Book contents
- Frontmatter
- Contents
- Foreword
- Preface
- 1 Probability theory: basic notions
- 2 Maximum and addition of random variables
- 3 Continuous time limit, Ito calculus and path integrals
- 4 Analysis of empirical data
- 5 Financial products and financial markets
- 6 Statistics of real prices: basic results
- 7 Non-linear correlations and volatility fluctuations
- 8 Skewness and price-volatility correlations
- 9 Cross-correlations
- 10 Risk measures
- 11 Extreme correlations and variety
- 12 Optimal portfolios
- 13 Futures and options: fundamental concepts
- 14 Options: hedging and residual risk
- 15 Options: the role of drift and correlations
- 16 Options: the Black and Scholes model
- 17 Options: some more specific problems
- 18 Options: minimum variance Monte–Carlo
- 19 The yield curve
- 20 Simple mechanisms for anomalous price statistics
- Index of most important symbols
- Index
11 - Extreme correlations and variety
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- Foreword
- Preface
- 1 Probability theory: basic notions
- 2 Maximum and addition of random variables
- 3 Continuous time limit, Ito calculus and path integrals
- 4 Analysis of empirical data
- 5 Financial products and financial markets
- 6 Statistics of real prices: basic results
- 7 Non-linear correlations and volatility fluctuations
- 8 Skewness and price-volatility correlations
- 9 Cross-correlations
- 10 Risk measures
- 11 Extreme correlations and variety
- 12 Optimal portfolios
- 13 Futures and options: fundamental concepts
- 14 Options: hedging and residual risk
- 15 Options: the role of drift and correlations
- 16 Options: the Black and Scholes model
- 17 Options: some more specific problems
- 18 Options: minimum variance Monte–Carlo
- 19 The yield curve
- 20 Simple mechanisms for anomalous price statistics
- Index of most important symbols
- Index
Summary
Etait-ce parce que je ne l'avais qu'entr-aperçue que je l'avais trouvée si belle?
(Marcel Proust, A l'ombre des jeunes filles en fleurs.)A proper understanding of cross-correlations between different stocks, or more generally between different financial assets, is of crucial importance for risk management and, as will be discussed in the Chapter 12, for portfolio optimization. In fact, much as the tail of the distributions of individual returns is of particular relevance for risk management, it is the correlations between extreme events that must be faithfully described.
As we have discussed in depth in Chapter 7, the volatility of each asset is in general not constant in time, but fluctuates randomly. It is therefore tempting to think that the whole covariance matrix (of which the diagonal contains the squared volatilities) also randomly fluctuates in time. The simplest case would be that the correlation matrix has a fixed structure, and that the variations of the covariance matrix only reflects that of the volatilities. However, it is a common belief in the financial industry that cross-correlations between stocks themselves fluctuate in time, and in fact increase substantially in a period of high market volatility. If true, this would mean that the possibility of risk diversification is much reduced, since in the periods that really matter as far as risk is concerned, all stocks would behave similarly.
- Type
- Chapter
- Information
- Theory of Financial Risk and Derivative PricingFrom Statistical Physics to Risk Management, pp. 186 - 201Publisher: Cambridge University PressPrint publication year: 2003
- 1
- Cited by