixon, C. A., Flasar, F. M., et al. 2011. Seasonal Changes in Titan's Surface Temperatures. Astrophys. J., 737, L15. doi:10.1088/2041-8205/737/1/L15.Google Scholar
Kálnay de Rivas, E. 1975. Further Numerical Calculations of the Circulation of the Atmosphere of Venus. J. Atm. Sci., 32, 1017–1024.Google Scholar
Karkoschka, E., Tomasko, M. G., Doose, L. R., See, C., et al. 2007. DISR Imaging and Geometry of the Descent of the Huygens Probe within Titan's Atmosphere. Planet. Space Sci., 55, 1896–1935. doi:10.1016/j.pss.2007.04.019.Google Scholar
Khanna, R. K. 2005. Condensed Species in Titan's Stratosphere: Confirmation of Crystalline Cyanoacetylene (HC3N) and Evidence for Crystalline Acetylene (C2H2) on Titan. Icarus, 178, 165–170. doi:10.1016/j.icarus.2005.03.011.Google Scholar
Korty, R. L., and Schneider, T. 2008. Extent of Hadley Circulations in Dry Atmospheres. Geophys. Res. Lett., 352, L23803. doi:10.1029/2008GL035847.Google Scholar
Kostiuk, T., Fast, K. E., Livengood, T. A., Hewagama, T., et al. 2001. Direct Measurements of Winds on Titan. Geophys. Res. Lett., 28, 2361–2364.Google Scholar
Kostiuk, T., Livengood, T. A., Hewagama, T., Sonnabend, G., et al. 2005. Titan's Stratospheric Zonal Wind, Temperature, and Ethane Abundance a Year Prior to Huygens Insertion. Geophys. Res. Lett., 32, L22205. doi:10.1029/2005GL023897.Google Scholar
Kostiuk, T., Livengood, T. A., Sonnabend, G., Fast, K. E., et al. 2006. Stratospheric Global Winds on Titan at the Time of Huygens Descent. J. Geophys. Res., 111, E07S03. doi:10.1029/2005JE002630.Google Scholar
Kostiuk, T., Hewagama, T., Fast, K. E., Livengood, T. A., et al. 2010. High Spectral Resolution Infrared Studies of Titan: Winds, Temperature, and Composition. Planet. Space Sci., 58, 1715–1723. doi:10.1016/j.pss.2010.08.004.Google Scholar
Kostiuk, Th., Fast, K. E., Livengood, T. A., Goldstein, J., et al. 1997. Ethane Abundance on Titan. Planet. Space Sci., 45, 931–939. doi:10.1016/S0032-0633(97)00086-X.Google Scholar
Kuo, H. I. 1949. Dynamic Instability of 2-Dimensional Nondivergent Flow in a Barotropic Atmosphere. J.Meteor., 6, 105–122. doi:10.1175/1520-0469(1949)006$($0105:DIOTDN$>$2.0.CO;2.Google Scholar
Lavvas, P., Yelle, R. V, and Vuitton, V 2009. The Detached Haze Layer in Titan's Mesosphere. Icarus, 201, 626–633. doi:10.1016/j.icarus.2009.01.004.Google Scholar
Lebonnois, S., Toublanc, D., Hourdin, F., and Rannou, P. 2001. Seasonal Variations in Titan's Atmospheric Composition. Icarus, 152, 384–406. doi:10.1006/icar.2001.6632.Google Scholar
Lebonnois, S., Hourdin, F., Rannou, P., Luz, D., and Toublanc, D. 2003. Impact of the Seasonal Variations of Ethane and Acetylene Distributions on the Temperature Field of Titan's Stratosphere. Icarus, 163, 164–174. doi:10.1016/S0019-1035(03)00074-5.Google Scholar
Lebonnois, S., Hourdin, F., and Rannou, P. 2009. The Coupling of Winds, Aerosols and Photochemistry in Titan's Atmosphere. Phil. Trans. R. Soc. A, 367, 665–682. doi:10.1098/rsta.2008.0243.Google Scholar
Lebonnois, S., Hourdin, F., Eymet, V, Crespin, A., et al. 2010. Superrotation of Venus' Atmosphere Analysed with a Full General Circulation Model. J. Geophys. Res., 115, E06006. doi:10.1029/2009JE003458.Google Scholar
Lebonnois, S., Lee, C., Yamamoto, M., Dawson, J., et al. 2013. Models of Venus' Atmosphere. In: Towards Understanding the Climate of Venus: Application of Terrestrial Models to Our Sister Planet, ISSI Scientific Report Series, vol. 11, 129–156, SpringerNetherlands.
