Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T21:41:30.247Z Has data issue: false hasContentIssue false

Section 4: - Development

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Thalamus , pp. 139 - 186
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ackman, J. B., Burbridge, T. J. and Crair, M. C. (2012). “Retinal waves coordinate patterned activity throughout the developing visual system.Nature 490(7419): 219225.Google Scholar
Agmon, A. and Connors, B. W. (1991). “Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro.Neuroscience 41(2–3): 365379.Google Scholar
Agmon, A., Yang, L. T., Jones, E. G. and O’Dowd, D. K. (1995). “Topological precision in the thalamic projection to neonatal mouse barrel cortex.J Neurosci 15(1 Pt 2): 549561.Google Scholar
Agmon, A., Yang, L. T., O’Dowd, D. K. and Jones, E. G. (1993). “Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex.J Neurosci 13(12): 53655382.Google Scholar
Allendoerfer, K. L. and Shatz, C. J. (1994). “The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex.” Annu Rev Neurosci 17: 185218.Google Scholar
Altman, J. and Bayer, S. A. (1988a). “Development of the rat thalamus: I. Mosaic organization of the thalamic neuroepithelium.J Comp Neurol 275(3): 346377.Google Scholar
Altman, J. and Bayer, S. A. (1988b). “Development of the rat thalamus: II. Time and site of origin and settling pattern of neurons derived from the anterior lobule of the thalamic neuroepithelium.J Comp Neurol 275(3): 378405.Google Scholar
Altman, J. and Bayer, S. A. (1988c). “Development of the rat thalamus: III. Time and site of origin and settling pattern of neurons of the reticular nucleus.J Comp Neurol 275(3): 406428.Google Scholar
Angelucci, A., Clascá, F., Bricolo, E., Cramer, K. S. and Sur, M. (1997). “Experimentally induced retinal projections to the ferret auditory thalamus: development of clustered eye-specific patterns in a novel target.J Neurosci 17(6): 20402055.Google Scholar
Angelucci, A., Clascá, F. and Sur, M. (1998). “Brainstem inputs to the ferret medial geniculate nucleus and the effect of early deafferentation on novel retinal projections to the auditory thalamus.J Comp Neurol 400(3): 417439.Google Scholar
Angevine, J. B., Jr. (1970). “Time of neuron origin in the diencephalon of the mouse. An autoradiographic study.J Comp Neurol 139(2): 129187.Google Scholar
Asanuma, C. and Stanfield, B. B. (1990). “Induction of somatic sensory inputs to the lateral geniculate nucleus in congenitally blind mice and in phenotypically normal mice.Neuroscience 39(3): 533545.Google Scholar
Auladell, C., Perez-Sust, P., Super, H. and Soriano, E. (2000). “The early development of thalamocortical and corticothalamic projections in the mouse.Anat Embryol (Berl) 201(3): 169179.Google Scholar
Bagri, A., Marin, O., Plump, A. S., Mak, J., Pleasure, S. J., Rubenstein, J. L. and Tessier-Lavigne, M. (2002). “Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain.Neuron 33(2): 233248.Google Scholar
Bavelier, D. and Neville, H. J. (2002). “Cross-modal plasticity: where and how?Nat Rev Neurosci 3(6): 443452.Google Scholar
Behrens, T. E., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A., Boulby, P. A., Barker, G. J., Sillery, E. L., Sheehan, K., Ciccarelli, O., Thompson, A. J., Brady, J. M. and Matthews, P. M. (2003). “Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging.Nat Neurosci 6(7): 750757.Google Scholar
Bielle, F., Marcos-Mondejar, P., Keita, M., Mailhes, C., Verney, C., Nguyen Ba-Charvet, K., Tessier-Lavigne, M., Lopez-Bendito, G. and Garel, S. (2011). “Slit2 activity in the migration of guidepost neurons shapes thalamic projections during development and evolution.Neuron 69(6): 10851098.Google Scholar
Bishop, K. M., Goudreau, G. and O’Leary, D. D. (2000). “Regulation of area identity in the mammalian neocortex by Emx2 and Pax6.Science 288(5464): 344349.Google Scholar
Bishop, P. O., Burke, W. and Davis, R. (1959). “Activation of single lateral geniculate cells by stimulation of either optic nerve.Science 130(3374): 506507.Google Scholar
Blakey, D. (2007). The Role of Neural Activity in the Development of Thalamocortical Connections. D.Phil, University of Oxford.Google Scholar
Blakey, D., Wilson, M. C. and Molnár, Z. (2012). “Termination and initial branch formation of SNAP-25-deficient thalamocortical fibres in heterochronic organotypic co-cultures.Eur J Neurosci 35(10): 15861594.Google Scholar
Bonnin, A., Torii, M., Wang, L., Rakic, P. and Levitt, P. (2007). “Serotonin modulates the response of embryonic thalamocortical axons to netrin-1.Nat Neurosci 10(5): 588597.Google Scholar
Braisted, J. E., Catalano, S. M., Stimac, R., Kennedy, T. E., Tessier-Lavigne, M., Shatz, C. J. and O’Leary, D. D. (2000). “Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection.J Neurosci 20(15): 57925801.Google Scholar
Braisted, J. E., Ringstedt, T. and O’Leary, D. D. (2009). “Slits are chemorepellents endogenous to hypothalamus and steer thalamocortical axons into ventral telencephalon.Cereb Cortex 19 Suppl 1: i144151.Google Scholar
Braisted, J. E., Tuttle, R. and O’Leary, D. D (1999). “Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path.Dev Biol 208(2): 430440.Google Scholar
Bronchti, G., Heil, P., Sadka, R., Hess, A., Scheich, H. and Wollberg, Z. (2002). “Auditory activation of ‘visual’ cortical areas in the blind mole rat (Spalax ehrenbergi).Eur J Neurosci 16(2): 311329.Google Scholar
Bronchti, G., Heil, P., Scheich, H. and Wollberg, Z. (1989). “Auditory pathway and auditory activation of primary visual targets in the blind mole rat (Spalax ehrenbergi): I. 2-deoxyglucose study of subcortical centers.J Comp Neurol 284(2): 253274.Google Scholar
Brooks, J. M., Su, J., Levy, C., Wang, J. S., Seabrook, T. A., Guido, W. and Fox, M. A. (2013). “A molecular mechanism regulating the timing of corticogeniculate innervation.Cell Rep 5(3): 573581.Google Scholar
Butler, A. B. (2008). “Evolution of the thalamus: a morphological and functional review.Thalamus & Related Systems 4(1): 3558.Google Scholar
Butler, A. B. and William, H. (2005). Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. Hoboken, NJ: Wiley-Liss.Google Scholar
Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. and Nowakowski, T. J. (2019). “Development and arealization of the cerebral cortex.Neuron 103(6): 9801004.Google Scholar
Carney, R. S., Alfonso, T. B., Cohen, D., Dai, H., Nery, S., Stoica, B., Slotkin, J., Bregman, B. S., Fishell, G. and Corbin, J. G. (2006). “Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system.J Neurosci 26(45): 1156211574.Google Scholar
Carney, R. S., Cocas, L. A., Hirata, T., Mansfield, K. and Corbin, J. G. (2009). “Differential regulation of telencephalic pallial-subpallial boundary patterning by Pax6 and Gsh2.Cereb Cortex 19(4): 745759.Google Scholar
Castillo-Paterna, M., Moreno-Juan, V., Filipchuk, A., Rodriguez-Malmierca, L., Susin, R. and Lopez-Bendito, G. (2015). “DCC functions as an accelerator of thalamocortical axonal growth downstream of spontaneous thalamic activity.EMBO Rep 16(7): 851862.Google Scholar
Catalano, S. M., Robertson, R. T. and Killackey, H. P. (1991). “Early ingrowth of thalamocortical afferents to the neocortex of the prenatal rat.Proc Natl Acad Sci USA 88(8): 29993003.Google Scholar
Catalano, S. M. and Shatz, C. J. (1998). “Activity-dependent cortical target selection by thalamic axons.Science 281(5376): 559562.Google Scholar
Caviness, V. S., Jr. and Frost, D. O. (1980). “Tangential organization of thalamic projections to the neocortex in the mouse.J Comp Neurol 194(2): 335367.Google Scholar
Chabot, N., Robert, S., Tremblay, R., Miceli, D., Boire, D. and Bronchti, G. (2007). “Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants.Eur J Neurosci 26(8): 23342348.Google Scholar
Chapouton, P., Schuurmans, C., Guillemot, F. and Gotz, M. (2001). “The transcription factor neurogenin 2 restricts cell migration from the cortex to the striatum.Development 128(24): 51495159.Google Scholar
Charbonneau, V., Laramee, M. E., Boucher, V., Bronchti, G. and Boire, D. (2012). “Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice.Eur J Neurosci 36(7): 29492963.Google Scholar
Chatterjee, M. and Li, J. Y. (2012). “Patterning and compartment formation in the diencephalon.Front Neurosci 6: 66.Google Scholar
Chen, Y., Magnani, D., Theil, T., Pratt, T. and Price, D. J. (2012). “Evidence that descending cortical axons are essential for thalamocortical axons to cross the pallial-subpallial boundary in the embryonic forebrain.PLoS One 7(3): e33105.Google Scholar
Chou, S. J., Babot, Z., Leingartner, A., Studer, M., Nakagawa, Y. and O’Leary, D. D. (2013). “Geniculocortical input drives genetic distinctions between primary and higher-order visual areas.Science 340(6137): 12391242.Google Scholar
Clascá, F., Angelucci, A. and Sur, M. (1995). “Layer-specific programs of development in neocortical projection neurons.Proc Natl Acad Sci USA 92(24): 1114511149.Google Scholar
Colonnese, M. T., Kaminska, A., Minlebaev, M., Milh, M., Bloem, B., Lescure, S., Moriette, G., Chiron, C., Ben-Ari, Y. and Khazipov, R. (2010). “A conserved switch in sensory processing prepares developing neocortex for vision.Neuron 67(3): 480498.Google Scholar
Colonnese, M. T. and Khazipov, R. (2010). “‘Slow activity transients’ in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves.J Neurosci 30(12): 43254337.Google Scholar
Cordery, P. and Molnár, Z. (1999). “Embryonic development of connections in turtle pallium.J Comp Neurol 413(1): 2654.Google Scholar
De Carlos, J. A. and O’Leary, D. D. (1992). “Growth and targeting of subplate axons and establishment of major cortical pathways.J Neurosci 12(4): 11941211.Google Scholar
Deck, M., Lokmane, L., Chauvet, S., Mailhes, C., Keita, M., Niquille, M., Yoshida, M., Yoshida, Y., Lebrand, C., Mann, F., Grove, E. A. and Garel, S. (2013). “Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections.Neuron 77(3): 472484.Google Scholar
Dehay, C. and Kennedy, H. (2007). “Cell-cycle control and cortical development.Nat Rev Neurosci 8(6): 438450.Google Scholar
Dufour, A., Seibt, J., Passante, L., Depaepe, V., Ciossek, T., Frisen, J., Kullander, K., Flanagan, J. G., Polleux, F. and Vanderhaeghen, P. (2003). “Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes.Neuron 39(3): 453465.Google Scholar
Dwyer, N. D., Manning, D. K., Moran, J. L., Mudbhary, R., Fleming, M. S., Favero, C. B., Vock, V. M., O’Leary, D. D., Walsh, C. A. and Beier, D. R. (2011). “A forward genetic screen with a thalamocortical axon reporter mouse yields novel neurodevelopment mutants and a distinct emx2 mutant phenotype.Neural Dev 6: 3.Google Scholar
Dye, C. A., Abbott, C. W. and Huffman, K. J. (2012). “Bilateral enucleation alters gene expression and intraneocortical connections in the mouse.Neural Dev 7: 5.Google Scholar
Erzurumlu, R., Guido, W. and Molnár, Z. (2006). Development and Plasticity in Sensory Thalamus and Cortex. Boston, MA, Springer US.Google Scholar
Espinosa, J. S. and Stryker, M. P. (2012). “Development and plasticity of the primary visual cortex.Neuron 75(2): 230249.Google Scholar
Feller, M. B., Delaney, K. R. and Tank, D. W. (1996). “Presynaptic calcium dynamics at the frog retinotectal synapse.J Neurophysiol 76(1): 381400.Google Scholar
Feng, J., Xian, Q., Guan, T., Hu, J., Wang, M., Huang, Y., So, K. F., Evans, S. M., Chai, G., Goffinet, A. M., Qu, Y. and Zhou, L. (2016). “Celsr3 and Fzd3 organize a pioneer neuron scaffold to steer growing thalamocortical axons.Cereb Cortex 26(7): 33233334.Google Scholar
Fetter-Pruneda, I., Geovannini-Acuna, H., Santiago, C., Ibarraran-Viniegra, A. S., Martinez-Martinez, E., Sandoval-Velasco, M., Uribe-Figueroa, L., Padilla-Cortes, P., Mercado-Celis, G. and Gutierrez-Ospina, G. (2013). “Shifts in developmental timing, and not increased levels of experience-dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth.PLoS One 8(1): e54940.Google Scholar
Firth, S. I., Wang, C. T. and Feller, M. B. (2005). “Retinal waves: mechanisms and function in visual system development.Cell Calcium 37(5): 425432.Google Scholar
Fishell, G. and Hanashima, C. (2008). “Pyramidal neurons grow up and change their mind.Neuron 57(3): 333338.Google Scholar
Frangeul, L., Pouchelon, G., Telley, L., Lefort, S., Luscher, C. and Jabaudon, D. (2016). “A cross-modal genetic framework for the development and plasticity of sensory pathways.Nature 538(7623): 9698.Google Scholar
Friauf, E., McConnell, S. K. and Shatz, C. J. (1990). “Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex.J Neurosci 10(8): 26012613.Google Scholar
Friauf, E. and Shatz, C. J. (1991). “Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex.J Neurophysiol 66(6): 20592071.Google Scholar
Garcia-Moreno, F. and Molnár, Z. (2020). “Variations of telencephalic development that paved the way for neocortical evolution.” Prog Neurobiol: 101865.Google Scholar
Garel, S., Huffman, K. J. and Rubenstein, J. L. (2003). “Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants.Development 130(9): 1903–1914.Google Scholar
