Book contents
- Frontmatter
- Contents
- Acknowledgments
- 1 Introduction
- 2 Electromagnetic-wave propagation
- 3 The absorption of light
- 4 Specular reflection
- 5 Single-particle scattering: perfect spheres
- 6 Single-particle scattering: irregular particles
- 7 Propagation in a nonuniform medium: the equation of radiative transfer
- 8 The bidirectional reflectance of a semiinfinite medium
- 9 The bidirectional reflectance in other geometries
- 10 Other quantities related to reflectance, integrated reflectances, planetary photometry, reflectances of mixtures
- 11 Reflectance spectroscopy
- 12 Photometric effects of large-scale roughness
- 13 Effects of thermal emission
- 14 Polarization
- Appendix A A brief review of vector calculus
- Appendix B Functions of a complex variable
- Appendix C The wave equation in spherical coordinates
- Appendix D Table of symbols
- Bibliography
- Index
6 - Single-particle scattering: irregular particles
Published online by Cambridge University Press: 04 October 2009
- Frontmatter
- Contents
- Acknowledgments
- 1 Introduction
- 2 Electromagnetic-wave propagation
- 3 The absorption of light
- 4 Specular reflection
- 5 Single-particle scattering: perfect spheres
- 6 Single-particle scattering: irregular particles
- 7 Propagation in a nonuniform medium: the equation of radiative transfer
- 8 The bidirectional reflectance of a semiinfinite medium
- 9 The bidirectional reflectance in other geometries
- 10 Other quantities related to reflectance, integrated reflectances, planetary photometry, reflectances of mixtures
- 11 Reflectance spectroscopy
- 12 Photometric effects of large-scale roughness
- 13 Effects of thermal emission
- 14 Polarization
- Appendix A A brief review of vector calculus
- Appendix B Functions of a complex variable
- Appendix C The wave equation in spherical coordinates
- Appendix D Table of symbols
- Bibliography
- Index
Summary
Introduction
The scattering of electromagnetic radiation by perfect, uniform, spherical particles was described in Chapter 5. However, such particles are rarely found in nature. Most pulverized materials, including planetary regoliths, volcanic ash, laboratory samples, and industrial substances, have particles that almost invariably are irregular in shape, have rough surfaces, and are not uniform in either structure or composition. Even the liquid droplets in clouds are not perfectly spherical, and they contain inclusions of submicroscopic particles around which the liquid has condensed, so that they are not perfectly uniform. At the present state of our computational and analytical capabilities it is not possible to find exact solutions of scattering by such particles, so that it is necessary to rely on approximate models.
The objective of any model of single-particle scattering is to relate the microscopic properties of the particle (its geometry and complex refractive index) to the macroscopic properties (the scattering and extinction efficiencies and the phase function) that, in principle, can be measured by an appropriate scattering experiment. This chapter describes a variety of models that have been proposed to account for the scattering of light by irregular particles. This is not an exhaustive survey; rather, it is a commentary on those models that are most often encountered in remote-sensing applications or that offer some particular insight into the problem.
- Type
- Chapter
- Information
- Theory of Reflectance and Emittance Spectroscopy , pp. 101 - 146Publisher: Cambridge University PressPrint publication year: 1993