Lebonnois, S., Burgalat, J., Rannou, P., and Charnay, B. 2012b. Titan Global Climate Model: New 3-Dimensional Version of the IPSL Titan GCM. Icarus, 218, 707–722. doi:10.1016/j.icarus.2011.11.032.Google Scholar
Lee, C., Lewis, S. R., and Read, P. L. 2005. A Numerical Model of the Atmosphere of Venus. Adv. Space Res., 36, 2142–2145. doi:10.1016/j.asr.2005.03.120.Google Scholar
Lee, C., Lewis, S. R., and Read, P. L. 2007. Superrotation in a Venus General Circulation Model. J. Geophys. Res., 112, E04S11. doi:10.1029/2006JE002874.Google Scholar
Lee, C., Lewis, S. R., and Read, P. L. 2010. A Bulk Cloud Parameterization in a Venus General Circulation Model. Icarus, 206, 662–668. doi:10.1016/j.icarus.2009.09.017.Google Scholar
Leovy, C., and Mintz, Y. 1969. Numerical Simulation of the Atmospheric Circulation and Climate of Mars. J. Atm. Sci., 26, 1167–1190.Google Scholar
Leovy, C. B. 1973. Rotation of the Upper Atmosphere of Venus. J. Atm. Sci., 30, 1218–1220.Google Scholar
Lindzen, R. S., and Hou, A. V 1988. Hadley Circulations for Zonally Averaged Heating Centered Off the Equator. J. Atm. Sci., 45, 2416–2427. doi:10.1175/1520-0469(1988)045$($2416:HCFZAH$)$2.0.CO;2.Google Scholar
Liu, X., Li, J., and Coustenis, A. 2008. A Transposable Planetary General Circulation Model (PGCM) and Its Preliminary Application to Titan. Planet. Space Sci., 56, 1618–1629. doi:10.1016/j.pss.2008.07.002.Google Scholar
Livengood, T. A., Hewagama, T., Kostiuk, T., Fast, K. E., et al. 2002. Improved Determination of Ethane (C2H6) Abundance in Titan's Stratosphere. Icarus, 157, 249–253. doi:10.1006/icar.2002.6823.Google Scholar
Lorenz, R. D., and Radebaugh, J. 2009. Global Pattern of Titan's Dunes: Radar Survey from the Cassini Prime Mission. Geophys. Res. Lett., 36, L03202. doi:10.1029/2008GL036850.Google Scholar
Lorenz, R. D., Smith, P. H., Lemmon, M. T., Karkoschka, E., Lockwood, G. W., et al. 1997. Titan's North-South Asymmetry from HST and Voyager Imaging: Comparison with Models and Ground-Based Photometry. Icarus, 127, 173–189.Google Scholar
Lorenz, R. D., Lemmon, M. T., and Smith, P. H. 2004. Seasonal Change in Titan's Haze 1992-2002 from Hubble Space Telescope Observations. Geophys. Res. Lett., 31, L10702. doi:10.1029/2004GL019864.Google Scholar
Lorenz, R. D., Wall, S., Radebaugh, J., Boubin, G., et al. 2006. The Sand Seas of Titan: Cassini RADAR Observations of Longitudinal Dunes. Science, 312, 724–727. doi:10.1126/science.1123257.Google Scholar
Lorenz, R. D., Stiles, B. W., Kirk, R. L., Allison, M. D., et al. 2008. Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds. Science, 319, 1649–1651. doi:10.1126/science.1151639.Google Scholar
Lorenz, R. D., Claudin, P., Andreotti, B., Radebaugh, J., et al. 2010. A 3 km Atmospheric Boundary Layer on Titan Indicated by Dune Spacing and Huygens Data. Icarus, 205, 719–721. doi:10.1016/j.icarus.2009.08.002.Google Scholar
Lorenz, R. D., Turtle, E. P., Stiles, B., Le Gall, A., et al. 2011. Hypsometry of Titan. Icarus, 211, 699–706. doi:10.1016/j.icarus.2010.10.002.Google Scholar
Lu, J., Vecchi, G. A., and Reichler, T. 2007. Expansionof the Hadley Cell under Global Warming. Geophys. Res. Lett., 340, L06805. doi:10.1029/2006GL028443.Google Scholar
Luz, D., and Hourdin, F. 2003. Latitudinal Transport by Barotropic Waves in Titan's Stratosphere. I. General Properties from a Horizontal Shallow-Water Model. Icarus, 166, 328–342.Google Scholar
Luz, D., Hourdin, F., Rannou, P., and Lebonnois, S. 2003. Latitudinal Transport by Barotropic Waves in Titan's Stratosphere. II. Results from a Coupled Dynamics-Microphysics-Photochemistry GCM. Icarus, 166, 343–358. doi:10.1016/S0019-1035(03)00263-X.Google Scholar
Luz, D., Civeit, T. R., Courtin Lebreton, J. -P., et al. 2005. Characterization of Zonal Winds in the Stratosphere of Titan with UVES. Icarus, 179, 497–510.Google Scholar
