Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T16:33:01.176Z Has data issue: false hasContentIssue false

Chapter 9 - Thalamocortical Interactions in the Primary Visual Cortex

from Section 5: - Sensory Processing

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Sensory information enters the cerebral cortex through separate thalamocortical pathways that originate in different senses. One of these pathways links the dorsal lateral geniculate nucleus of the thalamus to the primary visual cortex and is crucial for mammalian vision. Over the past decades, there has been tremendous progress in understanding its functional organization, and new tools are allowing us to isolate, with increasing precision, its different components. Just as different senses remain segregated on their way to the cerebral cortex, the different properties of the visual stimulus also reach the primary visual cortex through separate geniculocortical pathways. On the one hand, these separate pathways underlie the parallel processing of stimulus position, eye of origin, light–dark polarity, and temporal dynamics, a strategy that is well preserved across species. On the other hand, the convergence of the different geniculocortical pathways in the visual cortex enables cortical neurons to extract features of the visual world that are not encoded by any geniculocortical pathway individually. This chapter reviews the current knowledge on the functional organization of this prominent thalamocortical pathway and concludes by raising key questions to be addressed in the future.

Type
Chapter
Information
The Thalamus , pp. 187 - 205
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. L., Sincich, L. C., and Horton, J. C. (2007). Complete pattern of ocular dominance columns in human primary visual cortex. J Neurosci 27, 1039110403.Google Scholar
Adams, M. M., Hof, P. R., Gattass, R., Webster, M. J., and Ungerleider, L. G. (2000). Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J Comp Neurol 419, 377393.Google Scholar
Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A., and Nelson, J. C. (1994). Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol 341, 3949.Google Scholar
Albrecht, D. G., and Geisler, W. S. (1991). Motion selectivity and the contrast-response function of simple cells in the visual cortex. Vis Neurosci 7, 531546.Google Scholar
Alonso, J. M. (2018). Motion processing picks up speed in the brain. Nature 558, 3839.Google Scholar
Alonso, J. M., and Swadlow, H. A. (2005). Thalamocortical specificity and the synthesis of sensory cortical receptive fields. J Neurophysiol 94, 2632.CrossRefGoogle ScholarPubMed
Alonso, J. M., Usrey, W. M., and Reid, R. C. (1996). Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383, 815819.Google Scholar
Alonso, J. M., Usrey, W. M., and Reid, R. C. (2001). Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J Neurosci 21, 40024015.Google Scholar
Anderson, P. A., Olavarria, J., and Van Sluyters, R. C. (1988). The overall pattern of ocular dominance bands in cat visual cortex. J Neurosci 8, 21832200.Google Scholar
Andrews, T. J., Halpern, S. D., and Purves, D. (1997). Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17, 28592868.CrossRefGoogle ScholarPubMed
Antonini, A., Fagiolini, M., and Stryker, M. P. (1999). Anatomical correlates of functional plasticity in mouse visual cortex. J Neurosci 19, 43884406.Google Scholar
Bagnall, M. W., Hull, C., Bushong, E. A., Ellisman, M. H., and Scanziani, M. (2011). Multiple clusters of release sites formed by individual thalamic afferents onto cortical interneurons ensure reliable transmission. Neuron 71, 180194.CrossRefGoogle ScholarPubMed
