Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T01:08:56.251Z Has data issue: false hasContentIssue false

20 - Anti-tick biological control agents: assessment and future perspectives

Published online by Cambridge University Press:  21 August 2009

M. Samish
Affiliation:
Division of Parasitology Kimron Veterinary Institute Bet Dagan P.O. Box 12 Israel 50250
H. Ginsberg
Affiliation:
Patuxent Wildlife Research Centre US Geological Survey University of Rhode Island Woodward Hall–PLS Kingston RI 02881 USA
I. Glazer
Affiliation:
Entomology and Nematology ARO The Volcani Centre Bet Dagan P.O. Box 6 Israel 50250
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

Since the beginning of the twentieth century investigators have documented numerous potential tick biological control agents, including pathogens, parasitoids and predators of ticks (Jenkins, 1964; Mwangi, 1991; Mwangi et al., 1991; Samish & Rehacek, 1999; Kaaya, 2003; Ostfeld et al., 2006). Several authors have reviewed specific groups of natural enemies of ticks, including pathogens (Lipa, 1971; Hoogstraal, 1977; Chandler et al., 2000), nematodes (Samish, Alekseev & Glazer, 2000a, 2000b; Samish & Glazer, 2001), parasitoids (Cole, 1965; Trjapitzin, 1985; Davis, 1986; Mwangi & Kaaya, 1997; Hu, Hyland & Oliver, 1998; Knipling & Steelman, 2000) and predators (Barre et al., 1991; Mwangi, Newson & Kaaya, 1991; Kok & Petney, 1993; Samish & Alexseev, 2001).

In practice, ticks are controlled at present mostly by chemical acaricides (see Chapter 18). However, biological control is becoming an increasingly attractive approach to tick management because of: (1) increasing concerns about environmental safety and human health (e.g. the gradual increase in use of chemical insecticides in several countries is stimulating the growing market of ‘organic’ food); (2) the increasing costs of chemical control; and (3) the increasing resistance of ticks to pesticides. To date, biocontrol has been targeted largely at pests of plants, with only a few efforts to introduce biocontrol agents for the control of ticks. Nevertheless, the knowledge and experience accumulated in plant protection will aid in the development of tick biocontrol methods.

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 447 - 469
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseev, A. N., Burenkova, L. A., Podboronov, V. M. & Chunikhin, S. P. (1995). Bacteriocidal qualities of ixodid tick (Acarina: Ixodidae) salivary cement plugs and their changes under the influence of a viral tick-borne pathogen. Journal of Medical Entomology 32, 578–582.CrossRefGoogle ScholarPubMed
Alekseev, E., Glazer, I. & Samish, M. (2006). Effect of soil texture and moisture on the activity of entomopathogenic nematodes against female Boophilus annulatus ticks. BioControl 51, 507–518.CrossRefGoogle Scholar
Alfeev, N. I. (1946). The utilization of Hunterellus hookeri How for the control of the tick, Ixodes ricinus L. and Ixodes persulcatus. Review of Applied Entomology B34, 108–109 (abstract).Google Scholar
Arruda, W., Lubeck, I., Schrank, A. & Vainstein, M. H. (2005). Morphological alterations of Metarhizium anisopliae during penetration of Boophilus microplus ticks. Experimental and Applied Acarology 37, 231–244.CrossRefGoogle ScholarPubMed
Assenga, S. P., You, M., Shy, C. H., et al. (2006). The use of a recombinant baculovirus expressing a chitinase from the hard tick Haemaphysalis longicornis and its potential application as a bioacaricide for tick control. Parasitology Research 98, 111–118.CrossRefGoogle ScholarPubMed
Barbosa, J. V., Daemon, E., Bittencourt, V. R. E. P. & Faccini, J. L. H. (1997). Effect of Beauveria bassiana on larvae molting to nympha of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae). Brazilian Journal of Veterinary Parasitology6, 53–56.Google Scholar
Barci, L. A. G. (1997). Biological control of the cattle tick Boophilus microplus (Acari, Ixodidae) in Brazil. Arquivos Instituto Biológico, São Paulo 64, 95–101.Google Scholar
Barre, N., Mauleon, H., Garris, G. I. & Kermarrec, A. (1991). Predators of the tick Amblyomma variegatum (Acari: Ixodidae) in Guadeloupe, French West Indies. Experimental and Applied Acarology 12, 163–170.CrossRefGoogle Scholar
Basso, L. M. S., Monteiro, A. C., Belo, M. A. A., et al. (2005). Control of Boophilus microplus larvae by Metarhizium anisopliae in artificially infested pastures. Pesquisa Agropecuaria Brasileira 40, 595–600.CrossRefGoogle Scholar
Benjamin, M. A., Zhioua, E. & Ostfeld, R. S. (2002). Laboratory and field evaluation of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) for controlling questing adult Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology39, 723–728.CrossRefGoogle Scholar
Benson, M. J., Gawronski, J. D., Eveleigh, D. E. & Benson, D. R. (2004). Intracellular symbionts and other bacteria associated with deer ticks (Ixodes scapularis) from Nantucket and Wellfleet, Cape Cod, Massachusetts. Applied and Environmental Microbiology 70, 616–620.CrossRefGoogle ScholarPubMed
Bezuidenhout, J. D. & Stutterheim, C. J. (1980). A critical evaluation of the role played by the red-billed oxpecker Buphagus erythrorhynchus in the biological control of ticks. Onderstepoort Journal of Veterinary Research 47, 51–75.Google ScholarPubMed
Bittencourt, V. R. E. P., Bahiense, T. C., Fernandes, E. K. K. & Souza, E. J. (2003). In-vivo action of Metarhizium anisopliae (Metschnikoff, 1879) Sorokin, 1883 sprayed over Brachiaria decumbens infested with Boophilus microplus larvae (Canestrini, 1887) (Acari: Ixodidae). Brazilian Journal of Veterinary Parasitology 12, 38–42.Google Scholar
Bittencourt, V. R. E. P., Mascarenhas, A. G., Menezes, G. C. R. & Monteiro, S. G. (2000). In vitro action of the fungus Metarhizium anisopliae (Metschnikoff, 1879) Sorokin, 1883 and Beauveria bassiana (Balsamo) Vuillemin, 1912 on eggs of the tick Anocentor nitens (Neummann, 1897) (Acari: Ixodidae). Revista Brasileiro de Medecina Veterinaria 22, 248–251.Google Scholar
Bittencourt, V. R. E. P., Massard, C. L. & Lima, A. F. (1994 a). The action of Metarhizium anisopliae on eggs and larvae of tick Boophilus microplus. Revisto da Universidade Rural, Serie Ciencias da Vida 16, 41–47.Google Scholar
Bittencourt, V. R. E. P., Massard, C. L. & Lima, A. F. (1994 b). The action of Metarhizium anisopliae on free living stages of Boophilus microplus. Revista da Universidade Rural, Serie Ciencias da Vida 16, 49–55.Google Scholar
Bittencourt, V. R. E. P., Massard, C. L., Lima, A. F. & Lima, A. F. (1992). Use of the fungus Metarhizium anisopliae (Metschnikoff, 1879) Sorokin, 1883, in the control of the tick Boophilus microplus (Canestrini, 1887). Arquivos da Universidade Federal Rural do Rio de Janeiro 15, 197–202.Google Scholar
Bittencourt, V. R. E. P., Peralva, S. L. F. S., Viegas, E. C. & Alves, S. B. (1996). Effect of Beauveria bassiana on eggs haching to larvae of Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae). Brazilian Journal of Veterinary Parasitology 5, 81–84.Google Scholar
Bittencourt, V. R. E. P., Souza, E. J., Costa, G. L. & Fagundes, A. S. (2002). Evaluation of a formulation of Beauveria bassiana for control of Anocentor nitens. 4th International Conference on Ticks and Tick-Borne Pathogens, Banff, Alberta, Canada, p. 88.