Luz, D., Civeit, T., Courtin, R., Lebreton, J.-P., et al. 2006. Characterization of Zonal Winds in the Stratosphere of Titan with UVES: 2. Observations Coordinated with the Huygens Probe Entry. J. Geophys. Res., 111(E08), E08S90. doi:10.1029/2005JE002617.Google Scholar
Manabe, S., Smagorinsky, J., and Strickler, R. F. 1965. Simulated Climatology of General Circulation with a Hydrologic Cycle. Mon. Weather Rev., 93, 769–798.Google Scholar
Marten, A., Hidayat, T., Biraud, Y., and Moreno, R. 2002. New Millimeter Heterodyne Observations of Titan: Vertical Distributions of Nitriles HCN, HC3N, CH3CN, and the Isotopic Ratio 15N/14N in Its Atmosphere. Icarus, 158, 532–544.Google Scholar
Matsuno, T. 1966. Quasi-Geostrophic Motions in the Equatorial Area. J. Meteor. Soc. Japan, 44, 25–42.Google Scholar
McFarlane, N. A. 1987. The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere. J. Atm. Sci., 44, 1775–1800.Google Scholar
McKay, C. P., Pollack, J. B., and Courtin, R. 1989. The Thermal Structure of Titan's Atmosphere. Icarus, 80, 23–53.Google Scholar
Mingalev, I. V, Mingalev, V S., Mingalev, O. V, Kazeminejad, B., et al. 2006. First Simulation Results of Titan's Atmospheric Dynamics with a Global 3-D Non-Hydrostatic Circulation Model. Ann. Geophys., 24, 1–15.Google Scholar
Mitchell, J. L. 2008. The Drying of Titan's Dunes: Titan's Methane Hydrology and Its Impact on Atmospheric Circulation. J. Geophys. Res., 113, E08015. doi:10.1029/2007JE003017.Google Scholar
Mitchell, J. L. 2009. Coupling Convectively Driven Atmospheric Circulation to Surface Rotation: Evidence for Active Methane Weather in the Observed Spin Rate Drift of Titan. Astrophys. J., 692, 168–173. doi:10.1088/0004-637X/692/1/168.Google Scholar
Mitchell, J. L., and Vallis, G. K. 2010. The Transition to Superrotation in Terrestrial Atmospheres. J. Geophys. Res., 115, E12008. doi:10.1029/2010JE003587.Google Scholar
Mitchell, J. L., Pierrehumbert, R. T., Frierson, D. M. W., and Caballero, R. 2006. The Dynamics behind Titan's Methane Cloud. Proc. Nat. Acad. Sci., 103(49), 18421–18426. doi:10.1073/pnas.0605074103.Google Scholar
Mitchell, J. L., Pierrehumbert, R. T., Frierson, D. M. W., and Caballero, R. 2009. The Impact of Methane Thermodynamics on Seasonal Convection and Circulation in a Model Titan Atmosphere. Icarus, 203, 250–264. doi:10.1016/j.icarus.2009.03.043.Google Scholar
Mitchell, J. L., Adámkovics, M., Caballero, R., and Turtle, E. P. 2011. Locally Enhanced Precipitation Organized by Planetary-Scale Waves on Titan. Nature Geoscience, 4, 589–592. doi:10.1038/ngeo1219.Google Scholar
Mitri, G., Bland, M. T., Showman, A. P., Radebaugh, J., et al. 2010. Mountains on Titan: Modeling and Observations. J. Geophys. Res., 115, E10002. doi:10.1029/2010JE003592.Google Scholar
Moreno, R., Marten, A., and Hidayat, T. 2005. Interferometric Measurements of Zonal Winds on Titan. Astron. Astrophys., 437, 319–328.Google Scholar
Negrão, A., Roos-Serote, M., Rannou, P., Rages, K., et al. 2005. On the Latitudinal Distribution of Titan's Haze at the Voyager Epoch. Planet. Space Sci., 53, 526–534.Google Scholar
Newman, C. E., Lee, C., Lian, Y., Richardson, M. I., et al. 2011. Stratospheric Superrotation in the Titan WRF Model. Icarus, 213, 636–654. doi:10.1016/ j.icarus.2011.03.025.Google Scholar
Niemann, H. B., Atreya, S. K., Bauer, S. J., Carignan, G. R., et al. 2005. The Abundances of Constituents of Titan's Atmosphere from the GCMS Instrument on the Huygens Probe. Nature, 438, 1–6. doi:10.1038/nature04122.Google Scholar
Nimmo, F., and Bills, B. G. 2010. Shell Thickness Variations and the Longwavelength Topography of Titan. Icarus, 208, 896–904.Google Scholar
Pedlosky, J. 2007. Geophysical Fluid Dynamics. Springer.