Baker, C. L., Jr., Hess, R. F., and Zihl, J. (1991). Residual motion perception in a “motion-blind” patient, assessed with limited-lifetime random dot stimuli. J Neurosci 11, 454461.Google Scholar
Banton, T., and Levi, D. M. (1991). Binocular summation in vernier acuity. J Opt Soc Am A 8, 673680.Google Scholar
Bereshpolova, Y., Hei, X., Alonso, J. M. & Swadlow, H. A. Three rules govern thalamocortical connectivity of fast-spike inhibitory interneurons in the visual cortex. eLife 9, doi:10.7554/eLife.60102 (2020), PMC7723404CrossRefGoogle Scholar
Bereshpolova, Y., Stoelzel, C. R., Su, C., Alonso, J. M., and Swadlow, H. A. (2019). Activation of a visual cortical column by a directionally selective thalamocortical neuron. Cell Rep 27, 3733–3740 e3733.Google Scholar
Berman, R. A., and Wurtz, R. H. (2008). Exploring the pulvinar path to visual cortex. Prog Brain Res 171, 467473.Google Scholar
Bickford, M. E., Zhou, N., Krahe, T. E., Govindaiah, G., and Guido, W. (2015). Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J Neurosci 35, 1052310534.Google Scholar
Bienkowski, M. S., Benavidez, N. L., Wu, K., Gou, L., Becerra, M., and Dong, H. W. (2019). Extrastriate connectivity of the mouse dorsal lateral geniculate thalamic nucleus. J Comp Neurol 527, 14191442.Google Scholar
Binzegger, T., Douglas, R. J., and Martin, K. A. (2004). A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24, 84418453.Google Scholar
Bischof, H. J., and Watanabe, S. (1997). On the structure and function of the tectofugal visual pathway in laterally eyed birds. Eur J Morphol 35, 246254.Google Scholar
Blasdel, G. G., and Lund, J. S. (1983). Termination of afferent axons in macaque striate cortex. J Neurosci 3, 13891413.Google Scholar
Boyd, J. D., and Matsubara, J. A. (1996). Laminar and columnar patterns of geniculocortical projections in the cat: relationship to cytochrome oxidase. J Comp Neurol 365, 659682.Google Scholar
Bruno, R. M., and Simons, D. J. (2002). Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J Neurosci 22, 1096610975.Google Scholar
Bryant, K. L., Suwyn, C., Reding, K. M., Smiley, J. F., Hackett, T. A., and Preuss, T. M. (2012). Evidence for ape and human specializations in geniculostriate projections from VGLUT2 immunohistochemistry. Brain Behav Evol 80, 210221.Google Scholar
Callaway, E. M. (2005). Structure and function of parallel pathways in the primate early visual system. J Physiol 566, 1319.Google Scholar
Cammack, J., Whight, J., Cross, V., Rider, A. T., Webster, A. R., and Stockman, A. (2016). Psychophysical measures of visual function and everyday perceptual experience in a case of congenital stationary night blindness. Clin Ophthalmol 10, 15931606.Google Scholar
Cano, M., Bezdudnaya, T., Swadlow, H. A., and Alonso, J. M. (2006). Brain state and contrast sensitivity in the awake visual thalamus. Nat Neurosci 9, 12401242.CrossRefGoogle ScholarPubMed
Chapman, B., Zahs, K. R., and Stryker, M. P. (1991). Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. J Neurosci 11, 13471358.Google Scholar
Chatterjee, S., and Callaway, E. M. (2003). Parallel colour-opponent pathways to primary visual cortex. Nature 426, 668671.Google Scholar
Chichilnisky, E. J., and Kalmar, R. S. (2002). Functional asymmetries in ON and OFF ganglion cells of primate retina. J Neurosci 22, 27372747.Google Scholar
Cleland, B. G., Dubin, M. W., and Levick, W. R. (1971). Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J Physiol 217, 473496.Google Scholar
Conway, J. L., and Schiller, P. H. (1983). Laminar organization of tree shrew dorsal lateral geniculate nucleus. J Neurophysiol 50, 13301342.Google Scholar
Cowey, A. (2010). Visual system: how does blindsight arise? Curr Biol 20, R702704.Google Scholar
Cowey, A., Stoerig, P., and Bannister, M. (1994). Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkeys. Neuroscience 61, 691705.Google Scholar