Garel, S., Marin, F., Grosschedl, R. and Charnay, P. (1999). “Ebf1 controls early cell differentiation in the embryonic striatum.Development 126(23): 52855294.Google Scholar
Garel, S. and Rubenstein, J. L. (2004). “Intermediate targets in formation of topographic projections: inputs from the thalamocortical system.Trends Neurosci 27(9): 533539.Google Scholar
Garel, S., Yun, K., Grosschedl, R. and Rubenstein, J. L. (2002). “The early topography of thalamocortical projections is shifted in Ebf1 and Dlx1/2 mutant mice.Development 129(24): 56215634.Google Scholar
Gezelius, H. and Lopez-Bendito, G. (2017). “Thalamic neuronal specification and early circuit formation.Dev Neurobiol 77(7): 830843.Google Scholar
Giasafaki, C., Grant, E., Hoerder-Suabedissen, A., Hayashi, S., Lee, S., Molnár, Z., (2022) Cross-hierarchical plasticity of corticofugal projections to dLGN after neonatal monocular enucleation. J Comp Neurol THAL-JCN-21-0096 Specialissue on Thalamus for the Journal of Comparative Neurology Editors: William Guido and AndrewHuberman https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.25304Google Scholar
Gimeno, L. and Martinez, S. (2007). “Expression of chick Fgf19 and mouse Fgf15 orthologs is regulated in the developing brain by Fgf8 and Shh.Dev Dyn 236(8): 22852297.Google Scholar
Golding, B., Pouchelon, G., Bellone, C., Murthy, S., Di Nardo, A. A., Govindan, S., Ogawa, M., Shimogori, T., Luscher, C., Dayer, A. and Jabaudon, D. (2014). “Retinal input directs the recruitment of inhibitory interneurons into thalamic visual circuits.Neuron 81(6): 1443.Google Scholar
Goldman-Rakic, P. S. (1987). “Development of cortical circuitry and cognitive function.Child Dev 58(3): 601622.Google Scholar
Grant, E., Hoerder-Suabedissen, A. and Molnár, Z. (2012). “Development of the corticothalamic projections.Front Neurosci 6: 53.Google Scholar
Grant, E., Hoerder-Suabedissen, A. and Molnár, Z. (2016). “The regulation of corticofugal fiber targeting by retinal inputs.Cereb Cortex 26(3): 13361348.Google Scholar
Grove, E. A. and Fukuchi-Shimogori, T. (2003). “Generating the cerebral cortical area map.” Annu Rev Neurosci 26: 355380.Google Scholar
Guillery, R. W. and Sherman, S. M. (2002). “Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system.Neuron 33(2): 163175.Google Scholar
Halley, A. C. and Krubitzer, L. (2019). “Not all cortical expansions are the same: the coevolution of the neocortex and the dorsal thalamus in mammals.Curr Opin Neurobiol 56: 7886.Google Scholar
Hanashima, C., Molnár, Z. and Fishell, G. (2006). “Building bridges to the cortex.Cell 125(1): 2427.Google Scholar
Hayashi, S., Hoerder-Suabedissen, A., Kiyokage, E., Maclachlan, C., Toida, K., Knott, G. and Molnár, Z. (2020).“Maturation of complex synaptic connections of layer 5 cortical axons in the posterior thalamic nucleus requires SNAP25.Cerebral Cortex. 31(5):26252638.Google Scholar
Hevner, R. F., Miyashita-Lin, E. and Rubenstein, J. L. (2002). “Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other.J Comp Neurol 447(1): 817.Google Scholar
Higashi, K., Fujita, A., Inanobe, A., Tanemoto, M., Doi, K., Kubo, T. and Kurachi, Y. (2001). “An inwardly rectifying K(+) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain.Am J Physiol Cell Physiol 281(3): C922931.Google Scholar
Higashi, S., Molnár, Z., Kurotani, T. and Toyama, K. (2002). “Prenatal development of neural excitation in rat thalamocortical projections studied by optical recording.Neuroscience 115(4): 12311246.Google Scholar
Hoerder-Suabedissen, A., Hayashi, S., Upton, L., Nolan, Z., Casas-Torremocha, D., Grant, E., Viswanathan, S., Kanold, P. O., Clascá, F., Kim, Y. and Molnár, Z. (2018). “Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice.Cereb Cortex 28(5): 18821897.Google Scholar
Hoerder-Suabedissen, A., Korrell, K. V., Hayashi, S., Jeans, A., Ramirez, D. M. O., Grant, E., Christian, H. C., Kavalali, E. T., Wilson, M. C. and Molnár, Z. (2019). “Cell-specific loss of SNAP25 from Cortical projection neurons allows normal development but causes subsequent neurodegeneration.Cereb Cortex 29(5): 21482159.Google Scholar
Hoerder-Suabedissen, A. and Molnár, Z. (2012). “Morphology of mouse subplate cells with identified projection targets changes with age.J Comp Neurol 520(1): 174185.Google Scholar
Hoerder-Suabedissen, A. and Molnár, Z. (2015). “Development, evolution and pathology of neocortical subplate neurons.Nat Rev Neurosci 16(3): 133146.Google Scholar
Horng, S., Kreiman, G., Ellsworth, C., Page, D., Blank, M., Millen, K. and Sur, M. (2009). “Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for Zic4 and Foxp2 in visual and auditory pathway development.J Neurosci 29(43): 1367213683.Google Scholar
Horváth, T.L., J. Hirsch, Z. Molnár (2022) Body, Brain, Behavior, Three Views and a Conversation Academic Press, An imprint of Elsevier; ISBN: 9780128180938 pp:444Google Scholar
Huberman, A. D., Feller, M. B. and Chapman, B. (2008). “Mechanisms underlying development of visual maps and receptive fields.Annu Rev Neurosci 31: 479509.Google Scholar
Huberman, A. D., Speer, C. M. and Chapman, B. (2006). “Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1.Neuron 52(2): 247254.Google Scholar
Huffman, K. J., Molnár, Z., Van Dellen, A., Kahn, D. M., Blakemore, C. and Krubitzer, L. (1999). “Formation of cortical fields on a reduced cortical sheet.J Neurosci 19(22): 99399952.Google Scholar
Hunnicutt, B. J., Long, B. R., Kusefoglu, D., Gertz, K. J., Zhong, H. and Mao, T. (2014). “A comprehensive thalamocortical projection map at the mesoscopic level.Nat Neurosci 17(9): 12761285.Google Scholar
Izraeli, R., Koay, G., Lamish, M., Heicklen-Klein, A. J., Heffner, H. E., Heffner, R. S. and Wollberg, Z. (2002). “Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour.Eur J Neurosci 15(4): 693712.Google Scholar
Jacobs, E. C., Campagnoni, C., Kampf, K., Reyes, S. D., Kalra, V., Handley, V., Xie, Y. Y., Hong-Hu, Y., Spreur, V., Fisher, R. S. and Campagnoni, A. T. (2007). “Visualization of corticofugal projections during early cortical development in a tau-GFP-transgenic mouse.Eur J Neurosci 25(1): 1730.Google Scholar
Jones, E. G. (2002). “Thalamic circuitry and thalamocortical synchrony.Philos Trans R Soc Lond B Biol Sci 357(1428): 16591673.Google Scholar
Jones, E. G. (2007). The Thalamus. Cambridge, Cambridge University Press.Google Scholar
Kaas, J. H. and Lyon, D. C. (2007). “Pulvinar contributions to the dorsal and ventral streams of visual processing in primates.Brain Res Rev 55(2): 285296.Google Scholar
Kanold, P. O. (2009). “Subplate neurons: crucial regulators of cortical development and plasticity.Front Neuroanat 3: 16.Google Scholar
Kanold, P. O. and Luhmann, H. J. (2010). “The subplate and early cortical circuits.Annu Rev Neurosci 33: 2348.Google Scholar
Kataoka, A. and Shimogori, T. (2008). “Fgf8 controls regional identity in the developing thalamus.Development 135(17): 28732881.Google Scholar
Katz, L. C. and Shatz, C. J. (1996). “Synaptic activity and the construction of cortical circuits.Science 274(5290): 11331138.Google Scholar
Kirkby, L. A. and Feller, M. B. (2013). “Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits.Proc Natl Acad Sci USA 110(29): 1209012095.Google Scholar
Kostovic, I. (2020). “The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity.” Prog Neurobiol: 101883.Google Scholar
Kostovic, I. and Rakic, P. (1990). “Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain.J Comp Neurol 297(3): 441470.Google Scholar
Krsnik, Z., Majic, V., Vasung, L., Huang, H. and Kostovic, I. (2017). “Growth of thalamocortical fibers to the somatosensory cortex in the human fetal brain.Front Neurosci 11: 233.Google Scholar
Krug, K., Smith, A. L. and Thompson, I. D. (1998). “The development of topography in the hamster geniculo-cortical projection.J Neurosci 18(15): 57665776.Google Scholar
Lakhina, V., Falnikar, A., Bhatnagar, L. and Tole, S. (2007). “Early thalamocortical tract guidance and topographic sorting of thalamic projections requires LIM-homeodomain gene Lhx2.Dev Biol 306(2): 703713.Google Scholar
Laramee, M. E., Bronchti, G. and Boire, D. (2014). “Primary visual cortex projections to extrastriate cortices in enucleated and anophthalmic mice.Brain Struct Funct 219(6): 20512070.Google Scholar
Leighton, P. A., Mitchell, K. J., Goodrich, L. V., Lu, X., Pinson, K., Scherz, P., Skarnes, W. C. and Tessier-Lavigne, M. (2001). “Defining brain wiring patterns and mechanisms through gene trapping in mice.Nature 410(6825): 174179.Google Scholar
Lickiss, T., Cheung, A. F., Hutchinson, C. E., Taylor, J. S. and Molnár, Z. (2012). “Examining the relationship between early axon growth and transcription factor expression in the developing cerebral cortex.J Anat 220(3): 201211.Google Scholar
Lim, Y. and Golden, J. A. (2007). “Patterning the developing diencephalon.Brain Res Rev 53(1): 1726.Google Scholar
Little, G. E., Lopez-Bendito, G., Runker, A. E., Garcia, N., Pinon, M. C., Chedotal, A., Molnár, Z. and Mitchell, K. J. (2009). “Specificity and plasticity of thalamocortical connections in Sema6A mutant mice.PLoS Biol 7(4): e98.Google Scholar
Lopez-Bendito, G., Cautinat, A., Sanchez, J. A., Bielle, F., Flames, N., Garratt, A. N., Talmage, D. A., Role, L. W., Charnay, P., Marin, O. and Garel, S. (2006). “Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation.Cell 125(1): 127142.Google Scholar
Lopez-Bendito, G., Chan, C. H., Mallamaci, A., Parnavelas, J. and Molnár, Z. (2002). “Role of Emx2 in the development of the reciprocal connectivity between cortex and thalamus.J Comp Neurol 451(2): 153169.Google Scholar
Lopez-Bendito, G., Flames, N., Ma, L., Fouquet, C., Di Meglio, T., Chedotal, A., Tessier-Lavigne, M. and Marin, O. (2007). “Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain.J Neurosci 27(13): 33953407.Google Scholar
Lopez-Bendito, G. and Molnár, Z. (2003). “Thalamocortical development: how are we going to get there?Nat Rev Neurosci 4(4): 276289.Google Scholar
Lozsadi, D. A., Gonzalez-Soriano, J. and Guillery, R. W. (1996). “The course and termination of corticothalamic fibres arising in the visual cortex of the rat.Eur J Neurosci 8(11): 24162427.Google Scholar
Lund, R. D. and Mustari, M. J. (1977). “Development of the geniculocortical pathway in rats.J Comp Neurol 173(2): 289306.Google Scholar
Maffei, L. and Galli-Resta, L. (1990). “Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life.Proc Natl Acad Sci U S A 87(7): 28612864.Google Scholar
Majdan, M. and Shatz, C. J. (2006). “Effects of visual experience on activity-dependent gene regulation in cortex.Nat Neurosci 9(5): 650659.Google Scholar
Marin, O. (2002). “[Origin of cortical interneurons: basic concepts and clinical implications].Rev Neurol 35(8): 743751.Google Scholar
Marin-Padilla, M. (1971). “Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization.Z Anat Entwicklungsgesch 134(2): 117145.Google Scholar
Marques-Smith, A., Lyngholm, D., Kaufmann, A. K., Stacey, J. A., Hoerder-Suabedissen, A., Becker, E. B., Wilson, M. C., Molnár, Z. and Butt, S. J. (2016). “A transient translaminar GABAergic interneuron circuit connects thalamocortical recipient layers in neonatal somatosensory cortex.Neuron 89(3): 536549.Google Scholar
Martinez-Ferre, A. and Martinez, S. (2012). “Molecular regionalization of the diencephalon.Front Neurosci 6: 73.Google Scholar
McConnell, S. K., Ghosh, A. and Shatz, C. J. (1994). “Subplate pioneers and the formation of descending connections from cerebral cortex.J Neurosci 14(4): 1892–1907.Google Scholar
Metin, C. and Godement, P. (1996). “The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons.J Neurosci 16(10): 32193235.Google Scholar
Millar, L. J., Shi, L., Hoerder-Suabedissen, A. and Molnár, Z. (2017). “Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges.Front Cell Neurosci 11: 78.Google Scholar
Mire, E., Mezzera, C., Leyva-Diaz, E., Paternain, A. V., Squarzoni, P., Bluy, L., Castillo-Paterna, M., Lopez, M. J., Peregrin, S., Tessier-Lavigne, M., Garel, S., Galceran, J., Lerma, J. and Lopez-Bendito, G. (2012). “Spontaneous activity regulates Robo1 transcription to mediate a switch in thalamocortical axon growth.Nat Neurosci 15(8): 11341143.Google Scholar
Mitrofanis, J. (1992). “Patterns of antigenic expression in the thalamic reticular nucleus of developing rats.J Comp Neurol 320(2): 161181.Google Scholar
Mitrofanis, J. (1994a). “Development of the pathway from the reticular and perireticular nuclei to the thalamus in ferrets: a Dil study.Eur J Neurosci 6(12): 1864–1882.Google Scholar
Mitrofanis, J. (1994b). “Development of the thalamic reticular nucleus in ferrets with special reference to the perigeniculate and perireticular cell groups.Eur J Neurosci 6(2): 253263.Google Scholar
Mitrofanis, J. and Baker, G. E. (1993). “Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons.J Comp Neurol 338(4): 575587.Google Scholar
Mitrofanis, J. and Guillery, R. W. (1993). “New views of the thalamic reticular nucleus in the adult and the developing brain.Trends Neurosci 16(6): 240245.Google Scholar
Mitrofanis, J., Lozsadi, D. A. and Coleman, K. A. (1995). “Evidence for a projection from the perireticular thalamic nucleus to the dorsal thalamus in the adult rat and ferret.J Neurocytol 24(12): 891902.Google Scholar