Phillips, N. A. 1956. The General Circulation of the Atmosphere: A Numerical Experiment. Quart. J. Royal Met. Soc., 82, 123–164.Google Scholar
Porco, C. C., Baker, E., Barbara, J., Beurle, K., et al. 2005. Imaging of Titan from the CASSINI Spacecraft. Nature, 434, 159–168.Google Scholar
Radebaugh, J., Lorenz, R. D., Kirk, R. L., Lunine, J. I., et al. and the Cassini Radar Team. 2007. Mountains on Titan Observed by Cassini Radar. Icarus, 192, 77–91. doi:10.1016/j.icarus.2007.06.020.Google Scholar
Rannou, P., Hourdin, F., and McKay, C. P. 2002. A Wind Origin for Titan's Haze Structure. Nature, 418, 853–856.Google Scholar
Rannou, P., Hourdin, F., McKay, C. P., and Luz, D. 2004. A Coupled Dynamics-Microphysics Model of Titan's Atmosphere. Icarus, 170, 443–462. doi:10.1016/j.icarus.2004.03.007.Google Scholar
Rannou, P., Lebonnois, S., Hourdin, F., and Luz, D. 2005. Titan Atmosphere Database. Adv. Space Res., 36, 2194–2198. doi:10.1016/j.asr.2005.09.041.Google Scholar
Rannou, P., Montmessin, F., Hourdin, F., and Lebonnois, S. 2006. The Latitudinal Distribution of Clouds on Titan. Science, 311, 201–205. doi:10.1126/science.311.5758.141c.Google Scholar
Richardson, M. I., Toigo, A. D., and Newman, C. E. 2007. Planet WRF: A General Purpose, Local to Global Numerical Model for Planetary Atmospheric and Climate Dynamics. J. Geophys. Res., 112(E9), E09001. doi:10.1029/2006JE002825.Google Scholar
Rodriguez, S., Le Mouélic, S., Rannou, P., Tobie, G., et al. 2009. Global Circulation as the Main Source of Cloud Activity on Titan. Nature, 459, 678–682. doi:10.1038/ nature08014.Google Scholar
Roe, H. G., de Pater, I., Macintosh, B. A., Gibbard, S. G., et al. 2002. Titan's Atmosphere in Late Southern Spring Observed with Adaptive Optics on the W. M. Keck II 10-Meter Telescope. Icarus, 157, 254–258.Google Scholar
Roe, H. G., Brown, M. E., Schaller, E. L., Bouchez, A. H., et al. 2005. Geographic Control of Titan's Mid-Latitude Clouds. Science, 310, 477–479. doi:10.1126/science.1116760.Google Scholar
Roman, M. T., West, R. A., Banfield, D. J., Gierasch, P. J., et al. 2009. Determining a Tilt in Titan's North-South Albedo Asymmetry from Cassini Images. Icarus, 203, 242–249. doi:10.1016/j.icarus.2009.04.021.Google Scholar
Rossow, W. B. 1983. A General Circulation Model of a Venus-Like Atmosphere. J. Atm. Sci., 40, 273–302. doi:10.1175/1520-0469(1983)040$($0273:AGCMOA$)$2.0.CO;2.Google Scholar
Rossow, W. B., and Williams, G. P. 1979. Large-Scale Motion in the Venus Stratosphere. J. Atmos. Sci., 36, 377–389.Google Scholar
Samuelson, R. E., Mayo, L. A., Knuckles, M. A., and Khanna, R. J. 1997a. C4N2 Ice in Titan's North Polar Stratosphere. Planet. Space Sci., 45, 941–948.Google Scholar
Samuelson, R. E., Nath, N. R., and Borysow, A. 1997b. Gaseous Abundances and Methane Supersaturation in Titan's Troposphere. Planet. Space Sci., 45, 959–980.Google Scholar
Samuelson, R. E. D., Smith, M., Achterberg, R. K., and Pearl, J. C. 2007. Cassini CIRS Update on Stratospheric Ices at Titan's Winter Pole. Icarus, 189, 63–71. doi:10.1016/j.icarus.2007.02.005.Google Scholar