Bittencourt, V. R. E. P., Souza, E. J., Peralva, S. L. F. S., Mascarenhas, A. G. & Alves, S. B. (1997). Effect of entomopathogenic fungi Beauveria bassiana on engorged females of Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae). Brazilian Journal of Veterinary Parasitology 6, 49–52.Google Scholar
Bittencourt, V. R. E. P., Souza, E. J., Peralva, S. L. F. S. & Reis, R. C. S. (1999). Efficacy of the fungus Metarhizium anisopliae (Metschnikoff, 1887) Sorokin,1883 in field test with bovines naturally infested with the tick Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae). Revista Brasileiro de Medicina Veterinaria 21, 78–81.Google Scholar
Boichev, D. & Rizvanov, K. (1960). Relation of Botrytis cinerea Pers. to ixodid ticks. Zoologicheskii Zhurnal Akademija Nauk USSR 39, 462–462.Google Scholar
Bowman, J. L., Logan, T. M. & Hair, J. A. (1986). Host suitability of Ixodiphagus texanus Howard on five species of hard ticks. Journal of Agricultural Entomology 3, 1–9.Google Scholar
Brown, R. S., Reichelderfer, C. F. & Anderson, W. R. (1970). An endemic disease among laboratory populations of Dermacentor andersoni (= D. venustus) (Acarina: Ixodidae). Journal of Invertebrate Pathology 16, 142–143.CrossRefGoogle Scholar
Brum, J. G. W. & Teixeira, M. O. (1992). Acaricidal activity of Cedea lapagei on engorged females of Boophilus microplus exposed to the environment. Arquivos Brasileiros de Medicina Veterinaria i Zootecnologia 44, 543–544.Google Scholar
Brum, J. G. W., Faccini, J. L. H. & Amaral, M. M. (1991). Infection in engorged females of Boophilus microplus (Acari: Ixodidae). II. Histopathology and in vitro trials. Arquivos Brasileiros de Medicina Veterinaria i Zootecnologia 43, 35–37.Google Scholar
Brum, J. G. W., Teixeira, M. O. & Silva, Da E. G. (1991). Infection in engorged females of Boophilus microplus (Acari: Ixodidae). I. Etiology and seasonal incidence. Arquivos Brasileiros de Medicina Veterinaria i Zootecnlogia 43, 25–30.Google Scholar
Buresova, V., Franta, Z. & Kopacek, P. (2006). A comparison of Chryseobacterium indologenes pathogenicity to the soft tick Ornithodoros moubata and hard tick Ixodes ricinus. Journal of Invertebrate Pathology 93, 96–104.CrossRefGoogle ScholarPubMed
Butt, T. M., Jackson, C. W. & Magan, N. (eds.) (2001). Fungi as Biocontrol Agents: Progress, Problems and Potential. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Camacho, E. R., Navaro, G., Rodriguez, R. M. & Murillo, E. Y. (1998). Effectiveness of Verticillium lecanii against the parasitic stage of the tick Boophilus microplus (Acari: Metastigmata: Ixodidae). Revista Colombiana Entomologia 24, 67–69.Google Scholar
Carneiro, M. E., Monteiro, S. G. M., Daemon, E. & Bittencourt, V. R. E. P. (1999). Effects of isolate 986 of the fungi Beauveria bassiana (Bals.) Vuill., on eggs of the tick Anocentor nitens (Neumann, 1897) (Acari: Ixodidae). Revista Brasileira de Parasitologia 8, 59–62.Google Scholar
Castineiras, A., Jimeno, G., Lopez, M. & Sosa, L. M. (1987). Effect of Beauveria bassiana, Metarhizium anisopliae (Fungi, Imperfecti) and Pheidole megacephala (Hymenopthera, Formicidae) on eggs of Boophilus microplus (Acarina: Ixodidae). Revista Salud Animal 9, 288–293.Google Scholar
Castro, A. B. A., Bittencourt, V. R. E. P., Daemon, E. & Viegas, E. C. (1997). Efficacy of the fungus Metarhizium anisopliae (isolate 959) on the tick Boophilus microplus in a stall test. Revista da Universidade Rural, Serie Ciencias da Vida 19, 73–82.Google Scholar
Ceraul, S. M., Sonenshine, D. E. & Hynes, W. L. (2002). Resistance of the tick Dermacentor variabilis (Acari: Ixodidae) following challenge with the bacterium Escherichia coli (Enterobacteriales: Enterobacteriaceae). Journal of Medical Entomology 39, 376–383.CrossRefGoogle Scholar
Chandler, D., Davidson, G., Pell, J. K., et al. (2000). Fungal biocontrol of Acari. Biocontrol Science and Technology 10, 357–384.CrossRefGoogle Scholar
Cherepanova, N. P. (1964). Fungi which are found on ticks. Botanicheskii Zhurnal 49, 696–699.Google Scholar
Cobb, S. (1942). Tick parasites on Cape Cod. Science 95, 503.CrossRefGoogle ScholarPubMed
Cole, M. M. (1965). Biological Control of Ticks by the Use of Hymenopterous Parasites: A Review. World Health Organization Publication WHO/ebl/43.65, 1–12.Google Scholar
Cooley, R. A. & Kohls, G. M. (1934). A summary on tick parasites. In Proceedings of the 5th Pacific Science Congress, pp. 3375–3381.Google Scholar
Copping, L. G. (2001). The Bio-Pesticide Manual, 2nd edn. Famham, UK: British Crop Protection Council.Google Scholar
Correia, A. C. B., Fiorin, A. C., Monteiro, A. C. & Verissimo, C. J. (1998). Effects of Metarhizium anisopliae on the tick Boophilus microplus (Acari: Ixodidae) in stabled cattle. Journal of Invertebrate Pathology 71, 189–191.CrossRefGoogle Scholar
Correia, A. C. B., Monteiro, A. C. & Fiorin, C. (1994). The effect of Metarhizium anisopliae concentrations on Boophilus microplus under laboratory conditions. Simposio de Controle Biologico Anais 4, 98–98.Google Scholar
Costa, G. L., Sarquis, M. I. M., Moraes, A. M. L. & Bittencourt, V. R. E. P. (2001). Isolation of Beauveria bassiana and Metarhizium anisopliae var anisopliae from Boophilus microplus tick (Canestrini, 1887), in Rio de Janeiro State, Brazil. Micropathologia 154, 207–209.CrossRefGoogle Scholar
Couto, J. T. (1994). Operation oxpecker. The Farmers, pp. 10–11.Google Scholar
Nunes, Da T. L. S., Graminha, E. B. N., Maia, A. S., et al. (2001). The use of Sporothrix insectorum and Paecilomyces fumosoroseus against Boophilus microplus (Canestrini, 1887): in vitro assay and electronic microscopy. Semina: Ciencia Agrarias Londrina 22, 55–60.Google Scholar
Davis, A. J. (1986). Bibliography of the Ixodiphagini (Hymenoptera, Chalcidoidea, Encyrtidae), parasites of ticks (Acari, Ixodidae), with notes on their biology. Tijdschrift voor Entomologie 129, 181–190.Google Scholar
Davison, E. (1963). Introduction of oxpeckers (Buphagus africanus and B. erythrorhynchus) into McIlwaine National Park. Ostrich 34, 172–173.Google Scholar
Bach, P. & Rosen, D. (1991). Biological Control by Natural Enemies, 2nd edn. Cambridge, UK: Cambridge University Press.Google Scholar