Cruikshank, S. J., Lewis, T. J., and Connors, B. W. (2007). Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 10, 462468.Google Scholar
Cruz-Martin, A., El-Danaf, R. N., Osakada, F., Sriram, B., Dhande, O. S., Nguyen, P. L., Callaway, E. M., Ghosh, A., and Huberman, A. D. (2014). A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507, 358361.Google Scholar
Curcio, C. A., and Allen, K. A. (1990). Topography of ganglion cells in human retina. J Comp Neurol 300, 525.Google Scholar
Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E. (1990). Human photoreceptor topography. J Comp Neurol 292, 497523.Google Scholar
Dacey, D. M., and Petersen, M. R. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci USA 89, 96669670.Google Scholar
DeAngelis, G. C., Ohzawa, I., and Freeman, R. D. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation. J Neurophysiol 69, 11181135.Google Scholar
Diamond, I. T., Conley, M., Fitzpatrick, D., and Raczkowski, D. (1991). Evidence for separate pathways within the tecto-geniculate projection in the tree shrew. Proc Natl Acad Sci USA 88, 13151319.Google Scholar
Drager, U. C., and Olsen, J. F. (1981). Ganglion cell distribution in the retina of the mouse. Invest Ophthalmol Vis Sci 20, 285293.Google Scholar
Dryja, T. P., McGee, T. L., Berson, E. L., Fishman, G. A., Sandberg, M. A., Alexander, K. R., Derlacki, D. J., and Rajagopalan, A. S. (2005). Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci USA 102, 48844889.Google Scholar
Eiber, C. D., Rahman, A. S., Pietersen, A. N. J., Zeater, N., Dreher, B., Solomon, S. G., and Martin, P. R. (2018). Receptive field properties of koniocellular on/off neurons in the lateral geniculate nucleus of marmoset monkeys. J Neurosci 38, 1038410398.Google Scholar
Emran, F., Rihel, J., Adolph, A. R., Wong, K. Y., Kraves, S., and Dowling, J. E. (2007). OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci USA 104, 1912619131.Google Scholar
Enroth-Cugell, C., and Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187, 517552.Google Scholar
Ferster, D., Chung, S., and Wheat, H. (1996). Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249252.Google Scholar
Freund, T. F., Martin, K. A., Somogyi, P., and Whitteridge, D. (1985). Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y- type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation. J Comp Neurol 242, 275291.Google Scholar
Freund, T. F., Martin, K. A., and Whitteridge, D. (1985). Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y- type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements. J Comp Neurol 242, 263274.Google Scholar
Friedlander, M. J., Lin, C. S., and Sherman, S. M. (1979). Structure of physiologically identified X and Y cells in the cat’s lateral geniculate nucleus. Science 204, 11141117.Google Scholar
Gabernet, L., Jadhav, S. P., Feldman, D. E., Carandini, M., and Scanziani, M. (2005). Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315327.Google Scholar
Garcia-Marin, V., Kelly, J. G., and Hawken, M. J. (2019). Major feedforward thalamic input into layer 4C of primary visual cortex in primate. Cereb Cortex 29, 134149.Google Scholar
Gennari, F. (1782). De peculiari structura cerebri nonnulisque ejus morbis. (Parma, Regio Typographeo).Google Scholar
Granda, A. M., and Fulbrook, J. E. (1989). Classification of turtle retinal ganglion cells. J Neurophysiol 62, 723737.Google Scholar
Harting, J. K., Huerta, M. F., Hashikawa, T., and van Lieshout, D. P. (1991). Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. J Comp Neurol 304, 275306.Google Scholar
Hartline, H. K. (1938). The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol 121, 400415.Google Scholar
Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Vis Neurosci 9, 181197.Google Scholar
Hendry, S. H., and Reid, R. C. (2000). The koniocellular pathway in primate vision. Annu Rev Neurosci 23, 127153.Google Scholar
Hendry, S. H., and Yoshioka, T. (1994). A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264, 575577.Google Scholar
Hillier, D., Fiscella, M., Drinnenberg, A., Trenholm, S., Rompani, S. B., Raics, Z., Katona, G., Juettner, J., Hierlemann, A., Rozsa, B., and Roska, B. (2017). Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. Nat Neurosci 20, 960968.Google Scholar
Holmes, J. M., and Clarke, M. P. (2006). Amblyopia. Lancet 367, 13431351.Google Scholar
Honegger, H. W. (1978). Sustained and transient responding units in the medulla of the cricket Gryllus campestris. J Comp Physiol 125, 259266.Google Scholar
Hubel, D. H., and Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148, 574591.Google Scholar
Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160, 106154.CrossRefGoogle ScholarPubMed
Hull, C., Isaacson, J. S., and Scanziani, M. (2009). Postsynaptic mechanisms govern the differential excitation of cortical neurons by thalamic inputs. J Neurosci 29, 91279136.Google Scholar
Humphrey, A. L., Sur, M., Uhlrich, D. J., and Sherman, S. M. (1985). Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J Comp Neurol 233, 159189.Google Scholar
Jagadeesh, B., Wheat, H. S., and Ferster, D. (1993). Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science 262, 19011904.Google Scholar
Jagadeesh, B., Wheat, H. S., Kontsevich, L. L., Tyler, C. W., and Ferster, D. (1997). Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. J Neurophysiol 78, 27722789.CrossRefGoogle ScholarPubMed
Jansen, M., Jin, J., Li, X., Lashgari, R., Kremkow, J., Bereshpolova, Y., Swadlow, H. A., Zaidi, Q., and Alonso, J. M. (2019). Cortical balance between ON and OFF visual responses is modulated by the spatial properties of the visual stimulus. Cereb Cortex 29, 336355.Google Scholar
Jeffery, G., and Erskine, L. (2005). Variations in the architecture and development of the vertebrate optic chiasm. Prog Retin Eye Res 24, 721753.Google Scholar
Ji, W., Gamanut, R., Bista, P., D’Souza, R. D., Wang, Q., and Burkhalter, A. (2015). Modularity in the organization of mouse primary visual cortex. Neuron 87, 632643.Google Scholar
Ji, X. Y., Zingg, B., Mesik, L., Xiao, Z., Zhang, L. I., and Tao, H. W. (2016). Thalamocortical innervation pattern in mouse auditory and visual cortex: laminar and cell-type specificity. Cereb Cortex 26, 26122625.Google Scholar
Jin, J., Wang, Y., Lashgari, R., Swadlow, H. A., and Alonso, J. M. (2011). Faster thalamocortical processing for dark than light visual targets. J Neurosci 31, 1747117479.Google Scholar
Jin, J., Wang, Y., Swadlow, H. A., and Alonso, J. M. (2011). Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nat Neurosci 14, 232238.Google Scholar
Jin, J. Z., Weng, C., Yeh, C. I., Gordon, J. A., Ruthazer, E. S., Stryker, M. P., Swadlow, H. A., and Alonso, J. M. (2008). On and off domains of geniculate afferents in cat primary visual cortex. Nat Neurosci 11, 8894.Google Scholar
Joesch, M., Schnell, B., Raghu, S. V., Reiff, D. F., and Borst, A. (2010). ON and OFF pathways in Drosophila motion vision. Nature 468, 300304.Google Scholar
Jones, J. P., and Palmer, L. A. (1987). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol 58, 11871211.Google Scholar
Kaas, J. H., Hall, W. C., Killackey, H., and Diamond, I. T. (1972). Visual cortex of the tree shrew (Tupaia glis): architectonic subdivisions and representations of the visual field. Brain Res 42, 491496.Google Scholar
Kara, P., and Boyd, J. D. (2009). A micro-architecture for binocular disparity and ocular dominance in visual cortex. Nature 458, 627631.Google Scholar