Santee, M., and Crisp, D. 1993. Thermal Structure and Dust Loading of the Martian Atmosphere during Late Southern Summer: Mariner 9 Revisited. J. Geophys. Res., 98, 3261–3279.Google Scholar
Schaller, E. L., Brown, M. E., Roe, H. G., Bouchez, A. H., et al. 2006. Dissipation of Titan's South Polar Clouds. Icarus, 184, 517–523. doi:10.1016/j.icarus.2006.05.025.Google Scholar
Schaller, E. L., Roe, H. G., Schneider, T., and Brown, M. E. 2009. Storms in the Tropics of Titan. Nature, 460, 873–875. doi:10.1038/nature08193.Google Scholar
Schneider, E. K. 1977. Axially-Symmetric Steady-State Models of Basic State for Instability and Climate Studies. 2. Nonlinear Calculations. J. Atm. Sci., 34, 280–296. doi:10.1175/1520-0469(1977)034$($0280: ASSSMO$>$2.0.CO;2.Google Scholar
Schneider, T., Graves, S. D. B., Schaller, E. L., and Brown, M. E. 2012. Polar Methane Accumulationand Rainstorms on Titan from Simulations of the Methane Cycle. Nature, 481, 58–61. doi:10.1038/nature10666.Google Scholar
Schubert, G., and Whitehead, J. 1969. The Moving Flame Experiment with Liquid Mercury: Possible Implications for the Venus Atmosphere. Science, 163, 71–72.Google Scholar
Showman, A. P., Cho, J. Y.-K., and Menou, K. 2010. Atmospheric Circulation of Exoplanets. Pages 471–516 of Seager, S. (ed.), Exoplanets. University of Arizona Press.
Sicardy, B., Brahic, A., Ferrari, C., Gautier, D., et al. 1990. Probing Titan's Atmosphere by Stellar Occultation. Nature, 343, 350–353. doi:10.1038/343350a0.Google Scholar
Sicardy, B., Colas, F., Widemann, T., Bellucci, A., et al. 2006. The Two Titan Stellar Occultations of 14 November 2003. J. Geophys. Res. (Planets), 111, E11S91. doi:10.1029/2005JE002624.Google Scholar
Strobel, D. F. 2009. Titan's Hydrodynamically Escaping Atmosphere: Escape Rates and the Structure of the Exobase Region. Icarus, 202, 632–641. doi:10.1016/j.icarus.2009.03.007.Google Scholar
Teanby, N. A., Irwin, P. G. J., de Kok, R., Vinatier, S., et al. 2007. Vertical Profiles of HCN, HC3N and C2H2 in Titan's Atmosphere Derived from Cassini/CIRS Data. Icarus, 186, 364–384.Google Scholar
Teanby, N. A., de Kok, R., Irwin, P. G. J., Osprey, S., et al. 2008. Titan's Winter Polar Vortex Structure Revealed by Chemical Tracers. J. Geophys. Res., 113. doi: 10.1029/2008JE003218.Google Scholar
Teanby, N. A., Irwin, P. G. J., and de Kok, R. 2010a. Compositional Evidence for Titan's Stratospheric Tilt. Planet. Space Sci., 58, 792–800. doi:10.1016/j.pss.2009.12.005.Google Scholar
Teanby, N. A., Irwin, P. G. J., de Kok, R., and Nixon, C. A. 2010b. Seasonal Changes in Titan's Polar Trace Gas Abundance Observed by Cassini. Astrophys. J. Lett., 724, L84–L89. 10.1088/2041-8205/724/1/L84.Google Scholar
Theodore, B., Lellouch, E., Chassefiere, E., and Hauchecorne, A. 1993. Solsticial Temperature Inversions in the Martian Middle Atmosphere: Observational Clues and 2-D Modeling. Icarus, 105, 512–528.Google Scholar
Thompson, R. 1970. Venus's General Circulation Is a Merry-Go-Round. J. Atm. Sci., 27, 1107–1116. 10.1175/1520-0469(1970)027<1107:VGCIAM> 2.0.CO;2.Google Scholar
Tokano, T. 2005. Meteorological Assessment of the Surface Temperatures on Titan: Constraints on the Surface Type. Icarus, 173, 222–242.Google Scholar