Doube, B. M. & Heath, A. C. G. (1975). Observations on the biology and seasonal abundance of an encyrtid wasp, a parasite of ticks in Queensland. Journal of Medical Entomology 12, 443–447.CrossRefGoogle ScholarPubMed
Dreyer, K., Fourie, L. J. & Kok, D. J. (1997). Predation of livestock ticks by chickens as a tick-control method in a resource-poor urban environment. Ondersterpoort Journal of Veterinary Research 64, 273–276.Google Scholar
Dubois, N. R. & Dean, D. H. (1995). Synergism between Cry IA insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores, and vegetative cells against Lymantria dispar (Lepidoptera: Lymantridae) larvae. Environmental Entomology 24, 1741–1747.CrossRefGoogle Scholar
El-Sadawy, H. A. E. & Habeeb, S. M. (1998). Testing some entomopathogenic nematodes for the biocontrol of Hyalomma dromedarii Koch (Acarina: Ixodidae). Journal of the Union of Arab Biologists, Cairo, A, Zoology 10, 1–11.Google Scholar
Estrada-Peña, A., Gonzalez, J. & Casasolas, A. (1990). The activity of Aspergillus ochraceus (Fungi) on replete females of Rhipicephalus sanguineus (Acari: Ixodidae) in natural and experimental conditions. Folia Parasitologica 37, 331–336.Google ScholarPubMed
Federova, S. Z. (1988). Entomopathogenic Bacteria and Fungi as Regulators of the Numbers of the Tick Argas persicus Oken, 1818. Frunze, Kyrgyzstan: Pensoft Publishers.
Fernandes, V. K. K., Costa, G. L., Moraes, A. M. L. & Bittencourt, V. R. E. P. (2004). Entomopathogenic potential of Metarhizium anisopliae isolated from engorged females and tested in eggs and larvae of Boophilus microplus (Acari: Ixodidae). Journal of Basic Microbiology 44, 270–274.CrossRefGoogle Scholar
Fernandes, E. K. K., Costa, G. L., De Moraes, M. L., Zahner, V. & Bittencourt, V. R. E. P. (2006). Study on morphology, pathogenicity, and genetic variability of Beauveria bassiana isolates obtained from Boophilus microplus ticks. Parasitology Research 98, 324–332.CrossRefGoogle Scholar
Fernandes, E. K. K., Costa, G. L., Souza, E. J., Moraes, A. M. L. & Bittencourt, V. R. E. P. (2003). Beauveria bassiana isolated from engorged females and tested against eggs and larvae of Boophilus microplus (Acari: Ixodidae). Journal of Basic Microbiology 43, 393–398.CrossRefGoogle Scholar
Flexner, J. L. & Belnavis, D. L. (2000). Microbial insecticides. In Biological and Biotechnological Control of Insect Pests, eds. Rechcigl, J. E. & Rechcigl, N. A., pp. 35–62. Boca Raton, FL: Lewis Publishers.Google Scholar
Flor, L. B., Kurtti, T. J. & Munderloh, U. G. (2005). Characterization of a Beauveria bassiana isolate from feral black-legged ticks, Ixodes scapularis (Say). In Proceedings of 38th Annual Meeting of the Society for Invertebrate Pathology, 7–11 August 2005, Anchorage, Alaska.
Fogaca, A. C., Da Silva, P. I. Jr., et al. (1999). Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. Journal of Biological Chemistry 274, 25330–25334.CrossRefGoogle ScholarPubMed
Frazzon, A. P. G., Vaz, J. I. S., Masuda, A., Schrank, A. & Vainstein, M. H. (2000). In-vitro assessment of Metarhizium anisopliae isolates to control the cattle tickBoophilus microplus. Veterinary Parasitology 94, 117–125.Google ScholarPubMed
Freitas-Ribeiro, G., Furlong, J., Vasconcelos, V. O., Dolinski, C. & Loures-Ribeiro, A. (2005). Analysis of biological parameters of Boophilus microplus Canestrini, 1887 exposed to entomopathogenic nematodes Steinernema carpocapsae Santa Rosa and All strains (Steinernema: Rhabditida). Brazilian Archives of Biology and Technology. 48, 911–919.CrossRefGoogle Scholar
Gahan, A. B. (1934). On the identities of chalcidoid tick parasites (Hymenoptera). Washington Entomological Society Proceedings 36, 87–88.Google Scholar
Garcia, M. V., Monteiro, A. C. & Szabo, M. P. J. (2004). Colonization and lesions on engorged female Rhipicephalus sanguineus, caused by Metarhizium anisopliae. Ciencia Rural 34, 1513–1518.CrossRefGoogle Scholar
Garcia, M. V., Monteiro, A. C., Szabo, M. J. P., Prette, N. & Bechara, G. H. (2005). Mechanism of infection and colonization of Rhipicephalus sanguineus eggs by Metarhizium anisopliae as revealed by scanning electron microscopy and histopathology. Brazilian Journal of Microbiology 36, 368–372.CrossRefGoogle Scholar
Gaugler, R. (ed.) (2002). Entomopathogenic Nematology.Wallingford, UK: CAB International.CrossRefGoogle Scholar
Georgis, R. & Manweiler, S. A. (1994). Entomopathogenic nematodes: a developing biological control technology. Agricultural and Zoological Review 6, 63–94.Google Scholar
Gill, S. S., Cowles, E. A. & Pietrantonio, P. V. (1992). The mode of action of Bacillus thuringiensis endotoxins. Annual Review of Entomology 37, 615–636.CrossRefGoogle ScholarPubMed
Gindin, G., Samish, M., Alekseev, E. A. & Glazer, I. (1999). The pathogenicity of entomopathogenic fungi to Boophilus annulatus ticks. Insect Pathogens and Insect Nematodes 23, 155–157.Google Scholar
Gindin, G., Samish, M., Alekseev, E. & Glazer, I. (2001). The susceptibility of Boophilus annulatus (Ixodidae) ticks to entomopathogenic fungi. Biocontrol Science and Technology 11, 111–118.CrossRefGoogle Scholar
Gindin, G., Samish, M., Zangi, G., Mishoutchenko, A. & Glazer, I. (2002). The susceptibility of different species and stages of ticks to entomopathogenic fungi. Experimental and Applied Acarology 28, 283–288.CrossRefGoogle ScholarPubMed
Ginsberg, H. S. & Zhioua, E. (1999). Influence of deer abundance on the abundance of questing adult Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology 36, 376–381.CrossRefGoogle Scholar
Ginsberg, H. S., Lebrun, R. A., Heyer, K. & Zhioua, E. (2002). Potential nontarget effects of Metarhizium anisopliae (Deuteromycetes) used for biological control of ticks (Acari: Ixodidae). Environmental Entomology 31, 1191–1196.CrossRefGoogle Scholar
Glazer, I. (2001). Survival biology. In Entomopathogenic Nematology, ed. Gaugler, R., pp. 169–187. Wallingford, UK: CAB International.Google Scholar
Glazer, I., Alekseev, E. & Samish, M. (2001). Factors affecting the virulence of entomopathogenic nematodes to engorged female Boophilus annulatus. Journal of Parasitology 87, 808–812.CrossRefGoogle ScholarPubMed