Miyake, A., Nakayama, Y., Konishi, M. and Itoh, N. (2005). “Fgf19 regulated by Hh signaling is required for zebrafish forebrain development.Dev Biol 288(1): 259275.Google Scholar
Molliver, M. E. and Van der Loos, H. (1970). “The ontogenesis of cortical circuitry: the spatial distribution of synapses in somesthetic cortex of newborn dog.Ergeb Anat Entwicklungsgesch 42(4): 553.Google Scholar
Molnár, Z. (1998). Development of Thalamocortical Connections. Oxford, Springer.Google Scholar
Molnár, Z. (2000). “Development and evolution of thalamocortical interactions.Eur J Morphol 38(5): 313320.Google Scholar
Molnár, Z. (2019). “Cortical layer with no known function.Eur J Neurosci 49(7): 957963.Google Scholar
Molnár, Z., Adams, R. and Blakemore, C. (1998). “Mechanisms underlying the early establishment of thalamocortical connections in the rat.J Neurosci 18(15): 57235745.Google Scholar
Molnár, Z., Adams, R., Goffinet, A. M. and Blakemore, C. (1998). “The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse.J Neurosci 18(15): 57465765.Google Scholar
Molnár, Z. and Blakemore, C. (1991). “Lack of regional specificity for connections formed between thalamus and cortex in coculture.Nature 351(6326): 475477.Google Scholar
Molnár, Z. and Blakemore, C. (1995). “How do thalamic axons find their way to the cortex?Trends Neurosci 18(9): 389397.Google Scholar
Molnár, Z. and Butler, A. B. (2002). “The corticostriatal junction: a crucial region for forebrain development and evolution.Bioessays 24(6): 530541.Google Scholar
Molnár, Z. and Cordery, P. (1999). “Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat.J Comp Neurol 413(1): 125.Google Scholar
Molnár, Z., Garel, S., Lopez-Bendito, G., Maness, P. and Price, D. J. (2012). “Mechanisms controlling the guidance of thalamocortical axons through the embryonic forebrain.Eur J Neurosci 35(10): 15731585.Google Scholar
Molnár, Z., Knott, G. W., Blakemore, C. and Saunders, N. R. (1998). “Development of thalamocortical projections in the South American gray short-tailed opossum (Monodelphis domestica).J Comp Neurol 398(4): 491514.Google Scholar
Molnár, Z., Kurotani, T., Higashi, S. and Toyama, K. (2003). “Development of functional thalamocortical synapses studied with current source density analysis in whole forebrain slices.Brain Res Bull 60(4): 355372.Google Scholar
Molnár, Z, López-Bendito, G, Blakey, D, Thompson, A, and Higashi, S (2006) The Earliest Thalamocortical Interactions. In Development and Plasticity in Sensory Thalamus and Cortex (Editors: Erzurumlu, R., Guido, W., Molnár, Z. ).New York: Springer, 5478.Google Scholar
Molnár, Z., Lopez-Bendito, G., Small, J., Partridge, L. D., Blakemore, C. and Wilson, M. C. (2002). “Normal development of embryonic thalamocortical connectivity in the absence of evoked synaptic activity.J Neurosci 22(23): 1031310323.Google Scholar
Molnár, Z., Luhmann, H. J. and Kanold, P. O. (2020). “Transient cortical circuits match spontaneous and sensory-driven activity during development.Science 370(6514).Google Scholar
Molyneaux, B. J., Arlotta, P., Menezes, J. R. and Macklis, J. D. (2007). “Neuronal subtype specification in the cerebral cortex.Nat Rev Neurosci 8(6): 427437.Google Scholar
Montiel, J. F., Wang, W. Z., Oeschger, F. M., Hoerder-Suabedissen, A., Tung, W. L., Garcia-Moreno, F., Holm, I. E., Villalon, A. and Molnár, Z. (2011). “Hypothesis on the dual origin of the Mammalian subplate.Front Neuroanat 5: 25.Google Scholar
Mooney, R., Penn, A. A., Gallego, R. and Shatz, C. J. (1996). “Thalamic relay of spontaneous retinal activity prior to vision.Neuron 17(5): 863874.Google Scholar
Mooney, R. D. and Rhoades, R. W. (1983). “Neonatal enucleation alters functional organization in hamster’s lateral posterior nucleus.Brain Res 285(3): 399404.Google Scholar
Moreno-Juan, V., Filipchuk, A., Anton-Bolanos, N., Mezzera, C., Gezelius, H., Andres, B., Rodriguez-Malmierca, L., Susin, R., Schaad, O., Iwasato, T., Schule, R., Rutlin, M., Nelson, S., Ducret, S., Valdeolmillos, M., Rijli, F. M. and Lopez-Bendito, G. (2017). “Prenatal thalamic waves regulate cortical area size prior to sensory processing.Nat Commun 8: 14172.Google Scholar
Murray, K. D., Choudary, P. V. and Jones, E. G. (2007). “Nucleus- and cell-specific gene expression in monkey thalamus.Proc Natl Acad Sci USA 104(6): 19891994.Google Scholar
Naegele, J. R., Jhaveri, S. and Schneider, G. E. (1988). “Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster.J Comp Neurol 277(4): 593607.Google Scholar
Nakagawa, Y. and O’Leary, D. D. (2001). “Combinatorial expression patterns of LIM-homeodomain and other regulatory genes parcellate developing thalamus.J Neurosci 21(8): 27112725.Google Scholar
Nakagawa, Y. and Shimogori, T. (2012). “Diversity of thalamic progenitor cells and postmitotic neurons.Eur J Neurosci 35(10): 15541562.Google Scholar
Negyessy, L., Gal, V., Farkas, T. and Toldi, J. (2000). “Cross-modal plasticity of the corticothalamic circuits in rats enucleated on the first postnatal day.Eur J Neurosci 12(5): 16541668.Google Scholar
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. and Kriegstein, A. R. (2004). “Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases.Nat Neurosci 7(2): 136144.Google Scholar
O’Leary, D. D. (1989). “Do cortical areas emerge from a protocortex?Trends Neurosci 12(10): 400406.Google Scholar
O’Leary, D. D. and Sahara, S. (2008). “Genetic regulation of arealization of the neocortex.Curr Opin Neurobiol 18(1): 90100.Google Scholar
Oeschger, F. M., Wang, W. Z., Lee, S., Garcia-Moreno, F., Goffinet, A. M., Arbones, M. L., Rakic, S. and Molnár, Z. (2012). “Gene expression analysis of the embryonic subplate.Cereb Cortex 22(6): 13431359.Google Scholar
Osheroff, H. and Hatten, M. E. (2009). “Gene expression profiling of preplate neurons destined for the subplate: genes involved in transcription, axon extension, neurotransmitter regulation, steroid hormone signaling, and neuronal survival.Cereb Cortex 19 Suppl 1: i126134.Google Scholar
Pascual-Leone, A., Amedi, A., Fregni, F. and Merabet, L. B. (2005). “The plastic human brain cortex.Annu Rev Neurosci 28: 377401.Google Scholar
Penn, A. A., Riquelme, P. A., Feller, M. B. and Shatz, C. J. (1998). “Competition in retinogeniculate patterning driven by spontaneous activity.Science 279(5359): 21082112.Google Scholar
Piche, M., Chabot, N., Bronchti, G., Miceli, D., Lepore, F. and Guillemot, J. P. (2007). “Auditory responses in the visual cortex of neonatally enucleated rats.Neuroscience 145(3): 11441156.Google Scholar
Pinon, M. C., Jethwa, A., Jacobs, E., Campagnoni, A. and Molnár, Z. (2009). “Dynamic integration of subplate neurons into the cortical barrel field circuitry during postnatal development in the Golli-tau-eGFP (GTE) mouse.J Physiol 587(Pt 9): 19031915.Google Scholar
Pinon, M. C., Tuoc, T. C., Ashery-Padan, R., Molnár, Z. and Stoykova, A. (2008). “Altered molecular regionalization and normal thalamocortical connections in cortex-specific Pax6 knock-out mice.J Neurosci 28(35): 87248734.Google Scholar
Pouchelon, G., Gambino, F., Bellone, C., Telley, L., Vitali, I., Luscher, C., Holtmaat, A. and Jabaudon, D. (2014). “Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons.Nature 511(7510): 471474.Google Scholar
Powell, A. W., Sassa, T., Wu, Y., Tessier-Lavigne, M. and Polleux, F. (2008). “Topography of thalamic projections requires attractive and repulsive functions of Netrin-1 in the ventral telencephalon.PLoS Biol 6(5): e116.Google Scholar
Pratt, T., Quinn, J. C., Simpson, T. I., West, J. D., Mason, J. O. and Price, D. J. (2002). “Disruption of early events in thalamocortical tract formation in mice lacking the transcription factors Pax6 or Foxg1.J Neurosci 22(19): 85238531.Google Scholar
Price, D. D. and Verne, G. N. (2002). “Does the spinothalamic tract to ventroposterior lateral thalamus and somatosensory cortex have roles in both pain sensation and pain-related emotions?J Pain 3(2): 105108; discussion 113–104.Google Scholar
Price, D. J., Clegg, J., Duocastella, X. O., Willshaw, D. and Pratt, T. (2012). “The importance of combinatorial gene expression in early Mammalian thalamic patterning and thalamocortical axonal guidance.Front Neurosci 6: 37.Google Scholar
Price, D. J., Kennedy, H., Dehay, C., Zhou, L., Mercier, M., Jossin, Y., Goffinet, A. M., Tissir, F., Blakey, D. and Molnár, Z. (2006). “The development of cortical connections.Eur J Neurosci 23(4): 910920.Google Scholar
Puelles, L., Harrison, M., Paxinos, G. and Watson, C. (2013). “A developmental ontology for the mammalian brain based on the prosomeric model.Trends Neurosci 36(10): 570578.Google Scholar
Puelles, L. and Rubenstein, J. L. (1993). “Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization.Trends Neurosci 16(11): 472479.Google Scholar
Puelles, L. and Rubenstein, J. L. (2003). “Forebrain gene expression domains and the evolving prosomeric model.Trends Neurosci 26(9): 469476.Google Scholar
Puelles, L. Martinez-de-la-Torres, M., Ferran, J.-L. and Watson, C. (2012). Diencephalon. In The Mouse Nervous System (Editors: Watson, Charles, Paxinos, George, Puelles, Luis). New York: Academic Press, 313336.Google Scholar
Qin, J., Wang, M., Zhao, T., Xiao, X., Li, X., Yang, J., Yi, L., Goffinet, A. M., Qu, Y. and Zhou, L. (2020). “Early forebrain neurons and scaffold fibers in human embryos.Cereb Cortex 30(3): 913928.Google Scholar
Qin, Y., Zhang, N., Chen, Y., Zuo, X., Jiang, S., Zhao, X., Dong, L., Li, J., Zhang, T., Yao, D. and Luo, C. (2020). “Rhythmic network modulation to thalamocortical couplings in epilepsy.Int J Neural Syst 30(11): 2050014.Google Scholar
Quinlan, R., Graf, M., Mason, I., Lumsden, A. and Kiecker, C. (2009). “Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain.Neural Dev 4: 35.Google Scholar
Quintana-Urzainqui, I., Hernandez-Malmierca, P., Clegg, J. M., Li, Z., Kozic, Z. and Price, D. J. (2020). “The role of the diencephalon in the guidance of thalamocortical axons in mice.Development 147(12).Google Scholar
Rakic, P. (1976). “Prenatal genesis of connections subserving ocular dominance in the rhesus monkey.Nature 261(5560): 467471.Google Scholar
Rash, B. G. and Grove, E. A. (2006). “Area and layer patterning in the developing cerebral cortex.Curr Opin Neurobiol 16(1): 2534.Google Scholar
Rauschecker, J. P. (1995). “Compensatory plasticity and sensory substitution in the cerebral cortex.Trends Neurosci 18(1): 3643.Google Scholar
Ravary, A., Muzerelle, A., Herve, D., Pascoli, V., Ba-Charvet, K. N., Girault, J. A., Welker, E. and Gaspar, P. (2003). “Adenylate cyclase 1 as a key actor in the refinement of retinal projection maps.J Neurosci 23(6): 22282238.Google Scholar
Reichova, I. and Sherman, S. M. (2004). “Somatosensory corticothalamic projections: distinguishing drivers from modulators.J Neurophysiol 92(4): 21852197.Google Scholar
Roe, A. W., Pallas, S. L., Kwon, Y. H. and Sur, M. (1992). “Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex.J Neurosci 12(9): 36513664.Google Scholar
Salinas, P. C. and Nusse, R. (1992). “Regional expression of the Wnt-3 gene in the developing mouse forebrain in relationship to diencephalic neuromeres.Mech Dev 39(3): 151160.Google Scholar
Sansom, S. N. and Livesey, F. J. (2009). “Gradients in the brain: the control of the development of form and function in the cerebral cortex.Cold Spring Harb Perspect Biol 1(2): a002519.Google Scholar
Scholpp, S. and Lumsden, A. (2010). “Building a bridal chamber: development of the thalamus.Trends Neurosci 33(8): 373380.Google Scholar
Seabrook, T. A., Krahe, T. E., Govindaiah, G. and Guido, W. (2013). “Interneurons in the mouse visual thalamus maintain a high degree of retinal convergence throughout postnatal development.Neural Dev 8: 24.Google Scholar
Seibt, J., Schuurmans, C., Gradwhol, G., Dehay, C., Vanderhaeghen, P., Guillemot, F. and Polleux, F. (2003). “Neurogenin2 specifies the connectivity of thalamic neurons by controlling axon responsiveness to intermediate target cues.Neuron 39(3): 439452.Google Scholar
Shatz, C. J. and Luskin, M. B. (1986). “The relationship between the geniculocortical afferents and their cortical target cells during development of the cat’s primary visual cortex.J Neurosci 6(12): 36553668.Google Scholar
Shatz, C. J. and Rakic, P. (1981). “The genesis of efferent connections from the visual cortex of the fetal rhesus monkey.J Comp Neurol 196(2): 287307.Google Scholar
Shatz, C. J. and Stryker, M. P. (1988). “Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents.Science 242(4875): 8789.Google Scholar
Sherman, S. M. (2005). “Thalamic relays and cortical functioning.Prog Brain Res 149: 107126.Google Scholar
Sherman, S. M. (2016). “Thalamus plays a central role in ongoing cortical functioning.Nat Neurosci 19(4): 533541.Google Scholar
Sherman, S. M. and Guillery, R. W. (1996). “Functional organization of thalamocortical relays.J Neurophysiol 76(3): 13671395.Google Scholar
Sherman, S. M. and Guillery, R. W. (1998). “On the actions that one nerve cell can have on another: distinguishing ‘drivers’ from ‘modulators.’” Proc Natl Acad Sci USA 95(12): 71217126.Google Scholar