Kawano, J. (1998). Cortical projections of the parvocellular laminae C of the dorsal lateral geniculate nucleus in the cat: an anterograde wheat germ agglutinin conjugated to horseradish peroxidase study. J Comp Neurol 392, 439457.Google Scholar
Kerschensteiner, D., and Guido, W. (2017). Organization of the dorsal lateral geniculate nucleus in the mouse. Vis Neurosci 34, E008.Google Scholar
Koch, E., Jin, J., Alonso, J. M., and Zaidi, Q. (2016). Functional implications of orientation maps in primary visual cortex. Nat Commun 7, 13529.Google Scholar
Kolb, H. (1995–). Facts and figures concerning the human retina. In Webvision: the organization of the retina and visual system, Kolb, H., Fernandez, E., and Nelson, R., eds. (Salt Lake City, University of Utah Health Sciences Center). Web. http://webvision.med.utah.edu/book/part-i-foundations/gross-anatomy-of-the-ey/.Google Scholar
Kolb, H., and Dekorver, L. (1991). Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions. J Comp Neurol 303, 617636.Google Scholar
Kolb, H., Nelson, R., Fernandez, E., and Jones, B., eds. (1995–). Webvision: The organization of the retina and visual system. (Salt Lake City, University of Utah Health Sciences Center). Web. http://webvision.med.utah.edu/.Google Scholar
Komban, S. J., Alonso, J. M., and Zaidi, Q. (2011). Darks are processed faster than lights. J Neurosci 31, 86548658.Google Scholar
Komban, S. J., Kremkow, J., Jin, J., Wang, Y., Lashgari, R., Li, X., Zaidi, Q., and Alonso, J. M. (2014). Neuronal and perceptual differences in the temporal processing of darks and lights. Neuron 82, 224234.Google Scholar
Kremkow, J., and Alonso, J. M. (2018). Thalamocortical circuits and functional architecture. Annu Rev Vis Sci 4, 263285.Google Scholar
Kremkow, J., Jin, J., Komban, S. J., Wang, Y., Lashgari, R., Li, X., Jansen, M., Zaidi, Q., and Alonso, J. M. (2014). Neuronal nonlinearity explains greater visual spatial resolution for darks than lights. Proc Natl Acad Sci USA 111, 31703175.Google Scholar
Kremkow, J., Jin, J., Wang, Y., and Alonso, J. M. (2016). Principles underlying sensory map topography in primary visual cortex. Nature 533, 5257.Google Scholar
Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16, 3768.Google Scholar
Laing, R. J., Turecek, J., Takahata, T., and Olavarria, J. F. (2015). Identification of eye-specific domains and their relation to callosal connections in primary visual cortex of long evans rats. Cereb Cortex 25, 33143329.Google Scholar
Leonhardt, A., Ammer, G., Meier, M., Serbe, E., Bahl, A., and Borst, A. (2016). Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation. Nat Neurosci 19, 706715.Google Scholar
Lien, A. D., and Scanziani, M. (2013). Tuned thalamic excitation is amplified by visual cortical circuits. Nat Neurosci 16, 13151323.Google Scholar
Lien, A. D., and Scanziani, M. (2018). Cortical direction selectivity emerges at convergence of thalamic synapses. Nature 558, 8086.Google Scholar
Liu, B. H., Huberman, A. D., and Scanziani, M. (2016). Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour. Nature 538, 383387.Google Scholar
Livingstone, M., and Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740749.Google Scholar
Livingstone, M. S. (1998). Mechanisms of direction selectivity in macaque V1. Neuron 20, 509526.Google Scholar
Luo-Li, G., Mazade, R., Zaidi, Q., Alonso, J. M., and Freeman, A. W. (2018). Motion changes response balance between ON and OFF visual pathways. Commun Biol 1, 60.CrossRefGoogle ScholarPubMed
Malpeli, J. G., and Baker, F. H. (1975). The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. J Comp Neurol 161, 569594.Google Scholar