Gomathinayagam, S., Cradock, K. R. & Needham, G. R. (2002). Pathogenicity of the fungus Beauveria bassiana (Balsamo) to Amblyomma americanum (L.) and Dermacentor variabilis (Say) ticks (Acari: Ixodidae). International Journal of Acarology 28, 395–397.CrossRefGoogle Scholar
Gorshkova, G. J. (1966). Reduction of fecundity of ixodid tick females by fungal infection. Vetsnik Leningradskogo University Serie Biologia 21, 13–16.Google Scholar
Graf, J. F. (1979). The biology of an encyrtid wasp parasitizing ticks on the Ivory Coast. In Recent Advances in Acarology, vol. 1 ed. Rodriguez, J. G., pp. 463–468. New York: Academic Press.Google Scholar
Grobler, J. H. (1976). The introduction of oxpeckers into the Rhodes Matopos National Park. Honeyguide 87, 23–25.Google Scholar
Grobler, J. H. (1979). The re-introduction of oxpeckers Buphagus africanus and B. erythrorhynchus to Rhodes Matopos National Park, Rhodesia. Biological Conservation 15, 151–158.CrossRefGoogle Scholar
Guangfu, T. (1984). Experiment of infection and killing of Hyalomma detritum with fungi. Journal of Veterinary Sciences, China 7, 11–13.Google Scholar
Guerra, R. M. S. N. C., Filho, Teixeira W. L., Costa, G. L. &. (2001). Fungus isolated from Rhipicephalus sanguineus (Acari: Ixodidae), Cochliomya macellaria (Diptera: Muscidae) and Musca domestica (Diptera: Muscidae), naturally infected on Seropedica, Rio de Janeiro. Ciencia Animal 11, 133–136.Google Scholar
Habib, S. M. & Sewify, G. H. (2002). Biological control of the fowl tick Argas (Persicargas) persicus (Laterreille) by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Egyptian Journal of Biological Pest Control 12, 11–13.Google Scholar
Hajek, A. E. & St Leger, R. J. (1994). Interaction between fungal pathogens and insect hosts. Annual Review of Entomology 39, 293–322.CrossRefGoogle Scholar
Hassan, S. M., Dipeolu, O. O., Amoo, A. O. & Odhiambo, T. R. (1991). Predation on livestock ticks by chickens. Veterinary Parasitology 38, 199–204.CrossRefGoogle ScholarPubMed
Hassan, S. M., Dipeolu, O. O. & Munyinyi, D. M. (1992). Influence of exposure period and management methods on the effectiveness of chickens as predators of ticks infesting cattle. Veterinary Parasitology 43, 301–309.CrossRefGoogle ScholarPubMed
Hassanain, M. A., Derbala, A. A., Abdel-Barry, N. A., El-Sherif, M. A. & El-Sadawy, H. A. E. (1999). Biological control of ticks (Argasidae) by entomopathogenic nematodes. Egyptian Journal of Biological Pest Control 7, 41–46.Google Scholar
Hassanain, M. A., Garhy, El M. F., Abdel-Ghaffar, F. A., El-Sharaby, A. & Megeed, K. N. A. (1997). Biological control studies of soft and hard ticks in Egypt., I. The effect of Bacillus thuringiensis varieties on soft and hard ticks (Ixodidae). Parasitology Research 83, 209–213.CrossRefGoogle Scholar
Hendry, D. A. & Rechav, Y. (1981). Acaricidal bacteria infecting laboratory colonies of the tick Boophilus decoloratus (Acarina: Ixodidae). Journal of Invertebrate Pathology 38, 149–151.CrossRefGoogle Scholar
Hill, D. E. (1998). Entomopathogenic nematodes as control agents of developmental stages of the black-legged tick, Ixodes scapularis. Journal of Parasitology 84, 1124–1127.CrossRefGoogle ScholarPubMed
Hoogstraal, H. (1977). Pathogens of Acarina (ticks). In Pathogens of Medically Important Arthropods, eds. Roberts, D. W. & Strand, M. A., pp. 337–342. Geneva, Switzerland: World Health Organization.Google Scholar
Hornbostel, V. L., Ostfeld, R. S. & Benjamin, M. A. (2005). Effectiveness of Metarhizium anisopliae (Deuteromycetes) against Ixides scapularis (Acari: Ixodidae) engorging on Peromyscus leucopus. Journal of Vector Ecology 30, 91–101.Google Scholar
Hornbostel, V. L., Ostfeld, R. S., Zhioua, E. & Benjamin, M. A. (2004). Sublethal effects of Metarhizium anisopliae (Deuteromycetes) on engorged larval, nymphal, and adult Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology 41, 922–929.CrossRefGoogle Scholar
Hornbostel, V. L., Zhioua, E., Benjamin, M. A., Ginsberg, H. S. & Ostfeld, R. S. (2005). Pathogenicity of Metarhizium anisopliae (Deuteromycetes) and permethrin to Ixodes scapularis (Acari: Ixodidae) nymphs. Experimental and Applied Acarology 35, 301–316.CrossRefGoogle ScholarPubMed
Howard, L. O. (1907). A chalcidid parasite of a tick. Entomological News 18, 375–378.Google Scholar
Howard, L. O. (1908). Another chalcidoid parasite of a tick. Canadian Entomologist 40, 239–241.CrossRefGoogle Scholar
Hu, R. & Hyland, K. E. (1997). Prevalence and seasonal activity of the wasp parasitoid, Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in its tick host, Ixodes scapularis (Acari: Ixodidae). Systematic and Applied Acarology 2, 95–100.CrossRefGoogle Scholar
Hu, R. & Hyland, K. E. (1998). Effects of the feeding process of Ixodes scapularis (Acari: Ixodidae) on embryonic development of its parasitoid, Ixodiphagus hookeri (Hymenoptera: Encyrtidae). Journal of Medical Entomology 35, 1050–1053.CrossRefGoogle Scholar
Hu, R., Hyland, K. E. & Mather, T. N. (1993). Occurrence and distribution in Rhode Island of Hunterellus hookeri (Hymenoptera: Encyrtidae), a wasp parasitoid of Ixodes dammini. Journal of Medical Entomology 30, 277–280.CrossRefGoogle Scholar
Hu, R., Hyland, K. E. & Oliver, J. H. (1998). A review on the use of Ixodiphagus wasps (Hymedoptera: Encyrtidae) as natural enemies for the control of ticks (Acari: Ixodidae). Systematic and Applied Acarology 3, 19–28.CrossRefGoogle Scholar
Jenkins, D. W. (1964). Pathogens, Parasites and Predators of Medically Important Arthropods, Supplement No. 30. Geneva, Switzerland: World Health Organization.Google ScholarPubMed
Johns, R., Sonenshine, D. E. & Hynes, W. L. (1998). Control of bacterial infections in the hard tick Dermacentor variabilis (Acari: Ixodidae): evidence for the existence of antimicrobial proteins in tick hemolymph. Journal of Medical Entomology 35, 458–464.CrossRefGoogle ScholarPubMed
Kaaya, G. P. (2000). Laboratory and field evaluation of entomogenous fungi for tick control. Annals of the New York Academy of Science 916, 559–564.CrossRefGoogle ScholarPubMed
Kaaya, G. P. (2003). Prospects for innovative methods of tick control in Africa. Insect Science and Application 23, 59–67.Google Scholar