Sherman, S. M. and Guillery, R. W. (2013). Functional Connections of Cortical Areas: A New View from the Thalamus. London: MIT Press.Google Scholar
Shi, W., Xianyu, A., Han, Z., Tang, X., Li, Z., Zhong, H., Mao, T., Huang, K. and Shi, S. H. (2017). “Ontogenetic establishment of order-specific nuclear organization in the mammalian thalamus.Nat Neurosci 20(4): 516528.Google Scholar
Shimogori, T., Banuchi, V., Ng, H. Y., Strauss, J. B. and Grove, E. A. (2004). “Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex.Development 131(22): 56395647.Google Scholar
Shimogori, T. and Grove, E. A. (2005). “Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation.J Neurosci 25(28): 65506560.Google Scholar
Sur, M., Garraghty, P. E. and Roe, A. W. (1988). “Experimentally induced visual projections into auditory thalamus and cortex.Science 242(4884): 14371441.Google Scholar
Sur, M. and Rubenstein, J. L. (2005). “Patterning and plasticity of the cerebral cortex.Science 310(5749): 805810.Google Scholar
Sussel, L., Marin, O., Kimura, S. and Rubenstein, J. L. (1999). “Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum.Development 126(15): 33593370.Google Scholar
Syed, M. M., Lee, S., He, S. and Zhou, Z. J. (2004). “Spontaneous waves in the ventricular zone of developing mammalian retina.J Neurophysiol 91(5): 19992009.Google Scholar
Thompson, A. D., Picard, N., Min, L., Fagiolini, M. and Chen, C. (2016). “Cortical feedback regulates feedforward retinogeniculate refinement.Neuron 91(5): 10211033.Google Scholar
Tissir, F., Bar, I., Jossin, Y., De Backer, O. and Goffinet, A. M. (2005). “Protocadherin Celsr3 is crucial in axonal tract development.Nat Neurosci 8(4): 451457.Google Scholar
Toldi, J., Farkas, T. and Volgyi, B. (1994). “Neonatal enucleation induces cross-modal changes in the barrel cortex of rat. A behavioural and electrophysiological study.Neurosci Lett 167(1–2): 14.Google Scholar
Toldi, J., Feher, O. and Wolff, J. R. (1996). “Neuronal plasticity induced by neonatal monocular (and binocular) enucleation.Prog Neurobiol 48(3): 191218.Google Scholar
Tolner, E. A., Sheikh, A., Yukin, A. Y., Kaila, K. and Kanold, P. O. (2012). “Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex.J Neurosci 32(2): 692702.Google Scholar
Tuncdemir, S. N., Wamsley, B., Stam, F. J., Osakada, F., Goulding, M., Callaway, E. M., Rudy, B. and Fishell, G. (2016). “Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits.Neuron 89(3): 521535.Google Scholar
Tuttle, R., Nakagawa, Y., Johnson, J. E. and O’Leary, D. D. (1999). “Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice.Development 126(9): 19031916.Google Scholar
Uemura, M., Nakao, S., Suzuki, S. T., Takeichi, M. and Hirano, S. (2007). “OL-Protocadherin is essential for growth of striatal axons and thalamocortical projections.Nat Neurosci 10(9): 11511159.Google Scholar
Uesaka, N., Hayano, Y., Yamada, A. and Yamamoto, N. (2007). “Interplay between laminar specificity and activity-dependent mechanisms of thalamocortical axon branching.J Neurosci 27(19): 52155223.Google Scholar
Uesaka, N., Ruthazer, E. S. and Yamamoto, N. (2006). “The role of neural activity in cortical axon branching.Neuroscientist 12(2): 102106.Google Scholar
Usrey, W. M. and Sherman, S. M. (2019). “Corticofugal circuits: communication lines from the cortex to the rest of the brain.J Comp Neurol 527(3): 640650.Google Scholar
Vanderhaeghen, P. and Polleux, F. (2004). “Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between.Trends Neurosci 27(7): 384391.Google Scholar
Viswanathan, S., Bandyopadhyay, S., Kao, J. P. and Kanold, P. O. (2012). “Changing microcircuits in the subplate of the developing cortex.J Neurosci 32(5): 15891601.Google Scholar
Vue, T. Y., Aaker, J., Taniguchi, A., Kazemzadeh, C., Skidmore, J. M., Martin, D. M., Martin, J. F., Treier, M. and Nakagawa, Y. (2007). “Characterization of progenitor domains in the developing mouse thalamus.J Comp Neurol 505(1): 7391.Google Scholar
Vue, T. Y., Bluske, K., Alishahi, A., Yang, L. L., Koyano-Nakagawa, N., Novitch, B. and Nakagawa, Y. (2009). “Sonic hedgehog signaling controls thalamic progenitor identity and nuclei specification in mice.J Neurosci 29(14): 44844497.Google Scholar
Vue, T. Y., Lee, M., Tan, Y. E., Werkhoven, Z., Wang, L. and Nakagawa, Y. (2013). “Thalamic control of neocortical area formation in mice.J Neurosci 33(19): 84428453.Google Scholar
Wang, W. Z., Oeschger, F. M., Montiel, J. F., Garcia-Moreno, F., Hoerder-Suabedissen, A., Krubitzer, L., Ek, C. J., Saunders, N. R., Reim, K., Villalon, A. and Molnár, Z. (2011). “Comparative aspects of subplate zone studied with gene expression in sauropsids and mammals.Cereb Cortex 21(10): 21872203.Google Scholar
Wang, Y., Thekdi, N., Smallwood, P. M., Macke, J. P. and Nathans, J. (2002). “Frizzled-3 is required for the development of major fiber tracts in the rostral CNS.J Neurosci 22(19): 85638573.Google Scholar
Wang, Y., Zhang, J., Mori, S. and Nathans, J. (2006). “Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling.J Neurosci 26(2): 355364.Google Scholar
Wong, S. Z. H., Scott, E. P., Mu, W., Guo, X., Borgenheimer, E., Freeman, M., Ming, G. L., Wu, Q. F., Song, H. and Nakagawa, Y. (2018). “In vivo clonal analysis reveals spatiotemporal regulation of thalamic nucleogenesis.PLoS Biol 16(4): e2005211.Google Scholar
Yaka, R., Yinon, U. and Wollberg, Z. (1999). “Auditory activation of cortical visual areas in cats after early visual deprivation.Eur J Neurosci 11(4): 13011312.Google Scholar
Yamada, A., Uesaka, N., Hayano, Y., Tabata, T., Kano, M. and Yamamoto, N. (2010). “Role of pre- and postsynaptic activity in thalamocortical axon branching.Proc Natl Acad Sci USA 107(16): 75627567.Google Scholar
Yamamoto, N. and Lopez-Bendito, G. (2012). “Shaping brain connections through spontaneous neural activity.Eur J Neurosci 35(10): 15951604.Google Scholar
Yun, M. E., Johnson, R. R., Antic, A. and Donoghue, M. J. (2003). “EphA family gene expression in the developing mouse neocortex: regional patterns reveal intrinsic programs and extrinsic influence.J Comp Neurol 456(3): 203216.Google Scholar
Zhang, J. S., Kaltenbach, J. A., Wang, J. and Bronchti, G. (2003). “Changes in [14 C]-2-deoxyglucose uptake in the auditory pathway of hamsters previously exposed to intense sound.Hear Res 185(1–2): 1321.Google Scholar
Zhang, R. W., Wei, H. P., Xia, Y. M. and Du, J. L. (2010). “Development of light response and GABAergic excitation-to-inhibition switch in zebrafish retinal ganglion cells.J Physiol 588(Pt 14): 25572569.Google Scholar
Zhou, L., Goffinet, A. M. and Tissir, F. (2008). “[Role of the cadherin Celsr3 in the connectivity of the cerebral cortex].Med Sci (Paris) 24(12): 10251027.Google Scholar
Zhou, L., Qu, Y., Tissir, F. and Goffinet, A. M. (2009). “Role of the atypical cadherin Celsr3 during development of the internal capsule.Cereb Cortex 19 Suppl 1: i114119.Google Scholar

References

Achim, K., Peltopuro, P., Lahti, L., Li, J., Salminen, M., and Partanen, J. (2012). Distinct developmental origins and regulatory mechanisms for GABAergic neurons associated with dopaminergic nuclei in the ventral mesodiencephalic region. Development 139, 23602370.Google Scholar
Achim, K., Peltopuro, P., Lahti, L., Tsai, H.H., Zachariah, A., Astrand, M., Salminen, M., Rowitch, D., and Partanen, J. (2013). The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors. Biol Open 2, 990997.Google Scholar
Acuna-Goycolea, C., Brenowitz, S.D., and Regehr, W.G. (2008). Active dendritic conductances dynamically regulate GABA release from thalamic interneurons. Neuron 57, 420431.Google Scholar
Agoston, Z., and Schulte, D. (2009). Meis2 competes with the Groucho co-repressor Tle4 for binding to Otx2 and specifies tectal fate without induction of a secondary midbrain-hindbrain boundary organizer. Development 136, 33113322.Google Scholar
Albuixech-Crespo, B., Lopez-Blanch, L., Burguera, D., Maeso, I., Sanchez-Arrones, L., Moreno-Bravo, J.A., Somorjai, I., Pascual-Anaya, J., Puelles, E., Bovolenta, P., et al. (2017). Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol 15, e2001573.Google Scholar
Altman, J., and Bayer, S.A. (1988a). Development of the rat thalamus: I. Mosaic organization of the thalamic neuroepithelium. J Comp Neurol 275, 346377.Google Scholar
Altman, J., and Bayer, S.A. (1988b). Development of the rat thalamus: II. Time and site of origin and settling pattern of neurons derived from the anterior lobule of the thalamic neuroepithelium. J Comp Neurol 275, 378405.Google Scholar
Altman, J., and Bayer, S.A. (1988c). Development of the rat thalamus: III. Time and site of origin and settling pattern of neurons of the reticular nucleus. J Comp Neurol 275, 406428.Google Scholar
Altman, J., and Bayer, S.A. (1989a). Development of the rat thalamus: IV. The intermediate lobule of the thalamic neuroepithelium, and the time and site of origin and settling pattern of neurons of the ventral nuclear complex. J Comp Neurol 284, 534566.Google Scholar
Altman, J., and Bayer, S.A. (1989b). Development of the rat thalamus: V. The posterior lobule of the thalamic neuroepithelium and the time and site of origin and settling pattern of neurons of the medial geniculate body. J Comp Neurol 284, 567580.Google Scholar
Altman, J., and Bayer, S.A. (1989c). Development of the rat thalamus: VI. The posterior lobule of the thalamic neuroepithelium and the time and site of origin and settling pattern of neurons of the lateral geniculate and lateral posterior nuclei. J Comp Neurol 284, 581601.Google Scholar
An, K., Zhao, H., Miao, Y., Xu, Q., Li, Y.F., Ma, Y.Q., Shi, Y.M., Shen, J.W., Meng, J.J., Yao, Y.G., et al. (2020). A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice. Nat Neurosci 23, 869–880.Google Scholar
Anderson, S.A., Eisenstat, D.D., Shi, L., and Rubenstein, J.L. (1997a). Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474476.Google Scholar
Anderson, S.A., Qiu, M., Bulfone, A., Eisenstat, D.D., Meneses, J., Pedersen, R., and Rubenstein, J.L. (1997b). Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 2737.Google Scholar
Angevine, J.B., Jr. (1970). Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J Comp Neurol 139, 129187.Google Scholar
Anton-Bolanos, N., Espinosa, A., and Lopez-Bendito, G. (2018). Developmental interactions between thalamus and cortex: a true love reciprocal story. Curr Opin Neurobiol 52, 3341.Google Scholar
Anton-Bolanos, N., Sempere-Ferrandez, A., Guillamon-Vivancos, T., Martini, F.J., Perez-Saiz, L., Gezelius, H., Filipchuk, A., Valdeolmillos, M., and Lopez-Bendito, G. (2019). Prenatal activity from thalamic neurons governs the emergence of functional cortical maps in mice. Science 364, 987990.Google Scholar
Arcelli, P., Frassoni, C., Regondi, M.C., De Biasi, S., and Spreafico, R. (1997). GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Research Bulletin 42, 2737.Google Scholar
Arimura, N., Dewa, K.I., Okada, M., Yanagawa, Y., Taya, S.I., and Hoshino, M. (2019). Comprehensive and cell-type-based characterization of the dorsal midbrain during development. Genes Cells 24, 4159.Google Scholar
Babb, R.S. (1980). The pregeniculate nucleus of the monkey (Macaca mulatta). I. A study at the light microscopy level. J Comp Neurol 190, 651672.Google Scholar
Bakken, T.E., van Velthoven, C.T.J., Menon, V., Hodge, R.D., Yao, Z., Nguyen, T.N., Graybuck, L.T., Horwitz, G.D., Bertagnolli, D., Goldy, J., et al. (2020). Single-cell RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates and humans. bioRxiv.Google Scholar
Batini, C., Guegan, M., Palestini, M., and Thomasset, M. (1991). The immunocytochemical distribution of calbindin-D28k and parvalbumin in identified neurons of the pulvinar-lateralis posterior complex of the cat. Neurosci Lett 130, 203207.Google Scholar
Beier, C., Zhang, Z., Yurgel, M., and Hattar, S. (2020). The projections of ipRGCs and conventional RGCs to retinorecipient brain nuclei. bioRxiv.Google Scholar
Benson, D.L., Isackson, P.J., Gall, C.M., and Jones, E.G. (1992). Contrasting patterns in the localization of glutamic acid decarboxylase and Ca2+/calmodulin protein kinase gene expression in the rat central nervous system. Neuroscience 46, 825849.Google Scholar
Benson, D.L., Isackson, P.J., Hendry, S.H., and Jones, E.G. (1991). Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey. J Neurosci 11, 15401564.Google Scholar
Bentivoglio, M., Spreafico, R., Minciacchi, D., and Macchi, G. (1991). GABAergic interneurons and neuropil of the intralaminar thalamus: an immunohistochemical study in the rat and the cat, with notes in the monkey. Exp Brain Res 87, 8595.Google Scholar
Bickford, M.E., Carden, W.B., and Patel, N.C. (1999). Two types of interneurons in the cat visual thalamus are distinguished by morphology, synaptic connections, and nitric oxide synthase content. J Comp Neurol 413, 83100.Google Scholar
Bickford, M.E., Slusarczyk, A., Dilger, E.K., Krahe, T.E., Kucuk, C., and Guido, W. (2010). Synaptic development of the mouse dorsal lateral geniculate nucleus. J Comp Neurol 518, 622635.Google Scholar