Tokano, T. 2007. Near-Surface Winds at the Huygens Landing Site on Titan: Interpretation by Means of a General Circulation Model. Planet. Space Sci., 55, 1990–2009. 10.1016/j.pss.2007.04.011.Google Scholar
Tokano, T. 2008. Dune-Forming Winds on Titan and the Influence of Topography. Icarus, 194, 243–262. 10.1016/j.icarus.2007.10.007.Google Scholar
Tokano, T. 2009a. The Dynamics of Titan's Troposphere. Phil. Trans. R. Soc. A, 367, 633–648. 10.1098/rsta.2008.0163.Google Scholar
Tokano, T. 2009b. Impact of Seas/Lakes on Polar Meteorology of Titan: Simulations by a Coupled GCM-Sea Model. Icarus, 204, 619–636. 10.1016/j.icarus.2009.07.032.Google Scholar
Tokano, T. 2010a. Relevance of Fast Westerlies at Equinox for Eastward Elongation of Titan's Dunes. Aeolian Res., 2, 113–127. 10.1016/j.aeolia.2010.04.003.Google Scholar
Tokano, T. 2010b. Westward Rotation of the Atmospheric Angular Momentum Vector of Titan by Thermal Tides. Planet. Space Sci., 58, 814–829. 10.1016/j.pss.2010.01.001.Google Scholar
Tokano, T., and Lorenz, R. D. 2006. GCM Simulation of Balloon Trajectories on Titan. Planet. Space Sci., 54, 685–694.Google Scholar
Tokano, T., and Neubauer, F. M. 2002. Tidal Winds on Titan Caused by Saturn. Icarus, 158, 499–515.Google Scholar
Tokano, T., and Neubauer, F. M. 2005. Wind-Induced Seasonal Angular Momentum Exchange at Titan's Surface and Its Influence on Titan's Length-of-Day. Geophys. Res. Lett., 32, L24203. 10.1029/2005GL024456.Google Scholar
Tokano, T., Neubauer, F. M., Laube, M., and McKay, C. P. 1999. Seasonal Variation of Titan's Atmospheric Structure Simulated by a General Circulation Model. Planet. Space Sci., 47, 493–520.Google Scholar
Tokano, T., Neubauer, F. M., Laube, M., and McKay, C. P. 2001. Three-Dimensional Modeling of the Tropospheric Methane Cycle on Titan. Icarus, 153, 130–147.Google Scholar
Tokano, T., McKay, C. P., Neubauer, F. M., Atreya, S. K., et al. 2006a. Methane Drizzle on Titan. Nature, 442, 432–435. 10.1038/nature04948.Google Scholar
Tokano, T., Ferri, F., Colombatti, G., Mäkinen, T., et al. 2006b. Titan's Planetary Boundary Layer Structure at the Huygens Landing Site. J. Geophys. Res., 111(E08), E08007. 10.1029/2006JE002704.Google Scholar
Tokano, T., Van Hoolst, T., and Karatekin, O. 2011. Polar Motion of Titan Forced by the Atmosphere. J. Geophys. Res. (Planets), 116, E05002. doi:10.1029/2010JE003758.Google Scholar
Tomasko, M. G., Bezard, B., Doose, L., Engel, S., et al. 2008. Heat Balance in Titan's Atmosphere. Planet. Space Sci., 56, 648–659. 10.1016/j.pss.2007.10.012.Google Scholar
Turtle, E. P., Perry, J. E., Hayes, A. G., Lorenz, R. D., et al. 2011a. Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers. Science, 331, 1414–1417. 10.1126/science.1201063.Google Scholar
Turtle, E. P., Del Genio, A. D., Barbara, J. M., Perry, J. E., et al. 2011b. Seasonal Changes in Titan's Meteorology. Geophys. Res. Lett., 38, L03203. 10.1029/2010GL046266.Google Scholar
Vinatier, S., Bezard, B., Fouchet, T., Teanby, N. A., et al. 2007. Vertical Abundance Profiles of Hydrocarbons in Titan's Atmosphere at 15° S and 80°N Retrieved from Cassini/CIRS Spectra. Icarus, 188, 120–138.Google Scholar