Kaaya, G. P. & Hassan, S. (2000). Entomogenous fungi as promising biopesticides for tick control. Experimental and Applied Acarology 24, 913–926.CrossRefGoogle Scholar
Kaaya, G. P. & Mwangi, E. N. (1995). Control of livestock ticks in Africa: possibilities of biological control using the entomogenous fungi Beauveria bassiana and Metarhizium anisopliae. Proceedings and Abstracts, Kruger National Park, South Africa 1995, 5–16.Google Scholar
Kaaya, G. P., Mwangi, E. N. & Ouna, E. A. (1996). Prospects for biological control of livestock ticks, Rhipicephalus appendiculatus and Amblyomma variegatum, using the entomogenous fungi Beauveria bassiana and Metarhizium anisopliae. Journal of Invertebrate Pathology 67, 15–20.CrossRefGoogle ScholarPubMed
Kaaya, G. P., Samish, M. & Glazer, I. (2000). Laboratory evaluation of pathogenicity of entomopathogenic nematodes to African tick species. Annals of the New York Academy of Science 916, 303–308.CrossRefGoogle Scholar
Kaiser, M. N. & Hoogstraal, H. (1958). Hunterellus theileri Fiedler (Encyrtidae, Chalcidoidea) parasitizing an African Hyalomma tick on a migrant bird in Egypt. Journal of Parasitology 44, 392–392.CrossRefGoogle Scholar
Kalsbeek, V., Frandsen, F. & Steenberg, T. (1995). Entomopathogenic fungi associated with Ixodes ricinus ticks. Experimental and Applied Acarology 19, 45–51.CrossRefGoogle ScholarPubMed
Kirkland, B. H., Cho, E. M. & Keyhani, N. O. (2004). Differential susceptibility of Amblyomma maculatum and Amblyomma americanum (Acari: Ixodidea) to the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Biological Control 31, 414–421.CrossRefGoogle Scholar
Kirkland, B. H., Eisa, A. & Keyhani, N. O. (2005). Oxalic acid as a fungal acaracidal virulence factor. Journal of Medical Entomology 42, 346–351.CrossRefGoogle ScholarPubMed
Kirkland, B. H., Westwood, G. S. & Keyhani, N. O. (2004). Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. Journal of Medical Entomology 41, 705–711.CrossRefGoogle ScholarPubMed
Knipling, E. F. & Steelman, C. D. (2000). Feasibility of controlling Ixodes scapularis ticks (Acari: Ixodidae), the vector of Lyme disease, by parasitoid augmentation. Journal of Medical Entomology 37, 645–652.CrossRefGoogle Scholar
Knulle, W. & Rudolph, D. (1982). Humidity relationships and water balance of ticks. In Physiology of Ticks, eds. Obenchain, F. D. & Galun, R., pp. 43–70. Oxford, UK: Pergamon Press.Google Scholar
Kocan, K. M., Blouin, E. F., Pidherney, M. S., et al. (1998 a). Entomopathogenic nematodes as a potential biological control method for ticks. Annals of the New York Academy of Science 849, 355–356.CrossRefGoogle ScholarPubMed
Kocan, K. M., Pidherney, M. S., Blouin, E. F., et al. (1998 b). Interaction of entomopathogenic nematodes (Steinernematidae) with selected species of ixodid ticks (Acari: Ixodidae). Journal of Medical Entomology 35, 514–520.CrossRefGoogle Scholar
Kok, O. B. & Petney, T. N. (1993). Small and medium sized mammals as predators of ticks (Ixodoidea) in South Africa. Experimental and Applied Acarology 17, 733–740.Google Scholar
Kolomyetz, U. S. (1950). Aspergillus fumigatus as a parasite of ticks. Priroda 39, 64–65.Google Scholar
Krasnoff, S. B., Sommers, C. H., Moon, Y., et al. (2007). Production of mutagenic metabolites by Metarhizium anisopliae. Journal of Agricultural and Food Chemistry 54, 7083–7088.Google Scholar
Krylov, B. (1972). Some problems in the study of fungal diseases of the bed bugs Cimex lectularius and ticks Argas persicus. In Microbiological Methods for the Control of Poultry Ectoparasites, pp. 53–55. Frunze, Kyrgyzstan: Ilim.Google Scholar
Larrousse, F., King, A. G. & Wolbach, S. B. (1928). The overwintering in Massachusetts of Ixodiophagus caucurtei. Science 67, 351–353.CrossRefGoogle ScholarPubMed
Lipa, J. J. (1971). Microbial control of mites and ticks. In Microbial Control of Insects and Mites, eds. Burges, H. D. & Hussey, N. W., pp. 357–373. New York: Academic Press.Google Scholar
Mani, M. S. (1941). Studies on Indian parasitic Hymenoptera. I. Indian Journal of Entomology 3, 25–36.Google Scholar
Maranga, R. O. & Kenyatta, J. (2006). Field trials for the control of Amblyomma variegatum (Ixodidae) using fungi in pheromone-baited traps. In Proceedings of 12th International Congress of Acarology, Amsterdam, p. 116.
Maranga, R. O., Kaaya, G. P., Mueke, J. M. & Hassanali, A. (2005). Effects of combining the fungi Beauveria bassiana and Metarhizium anisopliae on the mortality of the tick Amblyomma variegatum (Ixodidae) in relation to seasonal changes. Mycopathologia 159, 527–532.CrossRefGoogle ScholarPubMed
Martin, P. A. W. & Schmidtmann, E. T. (1998). Isolation of aerobic microbes from Ixodes scapularis (Acari: Ixodidae), the vector of Lyme disease in the eastern United States. Journal of Economic Entomology 91, 864–868.CrossRefGoogle Scholar
Masson, C. A. & Norval, R. A. I. (1980). The ticks of Zimbabwe. I. The genus Boophilus. Zimbabwe Veterinary Journal 11, 36–43.Google Scholar
Mather, T. N., Piesman, J. & Spielman, A. (1987). Absence of spirochaetes (Borrelia burgdorferi) and piroplasms (Babesia microti) in deer ticks (Ixodes dammini) parasitized by chalcid wasps (Hunterellus hookeri). Medical and Veterinary Entomology 1, 3–8.CrossRefGoogle Scholar
Mauleon, H., Barre, N. & Panoma, S. (1993). Pathogenicity of 17 isolates of entomophagous nematodes (Steinernematidae and Heterorhabditidae) for the ticks Amblyomma variegatum (Fabricius), Boophilus microplus (Canestrini) and Boophilus annulatus (Say). Experimental and Applied Acarology 17, 831–838.CrossRefGoogle Scholar
McElligott, A. G., Maggini, I., Hunziker, L. & König, B. (2004). Interactions between red-billed oxpeckers and black rhinos in captivity. Zoo Biology 23, 347–354.CrossRefGoogle Scholar
Mendes, M. C., Batista-Filho, A., Leite, L. G. & Barci, L. A. G. (1995). The virulence of Metarhizium anisopliae to engorged Boophilus microplus females under laboratory conditions. Congresso Brasileiro de Entomologia, Caxambu 15, 593.Google Scholar
Ment, D., Gindin, G., Mishoutchenko A., Glazer, I. & Samish, M. (2006). The entomopathogenic fungi–ticks interaction. In Proceedings of 12th International Congress of Acarology, Amsterdam, p. 122.
