Book contents
- Frontmatter
- Contents
- Preface
- 1 Energy in planetary processes and the First Law of Thermodynamics
- 2 Energy sources in planetary bodies
- 3 Energy transfer processes in planetary bodies
- 4 The Second Law of Thermodynamics and thermodynamic potentials
- 5 Chemical equilibrium. Using composition as a thermodynamic variable
- 6 Phase equilibrium and phase diagrams
- 7 Critical phase transitions
- 8 Equations of state for solids and the internal structure of terrestrial planets
- 9 Thermodynamics of planetary volatiles
- 10 Melting in planetary bodies
- 11 Dilute solutions
- 12 Non-equilibrium thermodynamics and rates of natural processes
- 13 Topics in atmospheric thermodynamics and radiative energy transfer
- 14 Thermodynamics of life
- Appendix 1 Physical constants and other useful numbers and conversion factors
- Appendix 2 Derivation of thermodynamic identities
- References
- Index
1 - Energy in planetary processes and the First Law of Thermodynamics
Published online by Cambridge University Press: 07 September 2011
- Frontmatter
- Contents
- Preface
- 1 Energy in planetary processes and the First Law of Thermodynamics
- 2 Energy sources in planetary bodies
- 3 Energy transfer processes in planetary bodies
- 4 The Second Law of Thermodynamics and thermodynamic potentials
- 5 Chemical equilibrium. Using composition as a thermodynamic variable
- 6 Phase equilibrium and phase diagrams
- 7 Critical phase transitions
- 8 Equations of state for solids and the internal structure of terrestrial planets
- 9 Thermodynamics of planetary volatiles
- 10 Melting in planetary bodies
- 11 Dilute solutions
- 12 Non-equilibrium thermodynamics and rates of natural processes
- 13 Topics in atmospheric thermodynamics and radiative energy transfer
- 14 Thermodynamics of life
- Appendix 1 Physical constants and other useful numbers and conversion factors
- Appendix 2 Derivation of thermodynamic identities
- References
- Index
Summary
This book is about the physical chemistry of planetary processes. Although in detail each planetary body in the Solar System looks very different, all of the planets and moons have reached their current states as a result of the same fundamental laws of nature, which are codified into the sciences that we know as physics and chemistry. A real understanding of the nature and evolution of the bodies that make up the Solar System requires that we immerse ourselves in physics and chemistry, and that we come to think of planetary processes as specific applications of these sciences. These applications can be more complex, in the sense of the number of variables involved, than those that physicists and chemists deal with when working under controlled laboratory conditions. Perhaps for this reason students of geological and planetary sciences tend to view these sciences as separate or “stand alone”. This is not so, however. Using an analogy that most of us are likely to be familiar with (and that, admittedly, may be a bit stretched), the sciences that we know as geology and planetary science (and their “sub-fields” such as petrology, mineralogy, or oceanography, to name just a few) are the “user interface”, the set of graphics and icons and mnemonics that we see on our computer screens. This user interface is supported and made possible by a rich and complex operating system (e.g. Linux, Windows, Mac, according to our tastes).
- Type
- Chapter
- Information
- Thermodynamics of the Earth and Planets , pp. 1 - 69Publisher: Cambridge University PressPrint publication year: 2011