Book contents
- Frontmatter
- Contents
- Preface
- 1 Energy in planetary processes and the First Law of Thermodynamics
- 2 Energy sources in planetary bodies
- 3 Energy transfer processes in planetary bodies
- 4 The Second Law of Thermodynamics and thermodynamic potentials
- 5 Chemical equilibrium. Using composition as a thermodynamic variable
- 6 Phase equilibrium and phase diagrams
- 7 Critical phase transitions
- 8 Equations of state for solids and the internal structure of terrestrial planets
- 9 Thermodynamics of planetary volatiles
- 10 Melting in planetary bodies
- 11 Dilute solutions
- 12 Non-equilibrium thermodynamics and rates of natural processes
- 13 Topics in atmospheric thermodynamics and radiative energy transfer
- 14 Thermodynamics of life
- Appendix 1 Physical constants and other useful numbers and conversion factors
- Appendix 2 Derivation of thermodynamic identities
- References
- Index
3 - Energy transfer processes in planetary bodies
Published online by Cambridge University Press: 07 September 2011
- Frontmatter
- Contents
- Preface
- 1 Energy in planetary processes and the First Law of Thermodynamics
- 2 Energy sources in planetary bodies
- 3 Energy transfer processes in planetary bodies
- 4 The Second Law of Thermodynamics and thermodynamic potentials
- 5 Chemical equilibrium. Using composition as a thermodynamic variable
- 6 Phase equilibrium and phase diagrams
- 7 Critical phase transitions
- 8 Equations of state for solids and the internal structure of terrestrial planets
- 9 Thermodynamics of planetary volatiles
- 10 Melting in planetary bodies
- 11 Dilute solutions
- 12 Non-equilibrium thermodynamics and rates of natural processes
- 13 Topics in atmospheric thermodynamics and radiative energy transfer
- 14 Thermodynamics of life
- Appendix 1 Physical constants and other useful numbers and conversion factors
- Appendix 2 Derivation of thermodynamic identities
- References
- Index
Summary
We have developed a comprehensive physical description of the processes and pathways by which planetary bodies acquire internal energy. Our next task is to examine how this internal energy drives planetary processes. The hallmark of an active planetary body is that it has surface features, other than impact craters, that have ages that are negligible compared to the age of the Solar System. This is true for any epoch of the Solar System. For instance, the youngest features on the Moon, the immense basaltic plains that we call lunar maria, are about 3 billion years old. This means that the Moon is dead today, but it was active when the age of the Solar System was of the order of 1.5 billion years
Active planetary processes are associated to heat flow, but the causal connection is not always the same. Consider the ascent of magmas. This is a process that transfers mass and heat from the planet's interior towards its surface, and that is made possible by melting, which entails conversion of thermal energy to chemical energy. Ascent of magma and construction of volcanoes, however, are not driven by thermal energy but by gravitational energy. Magmas rise to the surface of a planet if they are buoyant, and magmas are buoyant if melting causes a decrease in density.
- Type
- Chapter
- Information
- Thermodynamics of the Earth and Planets , pp. 122 - 180Publisher: Cambridge University PressPrint publication year: 2011