Book contents
- Frontmatter
- Contents
- Acknowledgments
- 1 Introduction
- 2 Electromagnetic-wave propagation
- 3 The absorption of light
- 4 Specular reflection
- 5 Single-particle scattering: perfect spheres
- 6 Single-particle scattering: irregular particles
- 7 Propagation in a nonuniform medium: the equation of radiative transfer
- 8 The bidirectional reflectance of a semiinfinite medium
- 9 The bidirectional reflectance in other geometries
- 10 Other quantities related to reflectance, integrated reflectances, planetary photometry, reflectances of mixtures
- 11 Reflectance spectroscopy
- 12 Photometric effects of large-scale roughness
- 13 Effects of thermal emission
- 14 Polarization
- Appendix A A brief review of vector calculus
- Appendix B Functions of a complex variable
- Appendix C The wave equation in spherical coordinates
- Appendix D Table of symbols
- Bibliography
- Index
7 - Propagation in a nonuniform medium: the equation of radiative transfer
Published online by Cambridge University Press: 04 October 2009
- Frontmatter
- Contents
- Acknowledgments
- 1 Introduction
- 2 Electromagnetic-wave propagation
- 3 The absorption of light
- 4 Specular reflection
- 5 Single-particle scattering: perfect spheres
- 6 Single-particle scattering: irregular particles
- 7 Propagation in a nonuniform medium: the equation of radiative transfer
- 8 The bidirectional reflectance of a semiinfinite medium
- 9 The bidirectional reflectance in other geometries
- 10 Other quantities related to reflectance, integrated reflectances, planetary photometry, reflectances of mixtures
- 11 Reflectance spectroscopy
- 12 Photometric effects of large-scale roughness
- 13 Effects of thermal emission
- 14 Polarization
- Appendix A A brief review of vector calculus
- Appendix B Functions of a complex variable
- Appendix C The wave equation in spherical coordinates
- Appendix D Table of symbols
- Bibliography
- Index
Summary
Introduction
Virtually every natural and artificial material encountered in our environment is optically nonuniform on scales appreciably larger than molecular. The atmosphere is a mixture of several gases, submicroscopic aerosol particles of varying composition, and larger cloud particles. Sands and soils typically consist of many different kinds and sizes of mineral particles separated by air or water. Living things are made of cells, which themselves are internally inhomogeneous and are organized into larger structures, such as leaves, skin, or hair. Paint consists of white scatterers, typically TiO2 particles, held together by a binder containing the dye that gives the material its color.
These examples show that if we wish to interpret the electromagnetic radiation that reaches us from our surroundings quantitatively, it is necessary to consider the propagation of light through nonuniform media. Except in a few artificially simple cases, the exact solution of this class of problems is not possible today, even with the help of modern high-speed computers. Hence, we must resort to approximate methods whose underlying assumptions and degrees of validity must be judged by the accuracy with which they describe and predict observations.
Effective-medium theories
One such type of approximation is known as an effective-medium theory, which attempts to describe the electromagnetic behavior of a geometrically complex medium by a uniform dielectric constant that is a weighted average of the dielectric constants of all the constituents.
- Type
- Chapter
- Information
- Theory of Reflectance and Emittance Spectroscopy , pp. 147 - 180Publisher: Cambridge University PressPrint publication year: 1993