Monteiro, A. C., Correia, A. C. B. & Fiorin, A. C. (1994). Pathogenicity of isolates of Metarhizium anisopliae upon Boophilus microplus (Acari: Ixodidae) under laboratory conditions. In 4th Simposio de Controle Biologico, Gramado, Brazil.
Monteiro, S. G., Bahiense, T. C. & Bittencourt, V. R. E. P. (2003). Action of the fungus Beauveria bassiana (Balsamo) Vuillemin, 1912 on the parasitic phase of the tick Anocentor nitens (Neumann, 1897) Schulze, 1937 (Acari: Ixodidae). Ciencia Rural 33, 559–563.CrossRefGoogle Scholar
Monteiro, S. G., Bittencourt, V. R. E. P. & Daemon, E. (2001). Pathogenicity of isolates CG17, EP01 and 986 of the fungi Beauveria bassiana on larvae of the tick Anocentor nitens (Neumann, 1897) (Acari: Ixodidae) in laboratory. Revista Brasileira de Ciencia Veterinaria 8, 144–146.CrossRefGoogle Scholar
Monteiro, S. G. M., Bittencourt, V. R. E. P., Daemon, E. & Faccini, J. L. H. (1998 a). Effect of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana on eggs of Rhipicephalus sanguineus (Acari: Ixodidae). Ciencia Rural, Santa Maria 28, 461–466.CrossRefGoogle Scholar
Monteiro, S. G. M., Bittencourt, V. R. E. P., Daemon, E. & Faccini, J. L. H. (1998 b). Pathogenicity under laboratory conditions of the fungi Beauveria bassiana and Metarhizium anisopliae on larvae of the tick Rhipicephalus sanguineus (Acari: Ixodidae). Brazilian Journal of Veterinary Parasitology 7, 113–116.Google Scholar
Monteiro, S. G., Carneiro, M. E., Bittencourt, V. R. E. P. & Daemon, E. (1998 c). Effect of isolate 986 of the fungi Beauveria bassiana (Bals) Vuill on engorged females of Anocentor nitens Neumann, 1897 (Acari: Ixodidae). Arquivo Brasileiro de Medicina Veterinaria: Zootecnologia. 50, 673–676.Google Scholar
Mooring, M. S. & Mundy, P. J. (1996). Factors influencing host selection by yellow-billed oxpeckers at Matoba National Park, Zimbabwe. African Journal of Ecology 34, 177–188.CrossRefGoogle Scholar
Mundy, P. J. & Cook, A. W. (1975). Observation of the yellow-billed oxpecker Buphagus africanus in northern Nigeria. Ibis 117, 504–506.CrossRefGoogle Scholar
Mwangi, E. N. (1991). The role of predators, parasitoids and pathogens in regulating natural populations of the non-parasitic stages of Rhipicephalus appendiculatus, Neumann and other livestock ticks, and related aspects of the tick's ecology. Unpublished Ph.D. thesis. Kenyatta University, Nairobi, Kenya.
Mwangi, E. N. & Kaaya, G. P. (1997). Prospects of using tick parasitoids (Insecta) for tick management in Africa. International Journal of Acarology 23, 215–219.CrossRefGoogle Scholar
Mwangi, E. N., Dipeolu, O. O., Newson, R. M., Kaaya, G. P. & Hassan, S. M. (1991). Predators, parasitoids and pathogens of ticks: a review. Biocontrol Science and Technology 1, 147–156.CrossRefGoogle Scholar
Mwangi, E. N., Hassan, S. M., Kaaya, G. P. & Essuman, S. (1997). The impact of Ixodiphagus hookeri, a tick parasitoid, on Amblyomma variegatum (Acari: Ixodidae) in a field trial in Kenya. Experimental and Applied Acarology 21, 117–126.CrossRefGoogle Scholar
Mwangi, E. N., Kaaya, G. P. & Essumen, S. (1995). Experimental infections of the tick Rhipicephalus appendiculatus with entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, and natural infections of some ticks with bacteria and fungi. African Journal of Zoology 109, 151–160.Google Scholar
Mwangi, E. N., Newson, R. M. & Kaaya, G. P. (1991). Predation of free-living engorged female Rhipicephalus appendiculatus. Experimental and Applied Acarology 12, 153–162.CrossRefGoogle ScholarPubMed
Mythlli, P., Gomathinayagam, S., John, L. & Dhinakar, R. (2004). Biological control of cattle tick, Boophilus microplus by entomopathogenic fungus Beauveria bassiana. Pesticide Research Journal 16, 11–12.Google Scholar
Noda, H., Munderloh, U. G. & Kurtti, T. J. (1997). Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Applied and Environmental Microbiology 63, 3926–3932.Google ScholarPubMed
Norval, R. A. I. & Lightfoot, C. J. (1982). Tick problems in wildlife in Zimbabwe: factors influencing the occurrence and abundance of Rhipicephalus appendiculatus. Zimbabwe Veterinary Journal 13, 11–20.Google Scholar
Oliver, J. H. Jr (1964). A wasp parasite of the possum tick, Ixodes tasmani, in Australia. Pan-Pacific Entomologist 40, 227–230.Google Scholar
Onofre, B. O., Miniuk, C. M., Barros, N. M. & Azevedo, J. L. (2001). Pathogenicity of four strains of entomopathogenic fungi against the bovine tick Boophilus microplus. American Journal of Veterinary Research 62, 1478–1480.CrossRefGoogle ScholarPubMed
Ostfeld, R. S., Amber, P., Hornbostel, V. L., Benjamin, M. A. & Keesing, F. (2006). Controlling ticks and tick-borne zoonoses with biological and chemical agents. BioScience 56, 383–404.CrossRefGoogle Scholar
Paiao, J. C. V., Monteiro, A. C. & Kronka, S. N. (2001). Susceptibility of the cattle tick Boophilus microplus (Acari: Ixodidae) to isolates of the fungus Beauveria bassiana. World Journal of Microbiology and Biochemistry 17, 245–251.CrossRefGoogle Scholar