Blasiak, T., and Lewandowski, M.H. (2003). Dorsal raphe nucleus modulates neuronal activity in rat intergeniculate leaflet. Behav Brain Res 138, 179185.Google Scholar
Blitz, D.M., and Regehr, W.G. (2005). Timing and specificity of feed-forward inhibition within the LGN. Neuron 45, 917928.Google Scholar
Bluske, K.K., Kawakami, Y., Koyano-Nakagawa, N., and Nakagawa, Y. (2009). Differential activity of Wnt/beta-catenin signaling in the embryonic mouse thalamus. Dev Dyn 238, 32973309.Google Scholar
Bluske, K.K., Vue, T.Y., Kawakami, Y., Taketo, M.M., Yoshikawa, K., Johnson, J.E., and Nakagawa, Y. (2012). beta-Catenin signaling specifies progenitor cell identity in parallel with Shh signaling in the developing mammalian thalamus. Development 139, 26922702.Google Scholar
Bokor, H., Frere, S.G., Eyre, M.D., Slezia, A., Ulbert, I., Luthi, A., and Acsady, L. (2005). Selective GABAergic control of higher-order thalamic relays. Neuron 45, 929940.Google Scholar
Born, G., and Schmidt, M. (2007). GABAergic pathways in the rat subcortical visual system: a comparative study in vivo and in vitro. Eur J Neurosci 26, 11831192.Google Scholar
Braak, H., and Bachmann, A. (1985). The percentage of projection neurons and interneurons in the human lateral geniculate nucleus. Hum Neurobiol 4, 9195.Google Scholar
Braak, H., and Braak, E. (1984). Neuronal types in the lateral geniculate nucleus of man. A Golgi-pigment study. Cell Tissue Res 237, 509520.Google Scholar
Braak, H., and Weinel, U. (1985). The percentage of projection neurons and local circuit neurons in different nuclei of the human thalamus. J Hirnforsch 26, 525530.Google Scholar
Bradley, C.K., Takano, E.A., Hall, M.A., Gothert, J.R., Harvey, A.R., Begley, C.G., and van Eekelen, J.A. (2006). The essential haematopoietic transcription factor Scl is also critical for neuronal development. Eur J Neurosci 23, 16771689.Google Scholar
Brooks, J.M., Su, J., Levy, C., Wang, J.S., Seabrook, T.A., Guido, W., and Fox, M.A. (2013). A molecular mechanism regulating the timing of corticogeniculate innervation. Cell Rep 5, 573581.Google Scholar
Brown, N.L., Patel, S., Brzezinski, J., and Glaser, T. (2001). Math5 is required for retinal ganglion cell and optic nerve formation. Development 128, 24972508.Google Scholar
Bucher, K., Sofroniew, M.V., Pannell, R., Impey, H., Smith, A.J., Torres, E.M., Dunnett, S.B., Jin, Y., Baer, R., and Rabbitts, T.H. (2000). The T cell oncogene Tal2 is necessary for normal development of the mouse brain. Dev Biol 227, 533544.Google Scholar
Bulfone, A., Puelles, L., Porteus, M.H., Frohman, M.A., Martin, G.R., and Rubenstein, J.L. (1993). Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 13, 31553172.Google Scholar
Butler, A.B. (2008). Evolution of the thalamus: a morphological and functional review. In Thalamus & Related Systems (Cambridge University Press), pp. 3558.Google Scholar
Butt, S.J., Sousa, V.H., Fuccillo, M.V., Hjerling-Leffler, J., Miyoshi, G., Kimura, S., and Fishell, G. (2008). The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 59, 722732.Google Scholar
Bylund, M., Andersson, E., Novitch, B.G., and Muhr, J. (2003). Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 6, 11621168.Google Scholar
Cajal, S.R.y. (1911). Histologie du Systeme Nerveux de l’ Homme et des Vertebres, Vol 2 (Maloine).Google Scholar
Campbell, P.W., Govindaiah, G., Masterson, S.P., Bickford, M.E., and Guido, W. (2020). Synaptic properties of the feedback connections from the thalamic reticular nucleus to the dorsal lateral geniculate nucleus. J Neurophysiol 124, 404417.Google Scholar
Carden, W.B., and Bickford, M.E. (2002). Synaptic inputs of class III and class V interneurons in the cat pulvinar nucleus: differential integration of RS and RL inputs. Vis Neurosci 19, 5159.Google Scholar
Carney, R.S., Cocas, L.A., Hirata, T., Mansfield, K., and Corbin, J.G. (2009). Differential regulation of telencephalic pallial-subpallial boundary patterning by Pax6 and Gsh2. Cereb Cortex 19, 745759.Google Scholar
Casarosa, S., Fode, C., and Guillemot, F. (1999). Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525534.Google Scholar
Castro, D.S., Martynoga, B., Parras, C., Ramesh, V., Pacary, E., Johnston, C., Drechsel, D., Lebel-Potter, M., Garcia, L.G., Hunt, C., et al. (2011). A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25, 930945.Google Scholar
Celio, M.R. (1986). Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231, 995997.Google Scholar
Celio, M.R., and Heizmann, C.W. (1981). Calcium-binding protein parvalbumin as a neuronal marker. Nature 293, 300302.Google Scholar
Charalambakis, N.E., Govindaiah, G., Campbell, P.W., and Guido, W. (2019). Developmental remodeling of thalamic interneurons requires retinal signaling. J Neurosci 39, 38563866.Google Scholar
Cheadle, L., Tzeng, C.P., Kalish, B.T., Harmin, D.A., Rivera, S., Ling, E., Nagy, M.A., Hrvatin, S., Hu, L., Stroud, H., et al. (2018). Visual experience-dependent expression of Fn14 is required for retinogeniculate refinement. Neuron 99, 525–539, e510.Google Scholar
Clark, A.S., Schwartz, M.L., and Goldman-Rakic, P.S. (1989). GABA-immunoreactive neurons in the mediodorsal nucleus of the monkey thalamus. J Chem Neuroanat 2, 259267.Google Scholar
Clarke, L.E., and Barres, B.A. (2013). Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14, 311321.Google Scholar
Cobos, I., Broccoli, V., and Rubenstein, J.L. (2005). The vertebrate ortholog of Aristaless is regulated by Dlx genes in the developing forebrain. J Comp Neurol 483, 292303.Google Scholar
Colonnese, M.T., and Phillips, M.A. (2018). Thalamocortical function in developing sensory circuits. Curr Opin Neurobiol 52, 7279.Google Scholar
Corbin, J.G., Rutlin, M., Gaiano, N., and Fishell, G. (2003). Combinatorial function of the homeodomain proteins Nkx2.1 and Gsh2 in ventral telencephalic patterning. Development 130, 48954906.Google Scholar
Cox, C.L., and Sherman, S.M. (2000). Control of dendritic outputs of inhibitory interneurons in the lateral geniculate nucleus. Neuron 27, 597610.Google Scholar
Crossley, P.H., Martinez, S., and Martin, G.R. (1996). Midbrain development induced by FGF8 in the chick embryo. Nature 380, 6668.Google Scholar
Cucchiaro, J.B., Uhlrich, D.J., and Sherman, S.M. (1993). Ultrastructure of synapses from the pretectum in the A-laminae of the cat’s lateral geniculate nucleus. J Comp Neurol 334, 618630.Google Scholar
Delogu, A., Sellers, K., Zagoraiou, L., Bocianowska-Zbrog, A., Mandal, S., Guimera, J., Rubenstein, J.L., Sugden, D., Jessell, T., and Lumsden, A. (2012). Subcortical visual shell nuclei targeted by ipRGCs develop from a Sox14+-GABAergic progenitor and require Sox14 to regulate daily activity rhythms. Neuron 75, 648662.Google Scholar
Demeulemeester, H., Arckens, L., Vandesande, F., Orban, G.A., Heizmann, C.W., and Pochet, R. (1991). Calcium binding proteins as molecular markers for cat geniculate neurons. Exp Brain Res 83, 513520.Google Scholar
Demeulemeester, H., Vandesande, F., Orban, G.A., Heizmann, C.W., and Pochet, R. (1989). Calbindin D-28K and parvalbumin immunoreactivity is confined to two separate neuronal subpopulations in the cat visual cortex, whereas partial coexistence is shown in the dorsal lateral geniculate nucleus. Neurosci Lett 99, 611.Google Scholar
Di Giovannantonio, L.G., Di Salvio, M., Omodei, D., Prakash, N., Wurst, W., Pierani, A., Acampora, D., and Simeone, A. (2014). Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development 141, 377388.Google Scholar
Dixon, G., and Harper, C.G. (2001). Quantitative analysis of glutamic acid decarboxylase-immunoreactive neurons in the anterior thalamus of the human brain. Brain Res 923, 3944.Google Scholar
Edwards, M.A., Caviness, V.S., Jr., and Schneider, G.E. (1986). Development of cell and fiber lamination in the mouse superior colliculus. J Comp Neurol 248, 395409.Google Scholar
El-Danaf, R.N., Krahe, T.E., Dilger, E.K., Bickford, M.E., Fox, M.A., and Guido, W. (2015). Developmental remodeling of relay cells in the dorsal lateral geniculate nucleus in the absence of retinal input. Neural Dev 10, 19.Google Scholar
Erisir, A., Van Horn, S.C., Bickford, M.E., and Sherman, S.M. (1997). Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. J Comp Neurol 377, 535549.Google Scholar
Evangelio, M., García-Amado, M., and Clascá, F. (2018). Thalamocortical projection neuron and interneuron numbers in the visual thalamic nuclei of the adult C57BL/6 mouse. Frontiers in Neuroanatomy 12, 27.Google Scholar
Famiglietti, E.V., Jr. (1970). Dendro-dendritic synapses in the lateral geniculate nucleus of the cat. Brain Res 20, 181191.Google Scholar
Famiglietti, E.V., Jr., and Peters, A. (1972). The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 144, 285334.Google Scholar
Feig, S., and Harting, J.K. (1994). Ultrastructural studies of the primate lateral geniculate nucleus: morphology and spatial relationships of axon terminals arising from the retina, visual cortex (area 17), superior colliculus, parabigeminal nucleus, and pretectum of Galago crassicaudatus. J Comp Neurol 343, 1734.Google Scholar
Fernandez, D.C., Fogerson, P.M., Lazzerini Ospri, L., Thomsen, M.B., Layne, R.M., Severin, D., Zhan, J., Singer, J.H., Kirkwood, A., Zhao, H., et al. (2018). Light affects mood and learning through distinct retina-brain pathways. Cell 175, 71–84 e18.Google Scholar
Fernandez, D.C., Komal, R., Langel, J., Ma, J., Duy, P.Q., Penzo, M.A., Zhao, H., and Hattar, S. (2020). Retinal innervation tunes circuits that drive nonphotic entrainment to food. Nature 581, 194198.Google Scholar
Fitzpatrick, D., Diamond, I.T., and Raczkowski, D. (1989). Cholinergic and monoaminergic innervation of the cat’s thalamus: comparison of the lateral geniculate nucleus with other principal sensory nuclei. J Comp Neurol 288, 647675.Google Scholar
Fitzpatrick, D., Penny, G.R., and Schmechel, D.E. (1984). Glutamic acid decarboxylase-immunoreactive neurons and terminals in the lateral geniculate nucleus of the cat. J Neurosci 4, 18091829.Google Scholar
Fogarty, M., Grist, M., Gelman, D., Marin, O., Pachnis, V., and Kessaris, N. (2007). Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 27, 1093510946.Google Scholar
Frangeul, L., Pouchelon, G., Telley, L., Lefort, S., Luscher, C., and Jabaudon, D. (2016). A cross-modal genetic framework for the development and plasticity of sensory pathways. Nature 538, 9698.Google Scholar
Gabbott, P.L., and Bacon, S.J. (1994). Two types of interneuron in the dorsal lateral geniculate nucleus of the rat: a combined NADPH diaphorase histochemical and GABA immunocytochemical study. J Comp Neurol 350, 281301.Google Scholar
Garcia-Lopez, R., Vieira, C., Echevarria, D., and Martinez, S. (2004). Fate map of the diencephalon and the zona limitans at the 10-somites stage in chick embryos. Dev Biol 268, 514530.Google Scholar
Geisert, E.E., Jr. (1980). Cortical projections of the lateral geniculate nucleus in the cat. J Comp Neurol 190, 793812.Google Scholar
Gelman, D., Griveau, A., Dehorter, N., Teissier, A., Varela, C., Pla, R., Pierani, A., and Marin, O. (2011). A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J Neurosci 31, 1657016580.Google Scholar
Gelman, D.M., Martini, F.J., Nobrega-Pereira, S., Pierani, A., Kessaris, N., and Marin, O. (2009). The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci 29, 93809389.Google Scholar
Golden, J.A., Zitz, J.C., McFadden, K., and Cepko, C.L. (1997). Cell migration in the developing chick diencephalon. Development 124, 35253533.Google Scholar
Golding, B., Pouchelon, G., Bellone, C., Murthy, S., Di Nardo, A.A., Govindan, S., Ogawa, M., Shimogori, T., Lüscher, C., Dayer, A., et al. (2014). Retinal input directs the recruitment of inhibitory interneurons into thalamic visual circuits. Neuron 81, 10571069.Google Scholar
Gonzalo-Ruiz, A., Sanz, J.M., and Lieberman, A.R. (1996). Immunohistochemical studies of localization and co-localization of glutamate, aspartate and GABA in the anterior thalamic nuclei, retrosplenial granular cortex, thalamic reticular nucleus and mammillary nuclei of the rat. J Chem Neuroanat 12, 7784.Google Scholar
Govindaiah, , and Cox, C.L. (2004). Synaptic activation of metabotropic glutamate receptors regulates dendritic outputs of thalamic interneurons. Neuron 41, 611623.Google Scholar
Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron 39, 749765.Google Scholar
Grant, E., Hoerder-Suabedissen, A., and Molnar, Z. (2016). The regulation of corticofugal fiber targeting by retinal inputs. Cereb Cortex 26, 13361348.Google Scholar
Grimes, W.N., Zhang, J., Graydon, C.W., Kachar, B., and Diamond, J.S. (2010). Retinal parallel processors: more than 100 independent microcircuits operate within a single interneuron. Neuron 65, 873885.Google Scholar
Guillery, R.W. (1966). A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J Comp Neurol 128, 2150.Google Scholar
Guillery, R.W. (1969). The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z Zellforsch Mikrosk Anat 96, 138.Google Scholar
Guillery, R.W., and Sherman, S.M. (2002). Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33, 163175.Google Scholar