Martin, K. A., Somogyi, P., and Whitteridge, D. (1983). Physiological and morphological properties of identified basket cells in the cat’s visual cortex. Exp Brain Res 50, 193200.Google Scholar
Masri, R. A., Grunert, U., and Martin, P. R. (2020). Analysis of parvocellular and magnocellular visual pathways in human retina. J Neurosci 40, 81328148.Google Scholar
Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., and Pitts, W. H. (1960). Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43(6)Suppl, 129175.Google Scholar
Mazade, R., and Alonso, J. M. (2017). Thalamocortical processing in vision. Vis Neurosci 34, E007.CrossRefGoogle ScholarPubMed
Mazade, R., Jin, J., Pons, C., and Alonso, J. M. (2019). Functional specialization of ON and OFF cortical pathways for global-slow and local-fast vision. Cell Rep 27, 2881–2894 e2885.Google Scholar
McConnell, S. K., and LeVay, S. (1984). Segregation of on- and off-center afferents in mink visual cortex. Proc Natl Acad Sci USA 81, 15901593.Google Scholar
McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D. A. (1985). Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54, 782806.Google Scholar
McGurk, H., and MacDonald, J. (1976). Hearing lips and seeing voices. Nature 264, 746748.Google Scholar
McLean, J., and Palmer, L. A. (1989). Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat. Vision Res 29, 675679.Google Scholar
Merigan, W. H., Katz, L. M., and Maunsell, J. H. (1991). The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci 11, 9941001.Google Scholar
Merigan, W. H., and Maunsell, J. H. (1990). Macaque vision after magnocellular lateral geniculate lesions. Vis Neurosci 5, 347352.Google Scholar
Merigan, W. H., and Maunsell, J. H. (1993). How parallel are the primate visual pathways? Annu Rev Neurosci 16, 369402.Google Scholar
Miles, F. A. (1972). Centrifugal control of the avian retina. I. Receptive field properties of retinal ganglion cells. Brain Res 48, 6592.Google Scholar
Mohler, C. W., and Wurtz, R. H. (1977). Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. J Neurophysiol 40, 7494.Google Scholar
Morin, L. P., and Studholme, K. M. (2014). Retinofugal projections in the mouse. J Comp Neurol 522, 37333753.Google Scholar
Movshon, J. A., Thompson, I. D., and Tolhurst, D. J. (1978). Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J Physiol 283, 5377.Google Scholar
Murcia-Belmonte, V., and Erskine, L. (2019). Wiring the binocular visual pathways. Int J Mol Sci 20, 3282.Google Scholar
Nauhaus, I., Nielsen, K. J., and Callaway, E. M. (2016). Efficient receptive field tiling in primate V1. Neuron 91, 893904.Google Scholar
Newsome, W. T., and Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8, 22012211.Google Scholar
Niell, C. M., and Stryker, M. P. (2008). Highly selective receptive fields in mouse visual cortex. J Neurosci 28, 75207536.Google Scholar
Norcia, A. M., Yakovleva, A., Hung, B., and Goldberg, J. L. (2020). Dynamics of contrast decrement and increment responses in human visual cortex. Transl Vis Sci Technol 9, 6.Google Scholar
Norton, T. T., Rager, G., and Kretz, R. (1985). ON and OFF regions in layer IV of striate cortex. Brain Res 327, 319323.Google Scholar
Osterberg, G. (1935). Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica Supplement 6, 1103.Google Scholar
Pasternak, T., and Maunsell, J. H. (1992). Spatiotemporal sensitivity following lesions of area 18 in the cat. J Neurosci 12, 45214529.Google Scholar
Pasternak, T., Tompkins, J., and Olson, C. R. (1995). The role of striate cortex in visual function of the cat. J Neurosci 15, 19401950.Google Scholar
Peichl, L. (1989). Alpha and delta ganglion cells in the rat retina. J Comp Neurol 286, 120139.Google Scholar
Peters, A., and Payne, B. R. (1993). Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb Cortex 3, 6978.Google Scholar