Petney, T. N. & Kok, O. B. (1993). Birds as predators of ticks (Ixodoidea) in South Africa. Experimental and Applied Acarology 17, 393–403.CrossRefGoogle Scholar
Petrischeva, P. A. & Zhmayeva, Z. M. (1949). Natural enemies of field ticks. Zoologichesku Zhurnal 28, 479–481.Google Scholar
Poinar, G. O. Jr (1973). Entomogenous Nematodes: A Manual and Host List of Insect–Nematode Associations. Leiden, Netherlands: E. J. Brill.Google Scholar
Polar, P., Kairo, M. T. K., Moore, D., Pegram, R. & John, S. A. (2005). Comparison of water, oils and emulsifiable adjuvant oils as formulating agents for Metarhizium anisopliae for use in control of Boophilus microplus. Mycopathologia 160, 151–157.CrossRefGoogle ScholarPubMed
Prette, N., Monteiro, A. C., Garcia, M. V. & Soares, V. E. (2005). Pathogenicity of Beauveria bassiana isolates towards eggs, larvae and engorged nymphs of Rhipicephalus sanguineus. Ciencia Rural 35, 855–861.CrossRefGoogle Scholar
Ramamoorthy, R. & Scholl-Meeker, D. (2001). Borrelia burgdorferi proteins whose expression is similarly affected by culture temperature and pH. Infection and Immunity 69, 2739–2742.CrossRefGoogle Scholar
Reis, R. C. S., Chacon, S. C., Bittencourt, V. R. E. P. & Faccini, J. L. H. (2003). Effect of the fungi Beauveria bassiana (Balsamo) and Metarhizium anisopliae Sorokin, 1883, on nymphal ecdysis of Amblyomma cooperi (Nuttal; Warburton, 1908) (Acari: Ixodidae). Revista Brasileira de Parasitologia Veterinaria 12, 68–70.Google Scholar
Reis, R. C. S., Melo, D. R. & Bittencourt, V. R. E. P. (2004). Effects of Beauveria bassiana (Bals) Vuill and Metarhizium anisopliae (Metsc) Sorok on engorged females of Amblyomma cajennense (Fabricius, 1787) in laboratory conditions. Arquivos Brasileiros de Medicina Veterinaria i Zootecnologia 56, 788–791.CrossRefGoogle Scholar
Reis, R. C. S., Melo, D. R., Souza, E. J. & Bittencourt, V. R. E. P. (2001). In vitro action of the fungi Beauveria bassiana Vuill and Metarhizium anisopbiae Sorok on nymphs and adults of Amblyomma cajenense (Acari: Ixodidae). Arquivos Brasileiros de Medicina Veterinaria i Zootecnologia 53, 544–547.CrossRefGoogle Scholar
Rijo, E. (1998). Biological control of ticks with entomopathogenic fungi. Revista Pectuaria de Nicaragua 22, 17–18.Google Scholar
Robertson, A. & Jarvis, A. M. (2000). Oxpeckers in northeastern Namibia: recent population trends and the possible negative impacts of drought and fire. Biological Conservation 92, 241–247.CrossRefGoogle Scholar
Samish, M. & Alekseev, E. A. (2001). Arthropods as predators of ticks (Ixodoidea). Journal of Medical Entomology 38, 1–11.CrossRefGoogle Scholar
Samish, M. & Glazer, I. (2001). Entomopathogenic nematodes for the biocontrol of ticks. Trends in Parasitology 17, 368–371.CrossRefGoogle ScholarPubMed
Samish, M. & Rehacek, J. (1999). Pathogens and predators of ticks and their potential in biological control. Annual Review of Entomology 44, 159–182.CrossRefGoogle ScholarPubMed
Samish, M., Alekseev, E. A. & Glazer, I. (1995). The development of entomopathogenic nematodes in the tick B. annulatus. In Tick-Borne Pathogens at the Host–Vector Interface: A Global Perspective, eds. Coons, L. & Rothschild, M., pp. 2–4. Berg-en-Dal, South Africa: Kruger National Park.Google Scholar
Samish, M., Alekseev, E. A. & Glazer, I. (1998). The effect of soil composition on anti-tick activity of entomopathogenic nematodes. Annals of the New York Academy of Science 849, 402–403.CrossRefGoogle ScholarPubMed
Samish, M., Alekseev, E. A. & Glazer, I. (1999 a). Efficacy of entomopathogenic nematode strains against engorged Boophilus annulatus females (Acari: Ixodidae) under simulated field conditions. Journal of Medical Entomology 36, 727–732.CrossRefGoogle ScholarPubMed
Samish, M., Alekseev, E. A. & Glazer, I. (1999 b). Interaction between ticks (Acari: Ixodidae) and pathogenic nematodes (Nematoda): susceptibility of tick species at various developmental stages. Journal of Medical Entomology 36, 733–740.CrossRefGoogle ScholarPubMed
Samish, M., Alekseev, E. A. & Glazer, I. (2000 a). Biocontrol of ticks by entomopathogenic nematodes. Annals of the New York Academy of Science 916, 589–594.CrossRefGoogle ScholarPubMed
Samish, M., Alekseev, E. A. & Glazer, I. (2000 b). Mortality rate of adult ticks due to infection by entomopathogenic nematodes. Journal of Parasitology 86, 679–684.CrossRefGoogle ScholarPubMed
Samish, M., Gindin, G., Alekseev, E. & Glazer, I. (2001). Pathogenicity of entomopathogenic fungi to different developmental stages of Rhipicephalus sanguineus. Journal of Parasitology 87, 1355–1359.CrossRefGoogle ScholarPubMed
Samish, M., Gindin, G., Gal-Or, S. & Glazer, I. (2006). The potential use of Metarhizium anisopliae for the control of ticks under field conditions. In Proceedings of 12th International Congress of Acarology, Amsterdam, p. 180.