Guimera, J., Vogt Weisenhorn, D., Echevarria, D., Martinez, S., and Wurst, W. (2006a). Molecular characterization, structure and developmental expression of Megane bHLH factor. Gene 377, 6576.Google Scholar
Guimera, J., Weisenhorn, D.V., and Wurst, W. (2006b). Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus. Development 133, 38473857.Google Scholar
Guler, A.D., Ecker, J.L., Lall, G.S., Haq, S., Altimus, C.M., Liao, H.W., Barnard, A.R., Cahill, H., Badea, T.C., Zhao, H., et al. (2008). Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453, 102105.Google Scholar
Guo, Q., and Li, J.Y.H. (2019). Defining developmental diversification of diencephalon neurons through single cell gene expression profiling. Development 146.Google Scholar
Hamos, J.E., Van Horn, S.C., Raczkowski, D., Uhlrich, D.J., and Sherman, S.M. (1985). Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat. Nature 317, 618621.Google Scholar
Harrington, M.E., and Rusak, B. (1986). Lesions of the thalamic intergeniculate leaflet alter hamster circadian rhythms. J Biol Rhythms 1, 309325.Google Scholar
Harris, R.M., and Hendrickson, A.E. (1987). Local circuit neurons in the rat ventrobasal thalamus–a GABA immunocytochemical study. Neuroscience 21, 229236.Google Scholar
Hashikawa, T., Rausell, E., Molinari, M., and Jones, E.G. (1991). Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections. Brain Res 544, 335341.Google Scholar
Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K.W., and Berson, D.M. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497, 326349.Google Scholar
He, J., Xu, X., Monavarfeshani, A., Banerjee, S., Fox, M.A., and Xie, H. (2019). Retinal-input-induced epigenetic dynamics in the developing mouse dorsal lateral geniculate nucleus. Epigenetics Chromatin 12, 13.Google Scholar
Hendry, S.H., Jones, E.G., Emson, P.C., Lawson, D.E., Heizmann, C.W., and Streit, P. (1989). Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res 76, 467472.Google Scholar
Henke, R.M., Meredith, D.M., Borromeo, M.D., Savage, T.K., and Johnson, J.E. (2009). Ascl1 and Neurog2 form novel complexes and regulate Delta-like3 (Dll3) expression in the neural tube. Dev Biol 328, 529540.Google Scholar
Herberth, B., Minko, K., Csillag, A., Jaffredo, T., and Madarasz, E. (2005). SCL, GATA-2 and Lmo2 expression in neurogenesis. Int J Dev Neurosci 23, 449463.Google Scholar
Herron, P., Baskerville, K.A., Chang, H.T., and Doetsch, G.S. (1997). Distribution of neurons immunoreactive for parvalbumin and calbindin in the somatosensory thalamus of the raccoon. J Comp Neurol 388, 120129.Google Scholar
Hirata, T., Nakazawa, M., Muraoka, O., Nakayama, R., Suda, Y., and Hibi, M. (2006). Zinc-finger genes Fez and Fez-like function in the establishment of diencephalon subdivisions. Development 133, 39934004.Google Scholar
Hirsch, J.A., Wang, X., Sommer, F.T., and Martinez, L.M. (2015). How inhibitory circuits in the thalamus serve vision. Annu Rev Neurosci 38, 309329.Google Scholar
Hong, Y.K., and Chen, C. (2011). Wiring and rewiring of the retinogeniculate synapse. Curr Opin Neurobiol 21, 228237.Google Scholar
Hsieh-Li, H.M., Witte, D.P., Szucsik, J.C., Weinstein, M., Li, H., and Potter, S.S. (1995). Gsh-2, a murine homeobox gene expressed in the developing brain. Mech Dev 50, 177186.Google Scholar
Huang, L., Xi, Y., Peng, Y., Yang, Y., Huang, X., Fu, Y., Tao, Q., Xiao, J., Yuan, T., An, K., et al. (2019). A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron 102, 128–142 e128.Google Scholar
Huang, X., Huang, P., Huang, L., Hu, Z., Liu, X., Shen, J., Xi, Y., Yang, Y., Fu, Y., Tao, Q., et al. (2021). A visual circuit related to the nucleus reuniens for the spatial-memory-promoting effects of light treatment. Neuron 109, 347–362 e347.Google Scholar
Huberman, A.D., Feller, M.B., and Chapman, B. (2008). Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31, 479509.Google Scholar
Hunt, C.A., Pang, D.Z., and Jones, E.G. (1991). Distribution and density of GABA cells in intralaminar and adjacent nuclei of monkey thalamus. Neuroscience 43, 185196.Google Scholar
Ilinsky, I.A., Ambardekar, A.V., and Kultas-Ilinsky, K. (1999). Organization of projections from the anterior pole of the nucleus reticularis thalami (NRT) to subdivisions of the motor thalamus: light and electron microscopic studies in the rhesus monkey. J Comp Neurol 409, 369384.Google Scholar
Inamura, N., Ono, K., Takebayashi, H., Zalc, B., and Ikenaka, K. (2011). Olig2 lineage cells generate GABAergic neurons in the prethalamic nuclei, including the zona incerta, ventral lateral geniculate nucleus and reticular thalamic nucleus. Dev Neurosci 33, 118129.Google Scholar
Inverardi, F., Beolchi, M.S., Ortino, B., Moroni, R.F., Regondi, M.C., Amadeo, A., and Frassoni, C. (2007). GABA immunoreactivity in the developing rat thalamus and Otx2 homeoprotein expression in migrating neurons. Brain Res Bull 73, 6474.Google Scholar
Jager, P., Moore, G., Calpin, P., Durmishi, X., Salgarella, I., Menage, L., Kita, Y., Wang, Y., Kim, D.W., Blackshaw, S., et al. (2021). Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife 10.Google Scholar
Jager, P., Ye, Z., Yu, X., Zagoraiou, L., Prekop, H.T., Partanen, J., Jessell, T.M., Wisden, W., Brickley, S.G., and Delogu, A. (2016). Tectal-derived interneurons contribute to phasic and tonic inhibition in the visual thalamus. Nat Commun 7, 13579.Google Scholar
Janik, D., and Mrosovsky, N. (1994). Intergeniculate leaflet lesions and behaviorally-induced shifts of circadian rhythms. Brain Res 651, 174182.Google Scholar
Jeong, Y., Dolson, D.K., Waclaw, R.R., Matise, M.P., Sussel, L., Campbell, K., Kaestner, K.H., and Epstein, D.J. (2011). Spatial and temporal requirements for sonic hedgehog in the regulation of thalamic interneuron identity. Development 138, 531541.Google Scholar
Johnson, R.F., Moore, R.Y., and Morin, L.P. (1989). Lateral geniculate lesions alter circadian activity rhythms in the hamster. Brain Res Bull 22, 411422.Google Scholar
Jones, E. (2002). Dichronous appearance and unusual origins of GABA neurons during development of the mammalian thalamus. Thalamus & Related Systems 1, 283288.Google Scholar
Jones, E.G. (2007). The Thalamus (Cambridge University Press).Google Scholar
Jones, E.G., and Hendry, S.H. (1989). Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci 1, 222246.Google Scholar
Kala, K., Haugas, M., Lillevali, K., Guimera, J., Wurst, W., Salminen, M., and Partanen, J. (2009). Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development 136, 253262.Google Scholar
Kalish, B.T., Cheadle, L., Hrvatin, S., Nagy, M.A., Rivera, S., Crow, M., Gillis, J., Kirchner, R., and Greenberg, M.E. (2018). Single-cell transcriptomics of the developing lateral geniculate nucleus reveals insights into circuit assembly and refinement. Proc Natl Acad Sci USA 115, E1051E1060.Google Scholar
Kataoka, A., and Shimogori, T. (2008). Fgf8 controls regional identity in the developing thalamus. Development 135, 28732881.Google Scholar
Kessaris, N., Fogarty, M., Iannarelli, P., Grist, M., Wegner, M., and Richardson, W.D. (2006). Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9, 173179.Google Scholar
Kiecker, C., and Lumsden, A. (2004). Hedgehog signaling from the ZLI regulates diencephalic regional identity. Nat Neurosci 7, 12421249.Google Scholar
Kim, D.W., Washington, P.W., Wang, Z.Q., Lin, S.H., Sun, C., Ismail, B.T., Wang, H., Jiang, L., and Blackshaw, S. (2020). The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat Commun 11, 4360.Google Scholar
Kimura, S., Hara, Y., Pineau, T., Fernandez-Salguero, P., Fox, C.H., Ward, J.M., and Gonzalez, F.J. (1996). The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10, 6069.Google Scholar
Kitamura, K., Miura, H., Yanazawa, M., Miyashita, T., and Kato, K. (1997). Expression patterns of Brx1 (Rieg gene), Sonic hedgehog, Nkx2.2, Dlx1 and Arx during zona limitans intrathalamica and embryonic ventral lateral geniculate nuclear formation. Mech Dev 67, 8396.Google Scholar
Kobayashi, D., Kobayashi, M., Matsumoto, K., Ogura, T., Nakafuku, M., and Shimamura, K. (2002). Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129, 8393.Google Scholar
Kornhauser, J.M., Leonard, M.W., Yamamoto, M., LaVail, J.H., Mayo, K.E., and Engel, J.D. (1994). Temporal and spatial changes in GATA transcription factor expression are coincident with development of the chicken optic tectum. Brain Res Mol Brain Res 23, 100110.Google Scholar
Kultas-Ilinsky, K., Yi, H., and Ilinsky, I.A. (1995). Nucleus reticularis thalami input to the anterior thalamic nuclei in the monkey: a light and electron microscopic study. Neurosci Lett 186, 2528.Google Scholar
Lazzaro, D., Price, M., de Felice, M., and Di Lauro, R. (1991). The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113, 10931104.Google Scholar
Le, T.N., Zhou, Q.P., Cobos, I., Zhang, S., Zagozewski, J., Japoni, S., Vriend, J., Parkinson, T., Du, G., Rubenstein, J.L., et al. (2017). GABAergic interneuron differentiation in the basal forebrain is mediated through direct regulation of glutamic acid decarboxylase isoforms by Dlx homeobox transcription factors. J Neurosci 37, 88168829.Google Scholar
Leist, M., Datunashvilli, M., Kanyshkova, T., Zobeiri, M., Aissaoui, A., Cerina, M., Romanelli, M.N., Pape, H.C., and Budde, T. (2016). Two types of interneurons in the mouse lateral geniculate nucleus are characterized by different h-current density. Sci Rep 6, 24904.Google Scholar
Letinic, K., and Kostovic, I. (1997). Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol 384, 373395.Google Scholar
Letinic, K., and Rakic, P. (2001). Telencephalic origin of human thalamic GABAergic neurons. Nat Neurosci 4, 931936.Google Scholar
Letinic, K., Zoncu, R., and Rakic, P. (2002). Origin of GABAergic neurons in the human neocortex. Nature 417, 645649.Google Scholar
Lewandowski, M.H., and Usarek, A. (2002). Effects of intergeniculate leaflet lesions on circadian rhythms in the mouse. Behav Brain Res 128, 1317.Google Scholar
Li, J., Wang, C., Zhang, Z., Wen, Y., An, L., Liang, Q., Xu, Z., Wei, S., Li, W., Guo, T., et al. (2018). Transcription Factors Sp8 and Sp9 coordinately regulate olfactory bulb interneuron development. Cereb Cortex 28, 32783294.Google Scholar
Lima, R.R., Pinato, L., Nascimento, R.B., Engelberth, R.C., Nascimento, E.S., Cavalcante, J.C., Britto, L.R., Costa, M.S., and Cavalcante, J.S. (2012). Retinal projections and neurochemical characterization of the pregeniculate nucleus of the common marmoset (Callithrix jacchus). J Chem Neuroanat 44, 3444.Google Scholar
Lindtner, S., Catta-Preta, R., Tian, H., Su-Feher, L., Price, J.D., Dickel, D.E., Greiner, V., Silberberg, S.N., McKinsey, G.L., McManus, M.T., et al. (2019). Genomic resolution of DLX-orchestrated transcriptional circuits driving development of forebrain GABAergic neurons. Cell Rep 28, 2048–2063 e2048.Google Scholar
Liu, J.K., Ghattas, I., Liu, S., Chen, S., and Rubenstein, J.L. (1997). Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation. Dev Dyn 210, 498512.Google Scholar
Long, J.E., Cobos, I., Potter, G.B., and Rubenstein, J.L. (2009). Dlx1&2 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways. Cereb Cortex 19 Suppl 1, i96106.Google Scholar
Long, J.E., Garel, S., Alvarez-Dolado, M., Yoshikawa, K., Osumi, N., Alvarez-Buylla, A., and Rubenstein, J.L. (2007). Dlx-dependent and -independent regulation of olfactory bulb interneuron differentiation. J Neurosci 27, 32303243.Google Scholar
Long, J.E., Swan, C., Liang, W.S., Cobos, I., Potter, G.B., and Rubenstein, J.L. (2009). Dlx1&2 and Mash1 transcription factors control striatal patterning and differentiation through parallel and overlapping pathways. J Comp Neurol 512, 556572.Google Scholar
Lumsden, A., and Krumlauf, R. (1996). Patterning the vertebrate neuraxis. Science 274, 11091115.Google Scholar
Majorossy, K., and Kiss, A. (1976). Types of interneurons and their participation in the neuronal network of the medial geniculate body. Exp Brain Res 26, 1937.Google Scholar
Makrides, N., Panayiotou, E., Fanis, P., Karaiskos, C., Lapathitis, G., and Malas, S. (2018). Sequential role of SOXB2 factors in GABAergic neuron specification of the dorsal midbrain. Front Mol Neurosci 11, 152.Google Scholar
Marchant, E.G., Watson, N.V., and Mistlberger, R.E. (1997). Both neuropeptide Y and serotonin are necessary for entrainment of circadian rhythms in mice by daily treadmill running schedules. J Neurosci 17, 79747987.Google Scholar
Martinez-Ferre, A., and Martinez, S. (2009). The development of the thalamic motor learning area is regulated by Fgf8 expression. J Neurosci 29, 1338913400.Google Scholar
Martinez-Ferre, A., and Martinez, S. (2012). Molecular regionalization of the diencephalon. Front Neurosci 6, 73.Google Scholar
Martinez-Ferre, A., Navarro-Garberi, M., Bueno, C., and Martinez, S. (2013). Wnt signal specifies the intrathalamic limit and its organizer properties by regulating Shh induction in the alar plate. J Neurosci 33, 39673980.Google Scholar
Mattes, B., Weber, S., Peres, J., Chen, Q., Davidson, G., Houart, C., and Scholpp, S. (2012). Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain. Neural Dev 7, 12.Google Scholar