Peters, A., Payne, B. R., and Budd, J. (1994). A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cereb Cortex 4, 215229.Google Scholar
Priebe, N. J., and Ferster, D. (2005). Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45, 133145.Google Scholar
Priebe, N. J., and Ferster, D. (2008). Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57, 482497.Google Scholar
Raczkowski, D., and Fitzpatrick, D. (1990). Terminal arbors of individual, physiologically identified geniculocortical axons in the tree shrew’s striate cortex. J Comp Neurol 302, 500514.Google Scholar
Rakic, P. (1977). Prenatal development of the visual system in rhesus monkey. Philos Trans R Soc Lond B Biol Sci 278, 245260.Google Scholar
Reid, R. C., and Alonso, J. M. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281284.Google Scholar
Reid, R. C., Soodak, R. E., and Shapley, R. M. (1987). Linear mechanisms of directional selectivity in simple cells of cat striate cortex. Proc Natl Acad Sci USA 84, 87408744.Google Scholar
Reid, R. C., Soodak, R. E., and Shapley, R. M. (1991). Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. J Neurophysiol 66, 505529.Google Scholar
Rekauzke, S., Nortmann, N., Staadt, R., Hock, H. S., Schoner, G., and Jancke, D. (2016). Temporal asymmetry in dark-bright processing initiates propagating activity across primary visual cortex. J Neurosci 36, 19021913.Google Scholar
Rodieck, R. W. (1998). The first steps in seeing (Sunderland, MA, Oxford University Press).Google Scholar
Salinas, K. J., Figueroa Velez, D. X., Zeitoun, J. H., Kim, H., and Gandhi, S. P. (2017). Contralateral bias of high spatial frequency tuning and cardinal direction selectivity in mouse visual cortex. J Neurosci 37, 1012510138.Google Scholar
Samonds, J. M., Choi, V., and Priebe, N. J. (2019). Mice discriminate stereoscopic surfaces without fixating in depth. J Neurosci 39, 80248037.Google Scholar
Sarnaik, R., Chen, H., Liu, X., and Cang, J. (2014). Genetic disruption of the On visual pathway affects cortical orientation selectivity and contrast sensitivity in mice. J Neurophysiol 111, 22762286.Google Scholar
Saul, A. B., and Humphrey, A. L. (1992). Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. J Neurophysiol 68, 11901208.Google Scholar
Schiff, M. L., and Reyes, A. D. (2012). Characterization of thalamocortical responses of regular-spiking and fast-spiking neurons of the mouse auditory cortex in vitro and in silico. J Neurophysiol 107, 14761488.Google Scholar
Schiller, P. H. (1982). Central connections of the retinal ON and OFF pathways. Nature 297, 580583.Google Scholar
Schiller, P. H., and Malpeli, J. G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J Neurophysiol 41, 788797.Google Scholar
Schiller, P. H., Sandell, J. H., and Maunsell, J. H. (1986). Functions of the ON and OFF channels of the visual system. Nature 322, 824825.Google Scholar
Schmid, M. C., Mrowka, S. W., Turchi, J., Saunders, R. C., Wilke, M., Peters, A. J., Ye, F. Q., and Leopold, D. A. (2010). Blindsight depends on the lateral geniculate nucleus. Nature 466, 373377.Google Scholar
Schmitt, L. I., Wimmer, R. D., Nakajima, M., Happ, M., Mofakham, S., and Halassa, M. M. (2017). Thalamic amplification of cortical connectivity sustains attentional control. Nature 545, 219223.Google Scholar
Sedigh-Sarvestani, M., Vigeland, L., Fernandez-Lamo, I., Taylor, M. M., Palmer, L. A., and Contreras, D. (2017). Intracellular, in vivo, dynamics of thalamocortical synapses in visual cortex. J Neurosci 37, 52505262.Google Scholar
Shapley, R., Kaplan, E., and Soodak, R. (1981). Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque. Nature 292, 543545.Google Scholar