Samish, M., Ginsberg, H. & Glazer, I. (2004). Biological control of ticks. Parasitology 129, S389–S403CrossRefGoogle ScholarPubMed
Samsinakova, A. (1957). Beauveria globulifera (SPEG) Pic. as a parasite of the tick Ixodes ricinus L. Zoologicke Listi 20, 329–330.Google Scholar
Samsinakova, A., Kalalova, S., Daniel, M., et al. (1974). Entomogenous fungi associated with the tick Ixodes ricinus. Folia Parasitologica 21, 39–48.Google ScholarPubMed
Samuel, W. M. & Welch, D. A. (1991). Winter ticks on moose and other ungulates: factors influencing their population size. Alces 27, 169–182.Google Scholar
Sebesta, K., Farkas, J., Horska, K. & Vankova, J. (1981). Thuringiensin, the beta-exotoxin of Bacillus thuringiensis. In Microbial Control of Pests and Plant Diseases (1970–1980), ed. Surges, H. D., pp. 249–281. New York: Academic Press.Google Scholar
Sewify, G. H. & Habib, S. M. (2001). Biological control of the tick fowl Argas persicargas persicus by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Journal of Pest Science 74, 121–123.Google Scholar
Shelton, A. M. & Roush, R. T. (2000). Resistance to insect pathogens and strategies to manage resistance. In Field Manual of Techniques in Invertebrate Pathology, eds. Lacy, L. A. & Kaaya, H. K., pp. 829–845. Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
Smith, C. N. & Cole, M. M. (1943). Studies of parasites of the American dog tick. Journal of Economic Entomology 36, 469–472.CrossRefGoogle Scholar
Sonenshine, D. E. (1991). Biology of Ticks, vol. 1. Oxford, UK: Oxford University Press.Google Scholar
Souza, E. J., Reis, R. C. S. & Bittencourt, V. R. E. P. (1999 a). Avaliação do efeito in vitro dos fungos Beauveria bassiana e Metarhizium anisopliae sobre ovos e larvas de Amblyomma cajennense. Revista Brasileira de Ciencia Veterinaria 8, 127–132.Google Scholar
Souza, E. J., Reis, R. C. S. & Bittencourt, V. R. E. P. (1999 b). Effect of contact of the fungi Beauveria bassiana and Metarhizium anisopliae on engorged larvae of Amblyomma cajennense. Revista Brasileira de Ciencia Veterinaria 6, 84–87.CrossRefGoogle Scholar
Souza, E. J., Reis, R. C. S., Melo, D. R., Bahiense, T. C. & Bittencourt, V. R. E. P. (2000). Action of entomopathogenic fungi Beauveria bassiana obtained from different sources of isolation, on eggs and larvae of Boophilus microplus. Revista da Universidade Rural, Serie Ciencias Vida 22, 95–99.Google Scholar
Stafford, K. C. & Kitron, U. (2002). Environmental management for Lyme borreliosis control. In Lyme Borreliosis Biology, Epidemiology and Control, eds. Gray, J. S., Kahl, O., Lane, R. S. & Stanek, G., pp. 301–334. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Stafford, K. C. III, Denicola, A. J. & Kilpatrick, H. J. (2003). Reduced abundance of Ixodes scapularis (Acari: Ixodidae) and the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae) with reduction of white-tailed deer. Journal of Medical Entomology 40, 642–652.CrossRefGoogle ScholarPubMed
Stafford, K. C. III, Denicola, A. J. & Magnarelli, L. A. (1996). Presence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in two Connecticut populations of Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology 33, 183–188.CrossRefGoogle Scholar
Steinhaus, E. A. & Marsh, G. A. (1962). Report of diagnoses of diseased insects 1951–1961. Hilgardia 33, 349–390.CrossRefGoogle Scholar
Stutterheim, C. & Brooke, R. (1981). Past and present ecological distribution of the yellow billed oxpecker in South Africa. African Journal of Zoology 16, 44–49.CrossRefGoogle Scholar
Stutterheim, C. J. & Stutterheim, I. M. (1980). Evidence of an increase in a red-billed oxpecker population in the Kruger National Park. South African Journal of Zoology 15, 284–284.CrossRefGoogle Scholar
Stutterheim, I. M., Bezuidenhout, J. D. & Elliott, E. G. R. (1988). Comparative feeding behavior and food preferences of oxpeckers (Buphagus erythrorhynchus and B. africanus) in captivity. Onderstepoort Journal of Veterinary Research 55, 173–179.Google Scholar
Suzuki, E. M., Da Silva, W. W., Costa, G. L. & Bittencourt, V. R. E. P. (2003). Internal organ infection in Anocentor nitens (Acari: Ixodidae) engorged females by Metarhizium anisopliae. Brazilian Journal of Veterinary Parasitology 12, 85–87.Google Scholar
Symondson, W. O. C.Sunderland, K. D. & Greenstone, M. H. (2002). Can generalist predators be effective biocontrol agents?Annual Review of Entomology 47, 561–594.CrossRefGoogle ScholarPubMed
Takasu, K., Takano, S.-I., Sasaki, M., Yagi, S. & Nakamura, S. (2003). Host recognition by the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae). Environmental Entomology 32, 614–617.CrossRefGoogle Scholar
Trjapitzin, V. A. (1985). Natural enemies of Ixodes persulcatus. In Taiga Tick, Ixodes persulcatus Schulze (Acarina, Ixodidae): Morphology, Systematics, Ecology, Medical Importance, ed. Filippova, N. A., pp. 334–347. Leningrad, USSR: Nauka.Google Scholar
Driesche, R. G. & Bellows, T. S. J. R. (1996). Biological Control. New York: Chapman & Hall.CrossRefGoogle Scholar
Someren, V. D. (1951). The red billed oxpecker and its relation to stock in Kenya. East African Agricultural Journal 17, 1–11.CrossRefGoogle Scholar
Vasconcelos, V., O., Furlong, J., Freitas, G., M., et al. (2004). Steinernema glaseri Santa Rosa strain (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora CCA strain (Rhabditida: Heterorhabditidae) as biological control agents of Boophilus microplus (Acari: Ixodidae). Parasitology Research 94: 201–206CrossRefGoogle Scholar
Verissimo, C. J. (1995). Natural enemies of the cattle parasitic tick. Agropecuaria Catarinense 8, 35–37.Google Scholar
Weeks, P. (1999). Interaction between red-billed oxpeckers, Buphagus erythrorhynchus and domestic cattle, Bos taurus, in Zimbabwe. Animal Behaviour 58, 1253–1259.CrossRefGoogle Scholar
Wysoki, M. (1998). Problems and trends of agricultural entomology at the end of the 2nd millennium. Bollettino del Laboratorio di Entomologia Agria ‘Fillipo Silvestri’ 54, 89–143.Google Scholar
Yoder, J. A., Benoit, J. B. & Zettler, L. W. (2003). Moisture requirements of a soil imperfect fungus, Scopulariopsis brevicaulis Bainier, in relation to its tick host. International Journal of Acarology 29, 271–277.CrossRefGoogle Scholar
Zangi, G. (2003). Tick control by means of entomopathogenic nematodes and fungi. Unpublished M.Sc. thesis, Hebrew University of Jerusalem, Israel.
Zhioua, E., Browning, M., Johnson, P. W., Ginsberg, H. S. & Lebrun, R. A. (1997). Pathogenicity of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) to Ixodes scapularis (Acari: Ixodidae). Journal of Parasitology 83, 815–818.CrossRefGoogle Scholar
Zhioua, E., Ginsberg, H. S., Humber, R. A. & Lebrun, R. A. (1999 a). Preliminary survey for entomopathogenic fungi associated with Ixodes scapularis (Acari: Ixodidae) in southern New York and New England, USA. Journal of Medical Entomology 36, 635–637.CrossRefGoogle ScholarPubMed
Zhioua, E., Heyer, K., Browning, M., Ginsberg, H. S. & Lebrun, R. A. (1999 b). Pathogenicity of Bacillus thuringiensis variety kurstaki to Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology 36, 900–902.CrossRefGoogle Scholar
Zhioua, E., Lebrun, R. A., Ginsberg, H. S. & Aeschlimann, A. (1994). Entomopathogenic nematodes and fungi of Ixodes scapularis, the principal vector of the Lyme borreliosis spirochete, Borrelia burgdorferi, in north America. In Proceedings of 6th International Colloquium on Invertebrate Pathology and Microbial Control, Montpelier, France.
Zhioua, E., Lebrun, R. A., Ginsberg, H. S. & Aeschlimann, A. (1995). Pathogenicity of Steinernema carpocapsae and S. glaseri (Nematoda: Steinernematidae) to Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology 32, 900–905.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×