McCauley, A.K., Carden, W.B., and Godwin, D.W. (2003). Brain nitric oxide synthase expression in the developing ferret lateral geniculate nucleus: analysis of time course, localization, and synaptic contacts. J Comp Neurol 462, 342354.Google Scholar
McCormick, D.A., and Pape, H.C. (1988). Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus. Nature 334, 246248.Google Scholar
Meng, X.W., Ohara, P.T., and Ralston, H.J., 3rd (1996). Nitric oxide synthase immunoreactivity distinguishes a sub-population of GABA-immunoreactive neurons in the ventrobasal complex of the cat. Brain Res 728, 111115.Google Scholar
Meyer-Bernstein, E.L., and Morin, L.P. (1996). Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci 16, 20972111.Google Scholar
Minocha, S., Valloton, D., Arsenijevic, Y., Cardinaux, J.R., Guidi, R., Hornung, J.P., and Lebrand, C. (2017). Nkx2.1 regulates the generation of telencephalic astrocytes during embryonic development. Sci Rep 7, 43093.Google Scholar
Minocha, S., Valloton, D., Ypsilanti, A.R., Fiumelli, H., Allen, E.A., Yanagawa, Y., Marin, O., Chedotal, A., Hornung, J.P., and Lebrand, C. (2015). Nkx2.1-derived astrocytes and neurons together with Slit2 are indispensable for anterior commissure formation. Nat Commun 6, 6887.Google Scholar
Miyoshi, G., Bessho, Y., Yamada, S., and Kageyama, R. (2004). Identification of a novel basic helix-loop-helix gene, Heslike, and its role in GABAergic neurogenesis. J Neurosci 24, 36723682.Google Scholar
Mojsilovic, J., and Zecevic, N. (1991). Early development of the human thalamus: Golgi and Nissl study. Early Hum Dev 27, 119144.Google Scholar
Molinari, M., Leggio, M.G., Dell’Anna, M.E., Giannetti, S., and Macchi, G. (1994). Chemical compartmentation and relationships between calcium-binding protein immunoreactivity and layer-specific cortical caudate-projecting cells in the anterior intralaminar nuclei of the cat. Eur J Neurosci 6, 299312.Google Scholar
Montero, V.M. (1986). Localization of gamma-aminobutyric acid (GABA) in type 3 cells and demonstration of their source to F2 terminals in the cat lateral geniculate nucleus: a Golgi-electron-microscopic GABA-immunocytochemical study. J Comp Neurol 254, 228245.Google Scholar
Montero, V.M. (1989). The GABA-immunoreactive neurons in the interlaminar regions of the cat lateral geniculate nucleus: light and electron microscopic observations. Exp Brain Res 75, 497512.Google Scholar
Montero, V.M. (1991). A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus. Exp Brain Res 86, 257270.Google Scholar
Montero, V.M., and Singer, W. (1985). Ultrastructural identification of somata and neural processes immunoreactive to antibodies against glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the cat. Exp Brain Res 59, 151165.Google Scholar
Montero, V.M., and Zempel, J. (1985). Evidence for two types of GABA-containing interneurons in the A-laminae of the cat lateral geniculate nucleus: a double-label HRP and GABA-immunocytochemical study. Exp Brain Res 60, 603609.Google Scholar
Montero, V.M., and Zempel, J. (1986). The proportion and size of GABA-immunoreactive neurons in the magnocellular and parvocellular layers of the lateral geniculate nucleus of the rhesus monkey. Exp Brain Res 62, 215223.Google Scholar
Moore, R.Y. (1989). The geniculohypothalamic tract in monkey and man. Brain Res 486, 190194.Google Scholar
Moore, R.Y., Weis, R., and Moga, M.M. (2000). Efferent projections of the intergeniculate leaflet and the ventral lateral geniculate nucleus in the rat. J Comp Neurol 420, 398418.Google Scholar
Moreno-Juan, V., Filipchuk, A., Anton-Bolanos, N., Mezzera, C., Gezelius, H., Andres, B., Rodriguez-Malmierca, L., Susin, R., Schaad, O., Iwasato, T., et al. (2017). Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat Commun 8, 14172.Google Scholar
Morest, D.K. (1971). Dendrodendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat. Z Anat Entwicklungsgesch 133, 216246.Google Scholar
Morgan, J.L., and Lichtman, J.W. (2020). An individual interneuron participates in many kinds of inhibition and innervates much of the mouse visual thalamus. Neuron 106, 468–481 e462.Google Scholar
Mori, S., Sugawara, S., Kikuchi, T., Tanji, M., Narumi, O., Stoykova, A., Nishikawa, S.I., and Yokota, Y. (1999). The leukemic oncogene tal-2 is expressed in the developing mouse brain. Brain Res Mol Brain Res 64, 199210.Google Scholar
Morin, L.P., and Blanchard, J. (1995). Organization of the hamster intergeniculate leaflet: NPY and ENK projections to the suprachiasmatic nucleus, intergeniculate leaflet and posterior limitans nucleus. Vis Neurosci 12, 5767.Google Scholar
Morin, L.P., and Blanchard, J.H. (2005). Descending projections of the hamster intergeniculate leaflet: relationship to the sleep/arousal and visuomotor systems. J Comp Neurol 487, 204216.Google Scholar
Munkle, M.C., Waldvogel, H.J., and Faull, R.L. (2000). The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. J Chem Neuroanat 19, 155173.Google Scholar
Nakatani, T., Minaki, Y., Kumai, M., and Ono, Y. (2007). Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon. Development 134, 27832793.Google Scholar
Nardelli, J., Thiesson, D., Fujiwara, Y., Tsai, F.Y., and Orkin, S.H. (1999). Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev Biol 210, 305321.Google Scholar
Nobrega-Pereira, S., Kessaris, N., Du, T., Kimura, S., Anderson, S.A., and Marin, O. (2008). Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59, 733745.Google Scholar
Ogilvy, S., Ferreira, R., Piltz, S.G., Bowen, J.M., Gottgens, B., and Green, A.R. (2007). The SCL +40 enhancer targets the midbrain together with primitive and definitive hematopoiesis and is regulated by SCL and GATA proteins. Mol Cell Biol 27, 72067219.Google Scholar
Ohara, P.T., Chazal, G., and Ralston, H.J., 3rd (1989). Ultrastructural analysis of GABA-immunoreactive elements in the monkey thalamic ventrobasal complex. J Comp Neurol 283, 541558.Google Scholar
Ohara, P.T., Lieberman, A.R., Hunt, S.P., and Wu, J.Y. (1983). Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat; immunohistochemical studies by light and electron microscopy. Neuroscience 8, 189211.Google Scholar
Ottersen, O.P., and Storm-Mathisen, J. (1984). GABA-containing neurons in the thalamus and pretectum of the rodent. An immunocytochemical study. Anat Embryol (Berl) 170, 197207.Google Scholar
Palestini, M., Guegan, M., Saavedra, H., Thomasset, M., and Batini, C. (1993). Glutamate, GABA, calbindin-D28k and parvalbumin immunoreactivity in the pulvinar-lateralis posterior complex of the cat: relation to the projection to the Clare-Bishop area. Neurosci Lett 160, 8992.Google Scholar
Pan, Y., and Monje, M. (2020). Activity shapes neural circuit form and function: a historical perspective. J Neurosci 40, 944954.Google Scholar
Pandolfi, P.P., Roth, M.E., Karis, A., Leonard, M.W., Dzierzak, E., Grosveld, F.G., Engel, J.D., and Lindenbaum, M.H. (1995). Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11, 4044.Google Scholar
Parras, C.M., Schuurmans, C., Scardigli, R., Kim, J., Anderson, D.J., and Guillemot, F. (2002). Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev 16, 324338.Google Scholar
Pasik, P., Pasik, T., Hamori, J., and Szentagothai, J. (1973). Golgi type II interneurons in the neuronal circuit of the monkey lateral geniculate nucleus. Exp Brain Res 17, 1834.Google Scholar
Pei, Z., Wang, B., Chen, G., Nagao, M., Nakafuku, M., and Campbell, K. (2011). Homeobox genes Gsx1 and Gsx2 differentially regulate telencephalic progenitor maturation. Proc Natl Acad Sci USA 108, 16751680.Google Scholar
Peltopuro, P., Kala, K., and Partanen, J. (2010). Distinct requirements for Ascl1 in subpopulations of midbrain GABAergic neurons. Dev Biol 343, 6370.Google Scholar
Penny, G.R., Conley, M., Schmechel, D.E., and Diamond, I.T. (1984). The distribution of glutamic acid decarboxylase immunoreactivity in the diencephalon of the opossum and rabbit. J Comp Neurol 228, 3856.Google Scholar
Penny, G.R., Fitzpatrick, D., Schmechel, D.E., and Diamond, I.T. (1983). Glutamic acid decarboxylase-immunoreactive neurons and horseradish peroxidase-labeled projection neurons in the ventral posterior nucleus of the cat and Galago senegalensis. J Neurosci 3, 18681887.Google Scholar
Perez-Balaguer, A., Puelles, E., Wurst, W., and Martinez, S. (2009). Shh dependent and independent maintenance of basal midbrain. Mech Dev 126, 301313.Google Scholar
Peters, A., and Palay, S.L. (1966). The morphology of laminae A and A1 of the dorsal nucleus of the lateral geniculate body of the cat. J Anat 100, 451486.Google Scholar
Petryniak, M.A., Potter, G.B., Rowitch, D.H., and Rubenstein, J.L. (2007). Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 55, 417433.Google Scholar
Pleasure, S.J., Anderson, S., Hevner, R., Bagri, A., Marin, O., Lowenstein, D.H., and Rubenstein, J.L. (2000). Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28, 727740.Google Scholar
Poitras, L., Ghanem, N., Hatch, G., and Ekker, M. (2007). The proneural determinant MASH1 regulates forebrain Dlx1/2 expression through the I12b intergenic enhancer. Development 134, 17551765.Google Scholar
Puelles, L. (2019). Survey of midbrain, diencephalon, and hypothalamus neuroanatomic terms whose prosomeric definition conflicts with columnar tradition. Front Neuroanat 13, 20.Google Scholar
Puelles, L., Diaz, C., Stuhmer, T., Ferran, J.L., Martinez-de la Torre, M., and Rubenstein, J.L.R. (2020). LacZ-reporter mapping of Dlx5/6 expression and genoarchitectural analysis of the postnatal mouse prethalamus. J Comp Neurol 529, 367420.Google Scholar
Puelles, L., Harrison, M., Paxinos, G., and Watson, C. (2013). A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36, 570578.Google Scholar
Puelles, L., and Rubenstein, J.L. (1993). Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16, 472479.Google Scholar
Puelles, L., and Rubenstein, J.L. (2003). Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26, 469476.Google Scholar
Quinlan, R., Graf, M., Mason, I., Lumsden, A., and Kiecker, C. (2009). Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain. Neural Dev 4, 35.Google Scholar
Rakić, P., and Sidman, R.L. (1969). Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entwicklungsgesch 129, 5382.Google Scholar
Rausell, E., Bae, C.S., Vinuela, A., Huntley, G.W., and Jones, E.G. (1992). Calbindin and parvalbumin cells in monkey VPL thalamic nucleus: distribution, laminar cortical projections, and relations to spinothalamic terminations. J Neurosci 12, 40884111.Google Scholar
Rikhye, R.V., Wimmer, R.D., and Halassa, M.M. (2018). Toward an integrative theory of thalamic function. Annu Rev Neurosci 41, 163183.Google Scholar
Rinvik, E., Ottersen, O.P., and Storm-Mathisen, J. (1987). Gamma-aminobutyrate-like immunoreactivity in the thalamus of the cat. Neuroscience 21, 781805.Google Scholar
Robertshaw, E., Matsumoto, K., Lumsden, A., and Kiecker, C. (2013). Irx3 and Pax6 establish differential competence for Shh-mediated induction of GABAergic and glutamatergic neurons of the thalamus. Proc Natl Acad Sci USA 110, E39193926.Google Scholar
Rubenstein, J.L., Martinez, S., Shimamura, K., and Puelles, L. (1994). The embryonic vertebrate forebrain: the prosomeric model. Science 266, 578580.Google Scholar
Sabbagh, U., Govindaiah, G., Somaiya, R.D., Ha, R.V., Wei, J.C., Guido, W., and Fox, M.A. (2020). Diverse GABAergic neurons organize into subtype-specific sublaminae in the ventral lateral geniculate nucleus. J Neurochem 159, 479497.Google Scholar
Sanchez-Vives, M.V., Bal, T., Kim, U., von Krosigk, M., and McCormick, D.A. (1996). Are the interlaminar zones of the ferret dorsal lateral geniculate nucleus actually part of the perigeniculate nucleus? J Neurosci 16, 59235941.Google Scholar
Sanders, T.A., Lumsden, A., and Ragsdale, C.W. (2002). Arcuate plan of chick midbrain development. J Neurosci 22, 1074210750.Google Scholar
Saunders, A., Macosko, E.Z., Wysoker, A., Goldman, M., Krienen, F.M., de Rivera, H., Bien, E., Baum, M., Bortolin, L., Wang, S., et al. (2018). Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030, e1016.Google Scholar
Sawyer, S.F., Martone, M.E., and Groves, P.M. (1991). A GABA immunocytochemical study of rat motor thalamus: light and electron microscopic observations. Neuroscience 42, 103124.Google Scholar
Scheibel, M.E., Davies, T.L., and Scheibel, A.B. (1972). On dendrodendritic relations in the dorsal thalamus of the adult cat. Exp Neurol 36, 519529.Google Scholar
Scholpp, S., Delogu, A., Gilthorpe, J., Peukert, D., Schindler, S., and Lumsden, A. (2009). Her6 regulates the neurogenetic gradient and neuronal identity in the thalamus. Proc Natl Acad Sci USA 106, 1989519900.Google Scholar
Scholpp, S., Wolf, O., Brand, M., and Lumsden, A. (2006). Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon. Development 133, 855864.Google Scholar
Seabrook, T.A., Burbridge, T.J., Crair, M.C., and Huberman, A.D. (2017). Architecture, function, and assembly of the mouse visual system. Annu Rev Neurosci 40, 499538.Google Scholar
Seabrook, T.A., El-Danaf, R.N., Krahe, T.E., Fox, M.A., and Guido, W. (2013a). Retinal input regulates the timing of corticogeniculate innervation. J Neurosci 33, 1008510097.Google Scholar