Vinatier, S., Bezard, B., Nixon, C. A., Mamoutkine, A., et al. 2010. Analysis of Cassini/CIRS Spectra of Titan Acquired during the Nominal Mission. I. Hydrocarbons, Nitriles and CO2 Vertical Mixing Ratio Profiles. Icarus, 205, 559–570. 10.1016/j.icarus.2009.08.013.Google Scholar
Wald, C. 2009. In Dune Map, Titan's Winds Seem to Blow Backward. Science, 323, 1418. 10.1126/science.323.5920.1418.Google Scholar
Walker, C. C., and Schneider, T. 2005. Response of Idealized Hadley Circulations to Seasonally Varying Heating. Geophys. Res. Lett., 320, L06813. 10.1029/2004GL022304.Google Scholar
Walker, C. C., and Schneider, T. 2006. Eddy Influences on Hadley Circulations: Simulations with an Idealized GCM. J. Atm. Sci., 63, 3333–3350. 10.1175/JAS3821.1.Google Scholar
Walterscheid, R. L., and Schubert, G. 2006. A Tidal Explanation for the Titan Haze Layers. Icarus, 183, 471–478.Google Scholar
West, R. A., Lane, A. L., Hart, H., Simmons, K. E., et al. 1983. Voyager 2 Photopolarimeter Observations of Titan. J. Geophys. Res., 88, 8699–8708.Google Scholar
West, R. A., Balloch, J., Dumont, P., Lavvas, P., et al. 2011. The Evolution of Titan's Detached Haze Layer Near Equinox in 2009. Geophys. Res. Lett., 380, L06204. 10.1029/2011GL046843.Google Scholar
Williams, G. P. 1988. The Dynamical Range of Global Circulations – II. Climate Dynamics, 3(Oct.), 45–84. 10.1007/BF01080901.Google Scholar
Williams, G. P. 2003. Barotropic Instability and Equatorial Superrotation. J. Atm. Sci., 60, 2136–2152.Google Scholar
Williams, G. P., and Wilson, R. J. 1988. The Stability and Genesis of Rossby Vortices. J. Atm. Sci., 45, 207–241. 10.1175/1520-0469(1988)045<0207:TSAGOR>2.0.CO;2.Google Scholar
Wilson, R. J. 1997. A General Circulation Model Simulation of the Martian Polar Warming. Geophys. Res. Lett., 24, 123–126. 10.1029/96GL03814.Google Scholar
Witasse, O., Lebreton, J.-P., Bird, M. K., Dutta-Roy, R., et al. 2006. Overview of the Coordinated Ground-Based Observations of Titan during the Huygens Mission. J. Geophys. Res., 111, E07S01. 10.1029/2005JE002640.Google Scholar
Yamamoto, M., and Takahashi, M. 2003a. Superrotation and Equatorial Waves in a T21 Venus-Like AGCM. Geophys. Res. Lett., 30, 1449. 10.1029/2003GL016924.Google Scholar
Yamamoto, M., and Takahashi, M. 2003b. The Fully Developed Superrotation Simulated by a General Circulation Model of a Venus-Like Atmosphere. J. Atm. Sci., 60, 561–574.Google Scholar
Yamamoto, M., and Takahashi, M. 2004. Dynamics of Venus' Superrotation: The Eddy Momentum Transport Processes Newly Found in a GCM. Geophys. Res. Lett., 31(May), L09701. 10.1029/2004GL019518.Google Scholar
Yamamoto, M., and Takahashi, M. 2006. Superrotation Maintained by Meridional Circulation and Waves in a Venus-Like AGCM. J. Atm. Sci., 63(12), 3296–3314.Google Scholar
Young, R. E., and Pollack, J. B. 1977. A Three-Dimensional Model of Dynamical Processes in the Venus Atmosphere. J. Atmos. Sci., 34, 1315–1351.Google Scholar
Zebker, H. A., Stiles, B., Hensley, S., Lorenz, R., et al. 2009. Size and Shape of Saturn's Moon Titan. Science, 324, 921–923.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×