Shatz, C. J. (1983). The prenatal development of the cat’s retinogeniculate pathway. J Neurosci 3, 482499.Google Scholar
Sherk, H., and Horton, J. C. (1984). Receptive field properties in the cat’s area 17 in the absence of on-center geniculate input. J Neurosci 4, 381393.Google Scholar
Sincich, L. C., Park, K. F., Wohlgemuth, M. J., and Horton, J. C. (2004). Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7, 11231128.Google Scholar
So, Y. T., and Shapley, R. (1979). Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction velocities of their inputs. Exp Brain Res 36, 533550.Google Scholar
Sretavan, D. W., and Shatz, C. J. (1986). Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat’s lateral geniculate nucleus. J Neurosci 6, 234251.Google Scholar
Stanley, G. B., Jin, J., Wang, Y., Desbordes, G., Wang, Q., Black, M. J., and Alonso, J. M. (2012). Visual orientation and directional selectivity through thalamic synchrony. J Neurosci 32, 90739088.Google Scholar
Stoelzel, C. R., Bereshpolova, Y., Gusev, A. G., and Swadlow, H. A. (2008). The impact of an LGNd impulse on the awake visual cortex: synaptic dynamics and the sustained/transient distinction. J Neurosci 28, 50185028.Google Scholar
Stoerig, P., and Cowey, A. (1997). Blindsight in man and monkey. Brain 120 (Pt 3), 535559.Google Scholar
Swadlow, H. A., and Gusev, A. G. (2002). Receptive-field construction in cortical inhibitory interneurons. Nat Neurosci 5, 403404.Google Scholar
Tanaka, K. (1983). Cross-correlation analysis of geniculostriate neuronal relationships in cats. J Neurophysiol 49, 13031318.Google Scholar
Tang, L., and Higley, M. J. (2020). Layer 5 circuits in V1 differentially control visuomotor behavior. Neuron 105, 346–354 e345.Google Scholar
Ulinski, P. S. (1977). Tectal efferents in the branded water snake, Natrix sipedon. J Comp Neurol 173, 251274.Google Scholar
Usrey, W. M., Muly, E. C., and Fitzpatrick, D. (1992). Lateral geniculate projections to the superficial layers of visual cortex in the tree shrew. J Comp Neurol 319, 159171.Google Scholar
Van Essen, D. C., Donahue, C. J., and Glasser, M. F. (2018). Development and evolution of cerebral and cerebellar cortex. Brain Behav Evol 91, 158169.Google Scholar
Van Essen, D. C., Newsome, W. T., and Maunsell, J. H. (1984). The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24, 429448.Google Scholar
Van Hooser, S. D., Heimel, J. A., and Nelson, S. B. (2003). Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis). J Neurophysiol 90, 33983418.Google Scholar
Warner, C. E., Kwan, W. C., Wright, D., Johnston, L. A., Egan, G. F., and Bourne, J. A. (2015). Preservation of vision by the pulvinar following early-life primary visual cortex lesions. Curr Biol 25, 424434.Google Scholar
Wassle, H., Boycott, B. B., and Illing, R. B. (1981). Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proc R Soc Lond B Biol Sci 212, 177195.Google Scholar
Wheatstone, C. (1838). Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos Trans R Soc 128, 371394.Google Scholar
Wiesel, T. N., and Hubel, D. H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol 29, 11151156.Google Scholar
Zahs, K. R., and Stryker, M. P. (1988). Segregation of ON and OFF afferents to ferret visual cortex. J Neurophysiol 59, 14101429.Google Scholar
Zhou, N. A., Maire, P. S., Masterson, S. P., and Bickford, M. E. (2017). The mouse pulvinar nucleus: organization of the tectorecipient zones. Vis Neurosci 34, E011.Google Scholar
Zhuang, J., Stoelzel, C. R., Bereshpolova, Y., Huff, J. M., Hei, X., Alonso, J. M., and Swadlow, H. A. (2013). Layer 4 in primary visual cortex of the awake rabbit: contrasting properties of simple cells and putative feedforward inhibitory interneurons. J Neurosci 33, 1137211389.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×