Seabrook, T.A., Krahe, T.E., Govindaiah, G., and Guido, W. (2013b). Interneurons in the mouse visual thalamus maintain a high degree of retinal convergence throughout postnatal development. Neural Dev 8, 24.Google Scholar
Sellers, K., Zyka, V., Lumsden, A.G., and Delogu, A. (2014). Transcriptional control of GABAergic neuronal subtype identity in the thalamus. Neural Dev 9, 14.Google Scholar
Shamim, H., Mahmood, R., Logan, C., Doherty, P., Lumsden, A., and Mason, I. (1999). Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development 126, 945959.Google Scholar
Shatz, C.J. (1996). Emergence of order in visual system development. Proc Natl Acad Sci USA 93, 602608.Google Scholar
Sherman, S.M. (2004). Interneurons and triadic circuitry of the thalamus. Trends Neurosci 27, 670675.Google Scholar
Sherman, S.M., and Guillery, R.W. (1998). On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators.Proc Natl Acad Sci USA 95, 71217126.Google Scholar
Shi, H.Y., Xu, W., Guo, H., Dong, H., Qu, W.M., and Huang, Z.L. (2020). Lesion of intergeniculate leaflet GABAergic neurons attenuates sleep in mice exposed to light. Sleep 43.Google Scholar
Shi, W., Xianyu, A., Han, Z., Tang, X., Li, Z., Zhong, H., Mao, T., Huang, K., and Shi, S.H. (2017). Ontogenetic establishment of order-specific nuclear organization in the mammalian thalamus. Nat Neurosci 20, 516528.Google Scholar
Shimamura, K., Hartigan, D.J., Martinez, S., Puelles, L., and Rubenstein, J.L. (1995). Longitudinal organization of the anterior neural plate and neural tube. Development 121, 39233933.Google Scholar
Simeone, A., Acampora, D., Pannese, M., D’Esposito, M., Stornaiuolo, A., Gulisano, M., Mallamaci, A., Kastury, K., Druck, T., Huebner, K., et al. (1994). Cloning and characterization of two members of the vertebrate Dlx gene family. Proc Natl Acad Sci USA 91, 22502254.Google Scholar
Smith, V.M., Jeffers, R.T., and Antle, M.C. (2015). Serotonergic enhancement of circadian responses to light: role of the raphe and intergeniculate leaflet. Eur J Neurosci 42, 28052817.Google Scholar
Smith, Y., Seguela, P., and Parent, A. (1987). Distribution of GABA-immunoreactive neurons in the thalamus of the squirrel monkey (Saimiri sciureus). Neuroscience 22, 579591.Google Scholar
Sokhadze, G., Seabrook, T.A., and Guido, W. (2018). The absence of retinal input disrupts the development of cholinergic brainstem projections in the mouse dorsal lateral geniculate nucleus. Neural Dev 13, 27.Google Scholar
Song, H., Lee, B., Pyun, D., Guimera, J., Son, Y., Yoon, J., Baek, K., Wurst, W., and Jeong, Y. (2015). Ascl1 and Helt act combinatorially to specify thalamic neuronal identity by repressing Dlxs activation. Dev Biol 398, 280291.Google Scholar
Spreafico, R., De Biasi, S., Battaglia, G., and Rustioni, A. (1992). GABA- and glutamate-containing neurons in the thalamus of rats and cats: an immunocytochemical study. Epilepsy Res Suppl 8, 107115.Google Scholar
Spreafico, R., Frassoni, C., Arcelli, P., and De Biasi, S. (1994). GABAergic interneurons in the somatosensory thalamus of the guinea-pig: a light and ultrastructural immunocytochemical investigation. Neuroscience 59, 961973.Google Scholar
Spreafico, R., Schmechel, D.E., Ellis, L.C., Jr., and Rustioni, A. (1983). Cortical relay neurons and interneurons in the N. ventralis posterolateralis of cats: a horseradish peroxidase, electron-microscopic, Golgi and immunocytochemical study. Neuroscience 9, 491509.Google Scholar
Steriade, M. (2004). Local gating of information processing through the thalamus. Neuron 41, 493494.Google Scholar
Steriade, M., Domich, L., and Oakson, G. (1986). Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance. J Neurosci 6, 6881.Google Scholar
Sterling, P., and Davis, T.L. (1980). Neurons in cat lateral geniculate nucleus that concentrate exogenous [3H]-gamma-aminobutyric acid (GABA). J Comp Neurol 192, 737749.Google Scholar
Stichel, C.C., Singer, W., and Heizmann, C.W. (1988). Light and electron microscopic immunocytochemical localization of parvalbumin in the dorsal lateral geniculate nucleus of the cat: evidence for coexistence with GABA. J Comp Neurol 268, 2937.Google Scholar
Su, J., Charalambakis, N.E., Sabbagh, U., Somaiya, R.D., Monavarfeshani, A., Guido, W., and Fox, M.A. (2020). Retinal inputs signal astrocytes to recruit interneurons into visual thalamus. Proc Natl Acad Sci USA 117, 26712682.Google Scholar
Sussel, L., Marin, O., Kimura, S., and Rubenstein, J.L. (1999). Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 33593370.Google Scholar
Szentagothai, J. (1967). Models of specific neuron arrays in thalamic relay nuclei. Acta Morphol Acad Sci Hung 15, 113124.Google Scholar
Szucsik, J.C., Witte, D.P., Li, H., Pixley, S.K., Small, K.M., and Potter, S.S. (1997). Altered forebrain and hindbrain development in mice mutant for the Gsh-2 homeobox gene. Dev Biol 191, 230242.Google Scholar
Tai, Y., Yi, H., Ilinsky, I.A., and Kultas-Ilinsky, K. (1995). Nucleus reticularis thalami connections with the mediodorsal thalamic nucleus: a light and electron microscopic study in the monkey. Brain Res Bull 38, 475488.Google Scholar
Tombol, T. (1967). Short neurons and their synaptic relations in the specific thalamic nuclei. Brain Res 3, 307326.Google Scholar
Toresson, H., Potter, S.S., and Campbell, K. (2000). Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127, 43614371.Google Scholar
Uchikawa, M., Kamachi, Y., and Kondoh, H. (1999). Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken. Mech Dev 84, 103120.Google Scholar
Valerius, M.T., Li, H., Stock, J.L., Weinstein, M., Kaur, S., Singh, G., and Potter, S.S. (1995). Gsh-1: a novel murine homeobox gene expressed in the central nervous system. Dev Dyn 203, 337351.Google Scholar
van Doorninck, J.H., van Der Wees, J., Karis, A., Goedknegt, E., Engel, J.D., Coesmans, M., Rutteman, M., Grosveld, F., and De Zeeuw, C.I. (1999). GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J Neurosci 19, RC12.Google Scholar
van Eekelen, J.A., Bradley, C.K., Gothert, J.R., Robb, L., Elefanty, A.G., Begley, C.G., and Harvey, A.R. (2003). Expression pattern of the stem cell leukaemia gene in the CNS of the embryonic and adult mouse. Neuroscience 122, 421436.Google Scholar
Van Horn, S.C., Erisir, A., and Sherman, S.M. (2000). Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J Comp Neurol 416, 509520.Google Scholar
Vernay, B., Koch, M., Vaccarino, F., Briscoe, J., Simeone, A., Kageyama, R., and Ang, S.L. (2005). Otx2 regulates subtype specification and neurogenesis in the midbrain. J Neurosci 25, 48564867.Google Scholar
Vieira, C., and Martinez, S. (2006). Sonic hedgehog from the basal plate and the zona limitans intrathalamica exhibits differential activity on diencephalic molecular regionalization and nuclear structure. Neuroscience 143, 129140.Google Scholar
Virolainen, S.M., Achim, K., Peltopuro, P., Salminen, M., and Partanen, J. (2012). Transcriptional regulatory mechanisms underlying the GABAergic neuron fate in different diencephalic prosomeres. Development 139, 37953805.Google Scholar
Vrang, N., Mrosovsky, N., and Mikkelsen, J.D. (2003). Afferent projections to the hamster intergeniculate leaflet demonstrated by retrograde and anterograde tracing. Brain Res Bull 59, 267288.Google Scholar
Vue, T.Y., Aaker, J., Taniguchi, A., Kazemzadeh, C., Skidmore, J.M., Martin, D.M., Martin, J.F., Treier, M., and Nakagawa, Y. (2007). Characterization of progenitor domains in the developing mouse thalamus. J Comp Neurol 505, 7391.Google Scholar
Vue, T.Y., Bluske, K., Alishahi, A., Yang, L.L., Koyano-Nakagawa, N., Novitch, B., and Nakagawa, Y. (2009). Sonic hedgehog signaling controls thalamic progenitor identity and nuclei specification in mice. J Neurosci 29, 44844497.Google Scholar
Waclaw, R.R., Wang, B., Pei, Z., Ehrman, L.A., and Campbell, K. (2009). Distinct temporal requirements for the homeobox gene Gsx2 in specifying striatal and olfactory bulb neuronal fates. Neuron 63, 451465.Google Scholar
Waite, M.R., Skidmore, J.M., Billi, A.C., Martin, J.F., and Martin, D.M. (2011). GABAergic and glutamatergic identities of developing midbrain Pitx2 neurons. Dev Dyn 240, 333346.Google Scholar
Wang, B., Waclaw, R.R., Allen, Z.J., 2nd, Guillemot, F., and Campbell, K. (2009). Ascl1 is a required downstream effector of Gsx gene function in the embryonic mouse telencephalon. Neural Dev 4, 5.Google Scholar
Wang, S., Eisenback, M., Datskovskaia, A., Boyce, M., and Bickford, M.E. (2002). GABAergic pretectal terminals contact GABAergic interneurons in the cat dorsal lateral geniculate nucleus. Neurosci Lett 323, 141145.Google Scholar
Wang, S.W., Kim, B.S., Ding, K., Wang, H., Sun, D., Johnson, R.L., Klein, W.H., and Gan, L. (2001). Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15, 2429.Google Scholar
Wang, Y., Dye, C.A., Sohal, V., Long, J.E., Estrada, R.C., Roztocil, T., Lufkin, T., Deisseroth, K., Baraban, S.C., and Rubenstein, J.L. (2010). Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. J Neurosci 30, 53345345.Google Scholar
Wang, Y., Li, G., Stanco, A., Long, J.E., Crawford, D., Potter, G.B., Pleasure, S.J., Behrens, T., and Rubenstein, J.L. (2011). CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 69, 6176.Google Scholar
Weber, A.J., and Kalil, R.E. (1983). The percentage of interneurons in the dorsal lateral geniculate nucleus of the cat and observations on several variables that affect the sensitivity of horseradish peroxidase as a retrograde marker. J Comp Neurol 220, 336346.Google Scholar
Weber, A.J., Kalil, R.E., and Behan, M. (1989). Synaptic connections between corticogeniculate axons and interneurons in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 289, 156164.Google Scholar
Weber, A.J., Kalil, R.E., and Hickey, T.L. (1986). Genesis of interneurons in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 252, 385391.Google Scholar
Wei, S., Du, H., Li, Z., Tao, G., Xu, Z., Song, X., Shang, Z., Su, Z., Chen, H., Wen, Y., et al. (2019). Transcription factors Sp8 and Sp9 regulate the development of caudal ganglionic eminence-derived cortical interneurons. J Comp Neurol 527, 28602874.Google Scholar
Wende, C.Z., Zoubaa, S., Blak, A., Echevarria, D., Martinez, S., Guillemot, F., Wurst, W., and Guimera, J. (2015). Hairy/enhancer-of-split MEGANE and proneural MASH1 factors cooperate synergistically in midbrain GABAergic neurogenesis. PLoS One 10, e0127681.Google Scholar
Willett, R.T., and Greene, L.A. (2011). Gata2 is required for migration and differentiation of retinorecipient neurons in the superior colliculus. J Neurosci 31, 44444455.Google Scholar
Williams, S.R., Turner, J.P., Anderson, C.M., and Crunelli, V. (1996). Electrophysiological and morphological properties of interneurones in the rat dorsal lateral geniculate nucleus in vitro. J Physiol 490 (Pt 1), 129147.Google Scholar
Wilson, J.R. (1986). Synaptic connections of relay and local circuit neurons in the monkey’s dorsal lateral geniculate nucleus. Neurosci Lett 66, 7984.Google Scholar
Wong, S.Z.H., Scott, E.P., Mu, W., Guo, X., Borgenheimer, E., Freeman, M., Ming, G.L., Wu, Q.F., Song, H., and Nakagawa, Y. (2018). In vivo clonal analysis reveals spatiotemporal regulation of thalamic nucleogenesis. PLoS Biol 16, e2005211.Google Scholar
Xu, Q., Cobos, I., De La Cruz, E., Rubenstein, J.L., and Anderson, S.A. (2004). Origins of cortical interneuron subtypes. J Neurosci 24, 26122622.Google Scholar
Xu, Q., Tam, M., and Anderson, S.A. (2008). Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol 506, 1629.Google Scholar
Yoon, M.S., Puelles, L., and Redies, C. (2000). Formation of cadherin-expressing brain nuclei in diencephalic alar plate divisions. J Comp Neurol 427, 461480.Google Scholar
Yun, K., Fischman, S., Johnson, J., Hrabe de Angelis, M., Weinmaster, G., and Rubenstein, J.L. (2002). Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon. Development 129, 50295040.Google Scholar
Yun, K., Garel, S., Fischman, S., and Rubenstein, J.L. (2003). Patterning of the lateral ganglionic eminence by the Gsh1 and Gsh2 homeobox genes regulates striatal and olfactory bulb histogenesis and the growth of axons through the basal ganglia. J Comp Neurol 461, 151165.Google Scholar
Yun, K., Potter, S., and Rubenstein, J.L. (2001). Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128, 193205.Google Scholar
Zeisel, A., Hochgerner, H., Lonnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Haring, M., Braun, E., Borm, L.E., La Manno, G., et al. (2018). Molecular Architecture of the Mouse Nervous System. Cell 174, 999–1014 e1022.Google Scholar
Zhang, Q., Zhang, Y., Wang, C., Xu, Z., Liang, Q., An, L., Li, J., Liu, Z., You, Y., He, M., et al. (2016). The zinc finger transcription factor Sp9 is required for the development of striatopallidal projection neurons. Cell Rep 16, 14311444.Google Scholar
Zhao, G.Y., Li, Z.Y., Zou, H.L., Hu, Z.L., Song, N.N., Zheng, M.H., Su, C.J., and Ding, Y.Q. (2008). Expression of the transcription factor GATA3 in the postnatal mouse central nervous system. Neurosci Res 61, 420428.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×